浙江农业学报 ›› 2023, Vol. 35 ›› Issue (3): 523-533.DOI: 10.3969/j.issn.1004-1524.2023.03.05
收稿日期:
2022-04-24
出版日期:
2023-03-25
发布日期:
2023-04-07
作者简介:
王金凤(1981—),女,山东威海人,博士,副研究员,主要从事遗传育种、农林作物培育相关研究。E-mail:1916330545@qq.com
基金资助:
WANG Jinfeng1(), ZHOU Qi1, LYU Yulong2, CHEN Zhuomei1
Received:
2022-04-24
Online:
2023-03-25
Published:
2023-04-07
摘要:
为寻求适宜的茶-景观树种间作模式,以玉兰[Yulania denudata (Desr.) D.L.Fu]、无患子(Sapindus saponaria L.)、山樱花[Prunus campanulata (Maxim.) Yü et Li]3种高大落叶景观乔木树种与茶树[Camellia sinensis(L.) O. Ktze.]间作的模式作为研究对象,并以单作茶园(不间作)作为对照,通过测定茶园小气候变化、土壤理化性质、茶叶产量和生化成分,对3个景观树种与茶树复合经营模式进行全面的科学评估与研究。结果表明:3种景观树种均对间作茶园的小气候产生了有利影响,有效降低了夏季茶园温度,提高了茶园湿度,尤以间作玉兰和无患子的效果显著。3种间作模式均能改善间作茶园土壤的理化性质,以间作山樱花最佳,可以显著提升有机质、全氮和全磷等含量,并显著增加脲酶、蔗糖酶活性,全面改善土壤养分,间作玉兰和无患子可以促进茶树对土壤中钾、磷元素的吸收转化,从而提高茶叶的产量与品质。3种间作模式均不同程度提高间作茶园茶叶产量,在促进茶树生长的同时,也有利于氨基酸等物质的积累,形成适宜的酚氨比,提升茶叶品质,特别是间作无患子可以显著促进茶园增产提质,其茶青产量比对照提高51.81%。综上,玉兰、无患子、山樱花3种景观树种均适宜与茶树进行间作。
中图分类号:
王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533.
WANG Jinfeng, ZHOU Qi, LYU Yulong, CHEN Zhuomei. Effects of intercropping tea with landscape trees on ecosystem of tea garden and tea production[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 523-533.
茶叶品种 Tea cultivar | 试验地点 Location | 时间 Time | 处理 Treatment | 间作模式 Intercropping mode | 间作树种冠幅 Crown breadth of intercropping trees/m |
---|---|---|---|---|---|
开化龙顶 Kaihua longding tea | 浙江省开化县十里铺茶厂 Shilipu Tea Company, Kaihua County, Zhejiang Province | 2020-03-27、 2020-07-31 | YL | 茶-玉兰 C. sinensis-Y. denudata | 3.0~3.4 |
WHZ | 茶-无患子 C. sinensis-S. saponaria | 6.0~6.5 | |||
CK-L | 单作对照 Tea monoculture | ||||
白茶 White tea | 浙江省宁波市海曙区金陆茶厂 Jinlu Tea Company, Haishu District, Ninbo City, Zhejiang Province | 2020-04-28、 2020-08-18 | SYH | 茶-山樱花 C. sinensis-P. campanulata | 4.0~4.5 |
CK-B | 单作对照 Tea monoculture |
表1 不同间作模式试验处理
Table 1 The treatment of different intercropping modes
茶叶品种 Tea cultivar | 试验地点 Location | 时间 Time | 处理 Treatment | 间作模式 Intercropping mode | 间作树种冠幅 Crown breadth of intercropping trees/m |
---|---|---|---|---|---|
开化龙顶 Kaihua longding tea | 浙江省开化县十里铺茶厂 Shilipu Tea Company, Kaihua County, Zhejiang Province | 2020-03-27、 2020-07-31 | YL | 茶-玉兰 C. sinensis-Y. denudata | 3.0~3.4 |
WHZ | 茶-无患子 C. sinensis-S. saponaria | 6.0~6.5 | |||
CK-L | 单作对照 Tea monoculture | ||||
白茶 White tea | 浙江省宁波市海曙区金陆茶厂 Jinlu Tea Company, Haishu District, Ninbo City, Zhejiang Province | 2020-04-28、 2020-08-18 | SYH | 茶-山樱花 C. sinensis-P. campanulata | 4.0~4.5 |
CK-B | 单作对照 Tea monoculture |
图1 不同间作处理茶园温度日变化曲线 A,间作玉兰和无患子;B,间作山樱花。YL,茶-玉兰间作;WHZ,茶-无患子间作;CK-L,开化龙顶单作对照;SYH,茶-山樱花间作;CK-B,白茶单作对照。下同。
Fig.1 Time-temperature curve of different intercropping modes in the day A, Tea garden intercropped with Y. denudata and S. saponaria; B, Tea garden intercropped with P. campanulata. YL, C. sinensis-Y. denudata; WHZ, C. sinensis-S. saponaria; CK-L, Kaihua longding Tea monoculture; SYH, C. sinensis-P. campanulata; CK-B, White Tea monoculture. The same as bellow.
处理 Treatment | 土层深度 SL/cm | pH | 有机质 OM/(g· kg-1) | 有效氮 AN/(mg· kg-1) | 全氮 TN/% | 有效钾 APo/(mg· kg-1) | 全钾 TPo/(g· kg-1) | 有效磷 APh/(mg· kg-1) | 全磷 TPh/(g· kg-1) |
---|---|---|---|---|---|---|---|---|---|
YL | 0~20 | 3.98 ±0.25 ab | 27.50 ±14.82 a | 96.00 ±27.75 a | 0.21 ±0.07 a | 112.33 ±19.55 ab | 21.11 ±1.25 ab | 31.81 ±24.45 a | 0.80 ±0.28 a |
20~40 | 3.91 ±0.16 b | 23.56 ±16.95 a | 77.12 ±21.05 a | 0.20 ±0.08 a | 90.67 ±9.71 ab | 21.22 ±1.55 ab | 9.40 ±4.31 a | 0.60 ±0.40 a | |
平均 Average | 3.95 ±0.21 a | 25.53 ±13.49 a | 86.57 ±22.74 a | 0.21 ±0.06 a | 101.50 ±7.81 a | 21.17 ±0.96 a | 20.61 ±14.33 a | 0.70 ±0.33 a | |
WHZ | 0~20 | 4.09 ±0.17 ab | 38.69 ±23.04 a | 114.09 ±56.14 a | 0.29 ±0.09 a | 71.00 ±20.52 ab | 23.83 ±3.51 ab | 14.40 ±13.80 a | 0.69 ±0.17 a |
20~40 | 4.08 ±0.19 ab | 32.83 ±20.62 a | 106.37 ±62.75 a | 0.27 ±0.08 a | 67.00 ±23.07 b | 24.50 ±2.45 a | 11.27 ±5.92 a | 0.57 ±0.18 a | |
平均 Average | 4.08 ±0.16 a | 35.76 ±21.22 a | 110.23 ±59.39 a | 0.28 ±0.08 a | 69.00 ±21.47 a | 24.17 ±2.86 a | 12.84 ±8.39 a | 0.63 ±0.10 a | |
CK-L | 0~20 | 4.18 ±0.21 ab | 33.21 ±14.57 a | 118.61 ±26.05 a | 0.20 ±0.08 a | 135.33 ±55.19 a | 18.17 ±1.86 b | 59.44 ±56.50 a | 0.71 ±0.20 a |
20~40 | 4.34 ±0.29 a | 29.35 ±19.91 a | 85.63 ±19.78 a | 0.25 ±0.07 a | 124.00 ±63.02 ab | 21.84 ±3.69 ab | 26.15 ±35.07 a | 0.62 ±0.33 a | |
平均 Average | 4.27 ±0.25 a | 31.28 ±14.09 a | 102.12 ±21.47 a | 0.23 ±0.06 a | 129.67 ±58.75 a | 20.00 ±2.53 a | 42.80 ±44.96 a | 0.67 ±0.22 a | |
SYH | 0~20 | 4.08 ±0.08 a | 43.72 ±17.76 a | 139.35 ±59.11 a | 0.22 ±0.08 a | 229.00 ±10.58 a | 15.84 ±1.26 a | 132.29 ±52.20 a | 1.01 ±0.24 a |
20~40 | 4.14 ±0.06 a | 39.01 ±5.67 a | 108.23 ±7.24 a | 0.18 ±0.03 ab | 217.67 ±37.54 a | 16.11 ±1.86 a | 127.18 ±59.64 a | 1.01 ±0.18 a | |
平均 Average | 4.11 ±0.03 a | 41.36 ±6.39 a | 123.79 ±31.39 a | 0.20 ±0.03 a | 223.33 ±24.01 a | 15.98 ±1.08 a | 129.74 ±54.98 a | 1.01 ±0.21 a | |
CK-B | 0~20 | 4.05 ±0.06 a | 32.47 ±6.93 a | 114.62 ±31.76 a | 0.17 ±0.04 ab | 255.33 ±28.54 a | 14.89 ±0.26 a | 59.58 ±11.32 a | 0.65 ±0.16 b |
20~40 | 4.12 ±0.02 a | 24.08 ±6.49 a | 86.69 ±12.18 a | 0.13 ±0.03 b | 224.67 ±13.87 a | 15.61 ±1.21 a | 52.62 ±28.22 a | 0.57 ±0.04 b | |
平均 Average | 4.09 ±0.03 a | 28.28 ±3.91 b | 100.66 ±16.56 a | 0.15 ±0.01 b | 240.00 ±20.48 a | 15.25 ±0.72 a | 56.10 ±12.09a | 0.61 ±0.10 b |
表2 不同间作模式茶园土壤养分变化
Table 2 Changes of soil nutrients in tea garden under different intercropping modes
处理 Treatment | 土层深度 SL/cm | pH | 有机质 OM/(g· kg-1) | 有效氮 AN/(mg· kg-1) | 全氮 TN/% | 有效钾 APo/(mg· kg-1) | 全钾 TPo/(g· kg-1) | 有效磷 APh/(mg· kg-1) | 全磷 TPh/(g· kg-1) |
---|---|---|---|---|---|---|---|---|---|
YL | 0~20 | 3.98 ±0.25 ab | 27.50 ±14.82 a | 96.00 ±27.75 a | 0.21 ±0.07 a | 112.33 ±19.55 ab | 21.11 ±1.25 ab | 31.81 ±24.45 a | 0.80 ±0.28 a |
20~40 | 3.91 ±0.16 b | 23.56 ±16.95 a | 77.12 ±21.05 a | 0.20 ±0.08 a | 90.67 ±9.71 ab | 21.22 ±1.55 ab | 9.40 ±4.31 a | 0.60 ±0.40 a | |
平均 Average | 3.95 ±0.21 a | 25.53 ±13.49 a | 86.57 ±22.74 a | 0.21 ±0.06 a | 101.50 ±7.81 a | 21.17 ±0.96 a | 20.61 ±14.33 a | 0.70 ±0.33 a | |
WHZ | 0~20 | 4.09 ±0.17 ab | 38.69 ±23.04 a | 114.09 ±56.14 a | 0.29 ±0.09 a | 71.00 ±20.52 ab | 23.83 ±3.51 ab | 14.40 ±13.80 a | 0.69 ±0.17 a |
20~40 | 4.08 ±0.19 ab | 32.83 ±20.62 a | 106.37 ±62.75 a | 0.27 ±0.08 a | 67.00 ±23.07 b | 24.50 ±2.45 a | 11.27 ±5.92 a | 0.57 ±0.18 a | |
平均 Average | 4.08 ±0.16 a | 35.76 ±21.22 a | 110.23 ±59.39 a | 0.28 ±0.08 a | 69.00 ±21.47 a | 24.17 ±2.86 a | 12.84 ±8.39 a | 0.63 ±0.10 a | |
CK-L | 0~20 | 4.18 ±0.21 ab | 33.21 ±14.57 a | 118.61 ±26.05 a | 0.20 ±0.08 a | 135.33 ±55.19 a | 18.17 ±1.86 b | 59.44 ±56.50 a | 0.71 ±0.20 a |
20~40 | 4.34 ±0.29 a | 29.35 ±19.91 a | 85.63 ±19.78 a | 0.25 ±0.07 a | 124.00 ±63.02 ab | 21.84 ±3.69 ab | 26.15 ±35.07 a | 0.62 ±0.33 a | |
平均 Average | 4.27 ±0.25 a | 31.28 ±14.09 a | 102.12 ±21.47 a | 0.23 ±0.06 a | 129.67 ±58.75 a | 20.00 ±2.53 a | 42.80 ±44.96 a | 0.67 ±0.22 a | |
SYH | 0~20 | 4.08 ±0.08 a | 43.72 ±17.76 a | 139.35 ±59.11 a | 0.22 ±0.08 a | 229.00 ±10.58 a | 15.84 ±1.26 a | 132.29 ±52.20 a | 1.01 ±0.24 a |
20~40 | 4.14 ±0.06 a | 39.01 ±5.67 a | 108.23 ±7.24 a | 0.18 ±0.03 ab | 217.67 ±37.54 a | 16.11 ±1.86 a | 127.18 ±59.64 a | 1.01 ±0.18 a | |
平均 Average | 4.11 ±0.03 a | 41.36 ±6.39 a | 123.79 ±31.39 a | 0.20 ±0.03 a | 223.33 ±24.01 a | 15.98 ±1.08 a | 129.74 ±54.98 a | 1.01 ±0.21 a | |
CK-B | 0~20 | 4.05 ±0.06 a | 32.47 ±6.93 a | 114.62 ±31.76 a | 0.17 ±0.04 ab | 255.33 ±28.54 a | 14.89 ±0.26 a | 59.58 ±11.32 a | 0.65 ±0.16 b |
20~40 | 4.12 ±0.02 a | 24.08 ±6.49 a | 86.69 ±12.18 a | 0.13 ±0.03 b | 224.67 ±13.87 a | 15.61 ±1.21 a | 52.62 ±28.22 a | 0.57 ±0.04 b | |
平均 Average | 4.09 ±0.03 a | 28.28 ±3.91 b | 100.66 ±16.56 a | 0.15 ±0.01 b | 240.00 ±20.48 a | 15.25 ±0.72 a | 56.10 ±12.09a | 0.61 ±0.10 b |
处理 Treatment | 土层深度 Soil layer/cm | 脲酶 Urease/(U· g-1) | 过氧化氢酶 Catalase/ (U·g-1) | 多酚氧化酶 Polyphenol oxidase/ (U·g-1) | 蛋白酶 Protease/ (U·g-1) | 蔗糖酶 Sucrase/ (U·g-1) | 脱氢酶 Dehydrogenase/ (U·g-1) |
---|---|---|---|---|---|---|---|
YL | 0~20 | 146.54±38.40 ab | 180.86±19.16 a | 48.16±4.88 a | 7.33±1.51 a | 141.13±17.73 a | 16.29±2.61 a |
20~40 | 112.33±37.06 b | 170.58±29.26 a | 44.97±13.08 a | 6.76±1.78 a | 119.68±21.90 a | 13.69±1.69 a | |
平均Mean | 129.44±14.48 a | 175.72±19.94 a | 46.56±6.97 a | 7.05±1.51 a | 130.41±9.62 a | 14.99±1.97 a | |
WHZ | 0~20 | 156.22±26.54 ab | 175.74±24.25 a | 53.98±3.08 a | 7.15±1.05 a | 128.07±27.95 a | 15.79±3.38 a |
20~40 | 142.16±35.37 ab | 153.35±14.30 a | 47.73±1.63 a | 6.19±0.39 a | 114.87±10.86 a | 16.73±2.73 a | |
平均Mean | 149.19±26.46 a | 164.55±13.03 a | 50.86±1.32 a | 6.67±0.61 a | 121.47±17.72 a | 16.27±2.19 a | |
CK-L | 0~20 | 174.38±18.07 a | 165.69±17.44 a | 51.93±6.65 a | 7.55±1.02 a | 127.16±7.07 a | 14.55±0.66 a |
20~40 | 105.45±15.60 b | 163.48±13.25 a | 40.78±16.24 a | 6.48±1.71 a | 124.54±12.57 a | 14.29±1.08 a | |
平均Mean | 139.91±4.22 a | 164.58±12.93 a | 46.35±10.54 a | 7.01±1.30 a | 125.86±8.12 a | 14.42±0.39 a | |
SYH | 0~20 | 167.90±16.29 a | 176.63±18.02 a | 39.09±6.31 a | 7.15±0.98 a | 128.74±16.06 a | 15.72±0.40 a |
20~40 | 164.45±26.21 a | 170.31±25.62 a | 40.38±4.73 a | 6.70±0.44 a | 107.15±11.32 ab | 14.09±1.58 a | |
平均Mean | 166.18±12.86 a | 173.47±11.80 a | 39.74±3.99 a | 6.92±0.68 a | 117.95±5.87 a | 14.90±0.83 a | |
CK-B | 0~20 | 138.72±34.76 ab | 162.31±13.41 a | 48.69±11.49 a | 7.37±1.49 a | 108.53±25.24 ab | 15.21±2.63 a |
20~40 | 109.83±30.29 b | 153.31±27.39 a | 47.90±11.81 a | 6.73±1.33 a | 83.36±10.41 b | 14.66±0.82 a | |
平均Mean | 124.27±4.42 b | 157.81±14.98 a | 48.29±6.71 a | 7.05±0.91 a | 95.94±10.75 b | 14.94±0.91 a |
表3 不同间作模式茶园土壤酶活性变化
Table 3 Enzyme activity changes of soil in tea garden under different intercropping modes
处理 Treatment | 土层深度 Soil layer/cm | 脲酶 Urease/(U· g-1) | 过氧化氢酶 Catalase/ (U·g-1) | 多酚氧化酶 Polyphenol oxidase/ (U·g-1) | 蛋白酶 Protease/ (U·g-1) | 蔗糖酶 Sucrase/ (U·g-1) | 脱氢酶 Dehydrogenase/ (U·g-1) |
---|---|---|---|---|---|---|---|
YL | 0~20 | 146.54±38.40 ab | 180.86±19.16 a | 48.16±4.88 a | 7.33±1.51 a | 141.13±17.73 a | 16.29±2.61 a |
20~40 | 112.33±37.06 b | 170.58±29.26 a | 44.97±13.08 a | 6.76±1.78 a | 119.68±21.90 a | 13.69±1.69 a | |
平均Mean | 129.44±14.48 a | 175.72±19.94 a | 46.56±6.97 a | 7.05±1.51 a | 130.41±9.62 a | 14.99±1.97 a | |
WHZ | 0~20 | 156.22±26.54 ab | 175.74±24.25 a | 53.98±3.08 a | 7.15±1.05 a | 128.07±27.95 a | 15.79±3.38 a |
20~40 | 142.16±35.37 ab | 153.35±14.30 a | 47.73±1.63 a | 6.19±0.39 a | 114.87±10.86 a | 16.73±2.73 a | |
平均Mean | 149.19±26.46 a | 164.55±13.03 a | 50.86±1.32 a | 6.67±0.61 a | 121.47±17.72 a | 16.27±2.19 a | |
CK-L | 0~20 | 174.38±18.07 a | 165.69±17.44 a | 51.93±6.65 a | 7.55±1.02 a | 127.16±7.07 a | 14.55±0.66 a |
20~40 | 105.45±15.60 b | 163.48±13.25 a | 40.78±16.24 a | 6.48±1.71 a | 124.54±12.57 a | 14.29±1.08 a | |
平均Mean | 139.91±4.22 a | 164.58±12.93 a | 46.35±10.54 a | 7.01±1.30 a | 125.86±8.12 a | 14.42±0.39 a | |
SYH | 0~20 | 167.90±16.29 a | 176.63±18.02 a | 39.09±6.31 a | 7.15±0.98 a | 128.74±16.06 a | 15.72±0.40 a |
20~40 | 164.45±26.21 a | 170.31±25.62 a | 40.38±4.73 a | 6.70±0.44 a | 107.15±11.32 ab | 14.09±1.58 a | |
平均Mean | 166.18±12.86 a | 173.47±11.80 a | 39.74±3.99 a | 6.92±0.68 a | 117.95±5.87 a | 14.90±0.83 a | |
CK-B | 0~20 | 138.72±34.76 ab | 162.31±13.41 a | 48.69±11.49 a | 7.37±1.49 a | 108.53±25.24 ab | 15.21±2.63 a |
20~40 | 109.83±30.29 b | 153.31±27.39 a | 47.90±11.81 a | 6.73±1.33 a | 83.36±10.41 b | 14.66±0.82 a | |
平均Mean | 124.27±4.42 b | 157.81±14.98 a | 48.29±6.71 a | 7.05±0.91 a | 95.94±10.75 b | 14.94±0.91 a |
图3 不同间作模式茶叶产量和品质 柱状图上不同小写字母表示各处理间差异显著(P<0.05)。
Fig.3 Changes of yield and quality of tea in the garden with different intercropping modes Different lowercase letters above the columns represent statistically significant (P<0.05) differences among treatments.
因子 Factor | 茶青产量 YF | 水浸出物 WE | 茶多酚 PP | 儿茶素总量 CC | 游离氨基酸 FA | 咖啡碱 CF | 叶绿素总量 CP | 酚氨比 RA |
---|---|---|---|---|---|---|---|---|
温度T | -0.584* | -0.498 | -0.445 | -0.534* | -0.215 | -0.608* | -0.658* | -0.213 |
湿度H | 0.557* | 0.797* | 0.807* | 0.813* | -0.074 | 0.648* | 0.820* | 0.602* |
pH | -0.212 | 0.198 | 0.165 | 0.076 | -0.451 | -0.174 | 0.129 | 0.321 |
有机质OM | 0.190 | -0.001 | -0.072 | -0.137 | -0.340 | -0.112 | -0.113 | 0.094 |
有效氮AN | 0.087 | -0.224 | -0.123 | -0.168 | -0.246 | -0.089 | -0.243 | -0.003 |
全氮TN | 0.616* | 0.572* | 0.527* | 0.474 | -0.42 | 0.400 | 0.513 | 0.550* |
有效钾APo | -0.671* | -0.727* | -0.815* | -0.785* | 0.066 | -0.655* | -0.897* | -0.599* |
全钾TPo | 0.689* | 0.721* | 0.724* | 0.720* | 0.054 | 0.607* | 0.810* | 0.485 |
有效磷APh | -0.233 | -0.584* | -0.627* | -0.564* | 0.039 | -0.377 | -0.612* | -0.442 |
全磷Tph | 0.139 | -0.183 | -0.271 | -0.260 | -0.135 | -0.221 | -0.264 | -0.123 |
脲酶U | 0.145 | -0.004 | -0.105 | -0.097 | 0.084 | -0.004 | -0.097 | -0.098 |
过氧化氢酶C | 0.202 | 0.152 | 0.162 | 0.049 | 0.073 | -0.243 | 0.010 | 0.073 |
多酚氧化酶PO | 0.194 | 0.278 | 0.307 | 0.194 | -0.210 | 0.121 | 0.413 | 0.282 |
蛋白酶PR | -0.313 | -0.137 | 0.048 | -0.089 | 0.179 | -0.082 | -0.063 | -0.049 |
蔗糖酶S | 0.398 | 0.644* | 0.540* | 0.614* | -0.009 | 0.382 | 0.684* | 0.414 |
脱氢酶D | 0.332 | -0.087 | -0.052 | -0.030 | 0.507 | 0.117 | 0.059 | -0.233 |
表4 茶园小气候、土壤理化性质与茶叶产量、营养品质的相关性
Table 4 Correlations between the microclimate, soil characteristics and the yield, nutritional quality of tea in intercropping tea garden
因子 Factor | 茶青产量 YF | 水浸出物 WE | 茶多酚 PP | 儿茶素总量 CC | 游离氨基酸 FA | 咖啡碱 CF | 叶绿素总量 CP | 酚氨比 RA |
---|---|---|---|---|---|---|---|---|
温度T | -0.584* | -0.498 | -0.445 | -0.534* | -0.215 | -0.608* | -0.658* | -0.213 |
湿度H | 0.557* | 0.797* | 0.807* | 0.813* | -0.074 | 0.648* | 0.820* | 0.602* |
pH | -0.212 | 0.198 | 0.165 | 0.076 | -0.451 | -0.174 | 0.129 | 0.321 |
有机质OM | 0.190 | -0.001 | -0.072 | -0.137 | -0.340 | -0.112 | -0.113 | 0.094 |
有效氮AN | 0.087 | -0.224 | -0.123 | -0.168 | -0.246 | -0.089 | -0.243 | -0.003 |
全氮TN | 0.616* | 0.572* | 0.527* | 0.474 | -0.42 | 0.400 | 0.513 | 0.550* |
有效钾APo | -0.671* | -0.727* | -0.815* | -0.785* | 0.066 | -0.655* | -0.897* | -0.599* |
全钾TPo | 0.689* | 0.721* | 0.724* | 0.720* | 0.054 | 0.607* | 0.810* | 0.485 |
有效磷APh | -0.233 | -0.584* | -0.627* | -0.564* | 0.039 | -0.377 | -0.612* | -0.442 |
全磷Tph | 0.139 | -0.183 | -0.271 | -0.260 | -0.135 | -0.221 | -0.264 | -0.123 |
脲酶U | 0.145 | -0.004 | -0.105 | -0.097 | 0.084 | -0.004 | -0.097 | -0.098 |
过氧化氢酶C | 0.202 | 0.152 | 0.162 | 0.049 | 0.073 | -0.243 | 0.010 | 0.073 |
多酚氧化酶PO | 0.194 | 0.278 | 0.307 | 0.194 | -0.210 | 0.121 | 0.413 | 0.282 |
蛋白酶PR | -0.313 | -0.137 | 0.048 | -0.089 | 0.179 | -0.082 | -0.063 | -0.049 |
蔗糖酶S | 0.398 | 0.644* | 0.540* | 0.614* | -0.009 | 0.382 | 0.684* | 0.414 |
脱氢酶D | 0.332 | -0.087 | -0.052 | -0.030 | 0.507 | 0.117 | 0.059 | -0.233 |
[1] | 江媚. 茶树种植用地适宜性评价研究进展[J]. 福建茶叶, 2021, 43(1): 14-16. |
JIANG M. Research progress on suitability evaluation of tea planting land[J]. Tea in Fujian, 2021, 43(1): 14-16. (in Chinese) | |
[2] | 陈椽, 陈震古. 中国云南是茶树原产地[J]. 中国农业科学, 1979, 12(1): 91-96. |
CHEN C, CHEN Z G. Yunnan, China is the origin of tea trees[J]. Scientia Agricultura Sinica, 1979, 12(1): 91-96. (in Chinese with English abstract) | |
[3] | 张文锦, 林春莲, 熊明民. 茶树遮阴效应研究进展[J]. 福建农业学报, 2007, 22(4): 457-460. |
ZHANG W J, LIN C L, XIONG M M. Research progress in shading effeciency for tea plants[J]. Fujian Journal of Agricultural Sciences, 2007, 22(4): 457-460. (in Chinese with English abstract) | |
[4] | 陈宗懋. 中国茶叶大辞典[M]. 北京: 中国轻工业出版社, 2008. |
[5] | 陈昌辉, 王媛, 唐茜, 等. 梨茶间作茶园生态效应及效益分析[J]. 西南农业学报, 2011, 24(4): 1446-1449. |
CHEN C H, WANG Y, TANG Q, et al. Analysis of ecological and economic effects of tea garden intercropping with pear trees[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1446-1449. (in Chinese with English abstract) | |
[6] | 田永辉, 梁远发, 王国华, 等. 人工生态茶园光效能研究[J]. 中国农学通报, 2001, 17(4): 25-27. |
TIAN Y H, LIANG Y F, WANG G H, et al. Study on light efficiency of artificial ecological tea garden[J]. Chinese Agricultural Science Bulletin, 2001, 17(4): 25-27. (in Chinese with English abstract) | |
[7] | 王婉, 沈汉, 舒骏, 等. 林茶复合条件下茶树光合特性与荧光参数的研究[J]. 湖南农业科学, 2013(5): 101-104. |
WANG W, SHEN H, SHU J, et al. Photosynthetic and fluorescent parameters of tea tree in forest-tea compound system[J]. Hunan Agricultural Sciences, 2013(5): 101-104. (in Chinese with English abstract) | |
[8] | 费颖新. 间作树木对茶园生态环境及茶叶品质影响的研究[D]. 南京: 南京林业大学, 2004. |
FEI Y X. A study on the effects of different shade-tree species on the environment of tea plantations and tea leaves quality[D]. Nanjing: Nanjing Forestry University, 2004. (in Chinese with English abstract) | |
[9] | 娄艳华, 郑生宏, 吉庆勇, 等. 不同套种模式对茶园小气候、土壤及茶叶品质的影响[J]. 浙江农业科学, 2020, 61(4): 682-685. |
LOU Y H, ZHENG S H, JI Q Y, et al. Effects of different interplanting patterns on microclimate, soil and tea quality in tea garden[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4): 682-685. (in Chinese) | |
[10] | 巩雪峰, 余有本, 肖斌, 等. 不同栽培模式对茶园生态环境及茶叶品质的影响[J]. 西北植物学报, 2008, 28(12): 2485-2491. |
GONG X F, YU Y B, XIAO B, et al. Effects of different cultivating modes of tea gardens on environment and tea quality[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(12): 2485-2491. (in Chinese with English abstract) | |
[11] | 刘志龙, 方建民, 虞木奎, 等. 三种林-茶复合林分中环境因子和茶的光合特征参数的日变化规律[J]. 植物资源与环境学报, 2009, 18(2): 62-67. |
LIU Z L, FANG J M, YU M K, et al. Diurnal variations of environmental factors and photosynthetic parameters of Camellia sinensis in three forest-tea mixed stands[J]. Journal of Plant Resources and Environment, 2009, 18(2): 62-67. (in Chinese with English abstract) | |
[12] | 蔡丽, 夏丽飞, 陈枚, 等. 樟茶间作对土壤养分及重金属含量的影响研究[J]. 茶叶科学技术, 2013, 54(2): 9-12. |
CAI L, XIA L F, CHEN M, et al. Effect of tea and camphor tree intercropping on soil nutrients and heavy metals[J]. Tea Science and Technology, 2013, 54(2): 9-12. (in Chinese with English abstract) | |
[13] | 李凤辉. 茶园套种降香黄檀效应的初步研究[J]. 福建林业科技, 2009, 36(2): 273-277. |
LI F H. Preliminary study on the effect of planting Dalbergia odorifera in tea garden[J]. Journal of Fujian Forestry Science and Technology, 2009, 36(2): 273-277. (in Chinese with English abstract) | |
[14] | 王广铭. 信阳茶区栗茶间作模式对生态环境的影响[J]. 湖北农业科学, 2012, 51(11): 2207-2211. |
WANG G M. Effects on chestnut-tea intercrop pattern of Xinyang tea garden on the ecological environment[J]. Hubei Agricultural Sciences, 2012, 51(11): 2207-2211. (in Chinese with English abstract) | |
[15] | 史锋厚, 蒋学莉, 郁世军, 等. 林茶复合经营对茶叶品质的影响[J]. 江苏农业科学, 2018, 46(13): 117-119. |
SHI F H, JIANG X L, YU S J, et al. Impact of forest tea compound management on quality of tea[J]. Jiangsu Agricultural Sciences, 2018, 46(13): 117-119. (in Chinese) | |
[16] | 顾俊荣, 张丽, 刘腾飞, 等. 不同茶果间作下洞庭碧螺春茶叶中矿质元素与茶多酚等有效成分的分析[J]. 江苏农业科学, 2015, 43(12): 325-328. |
GU J R, ZHANG L, LIU T F, et al. Analysis of mineral elements and tea polyphenols and other effective components in Dongting Biluochun tea under different tea-fruit intercropping[J]. Jiangsu Agricultural Sciences, 2015, 43(12): 325-328. (in Chinese) | |
[17] | 林丽. 茶-柿复合经营对茶园生态因子及茶品质的影响[D]. 临安: 浙江农林大学, 2011. |
LIN L. Effect of interplanting of tea with persimmon on the ecological factors and quality of tea in a tea orchard[D]. Lin’an: Zhejiang A&F University, 2011. (in Chinese with English abstract) | |
[18] | 刘鑫, 傅松玲, 江文秀. 林茶间作栽培模式对有机茶品质的影响[J]. 园艺与种苗, 2015, 35(7): 1-3. |
LIU X, FU S L, JIANG W X. Effects of tree-tea inter-cropping modes on the quality of organic tea[J]. Horticulture & Seed, 2015, 35(7): 1-3. (in Chinese with English abstract) | |
[19] | 董明辉, 顾俊荣, 刘腾飞, 等. 苏州洞庭山不同茶果间作茶园土壤养分的比较分析[J]. 中国茶叶, 2015, 37(5): 19-20. |
DONG M H, GU J R, LIU T F, et al. Comparative analysis of soil nutrients in different tea-fruit intercropping tea gardens in Dongting Mountain, Suzhou[J]. China Tea, 2015, 37(5): 19-20. (in Chinese with English abstract) | |
[20] | 杨海滨, 盛忠雷, 谢堃, 等. 不同栽培模式对山地茶园生态环境和茶叶品质的季节调控[J]. 西南农业学报, 2015, 28(4): 1559-1563. |
YANG H B, SHENG Z L, XIE K, et al. Seasonal regulation of different cultivation mode on ecological environment and tea quality in hilly tea plantation[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1559-1563. (in Chinese with English abstract) | |
[21] | 王正周. 茶林复合茶园的生态优势[J]. 蚕桑茶叶通讯, 1995(3): 32-34. |
WANG Z Z. Ecological advantages of tea forest compound tea garden[J]. Newsletter of Sericulture and Tea, 1995(3): 32-34. (in Chinese) | |
[22] | 张洁, 刘桂华. 板栗茶树间作模式的生态学基础[J]. 经济林研究, 2005, 23(3): 1-4. |
ZHANG J, LIU G H. Ecological basis of the intercropping pattern of Chinese chestnut with tea[J]. Economic Forest Researches, 2005, 23(3): 1-4. (in Chinese with English abstract) | |
[23] | 罗琼仙, 何青元, 肖海军, 等. 3种间种覆荫树对云南大叶茶品质影响分析[J]. 西南农业学报, 2014, 27(5): 1864-1869. |
LUO Q X, HE Q Y, XIAO H J, et al. Analysis of impact of tea quality on Yunnan big-leaf tea under cover shade of different interplanting trees[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(5): 1864-1869. (in Chinese with English abstract) | |
[24] | 王丽娟, 朱兴正, 毛加梅, 等. 不同遮阴树种对茶园土壤和茶叶品质的影响[J]. 中南林业科技大学学报, 2011, 31(8): 66-73. |
WANG L J, ZHU X Z, MAO J M, et al. Effects of different single shaded trees on soil and tea quality of different tree-tea intercrop gardens[J]. Journal of Central South University of Forestry & Technology, 2011, 31(8): 66-73. (in Chinese with English abstract) | |
[25] | 刘静, 孙海伟, 张虹, 等. 北方茶林间作对茶树叶片组织结构和产量的影响[J]. 山东林业科技, 2007, 37(4): 4-6. |
LIU J, SUN H W, ZHANG H, et al. Effects of intercropping on leaf tissue structure and yield of tea trees in Northern China[J]. Journal of Shandong Forestry Science and Technology, 2007, 37(4): 4-6. (in Chinese) | |
[26] | 田亚玲, 曹福亮. 银杏-茶间作模式对土壤养分和酶活性的影响[J]. 林业科技开发, 2012, 26(5): 41-45. |
TIAN Y L, CAO F L. Effects of intercropping pattern with ginkgo and tea on soil nutrients and soil enzyme activities[J]. China Forestry Science and Technology, 2012, 26(5): 41-45. (in Chinese with English abstract) | |
[27] | 李孝金, 董兴娥. 林茶复合经营理论基础与应用技术[J]. 现代农业科技, 2011(7): 219-221. |
LI X J, DONG X E. Theoretical basis and application technology of forest-tea compound management[J]. Modern Agricultural Sciences and Technology, 2011(7): 219-221. (in Chinese) | |
[28] | 陈宗懋. 中国茶经[M]. 上海: 上海文化出版社, 1992. |
[29] | 黄寿波. 茶树生长的农业气象指标[J]. 农业气象, 1981, 2(3): 54-58. |
HUANG S B. Agrometeorological indicators of tea tree growth[J]. Chinese Journal of Agrometeorology, 1981, 2(3): 54-58. (in Chinese) | |
[30] | 汪春园, 荣光明. 茶叶品质与海拔高度及其生态因子的关系[J]. 生态学杂志, 1996, 15(1): 57-60. |
WANG C Y, RONG G M. Correlations of tea quality with altitude and ecological factors[J]. Chinese Journal of Ecology, 1996, 15(1): 57-60. (in Chinese with English abstract) | |
[31] | 马跃, 刘志龙, 虞木奎, 等. 不同郁闭度林茶复合模式对茶树光合日变化的影响[J]. 中国农学通报, 2011, 27(16): 52-56. |
MA Y, LIU Z L, YU M K, et al. Effects of different canopy closure on photosynthetic diurnal variation of tea in forest-tea compound model[J]. Chinese Agricultural Science Bulletin, 2011, 27(16): 52-56. (in Chinese with English abstract)
DOI |
|
[32] |
宋勤飞, 牛素贞, 陈正武, 等. 基于主成分分析的花溪古茶树立地土壤养分评价[J]. 浙江农业学报, 2017, 29(11): 1844-1853.
DOI |
SONG Q F, NIU S Z, CHEN Z W, et al. Evaluation of nutrient status in site soil of ancient tea trees in Huaxi on principal component analysis[J]. Acta Agriculturae Zhejiangensis, 2017, 29(11): 1844-1853. (in Chinese with English abstract)
DOI |
|
[33] | 谢克孝, 薛志慧, 陈志丹. 茶园间作不同植物对茶叶产量和品质及茶园土壤的影响[J]. 茶叶通讯, 2021, 48(3): 422-429. |
XIE K X, XUE Z H, CHEN Z D. Effects of intercropping different plants in tea garden on yield and quality of tea and soil of tea garden[J]. Journal of Tea Communication, 2021, 48(3): 422-429. (in Chinese with English abstract) | |
[34] |
ROSE T J, KEARNEY L J, ERLER DIRK V, et al. Integration and potential nitrogen contributions of green manure inter-row legumes in coppiced tree cropping systems[J]. European Journal of Agronomy, 2019, 103: 47-53.
DOI URL |
[35] | 刘腾飞, 董明辉, 张丽, 等. 不同间作模式对茶园土壤和茶叶营养品质的影响[J]. 食品科学技术学报, 2017, 35(6): 67-76. |
LIU T F, DONG M H, ZHANG L, et al. Effects of different intercropping patterns on tea-planted soil and tea nutritional quality[J]. Journal of Food Science and Technology, 2017, 35(6): 67-76. (in Chinese with English abstract) | |
[36] | 陈美丽, 王熙富. 茶林复合栽培模式及应用现状[J]. 安徽农业科学, 2021, 49(13): 10-11. |
CHEN M L, WANG X F. Compound cultivation model and application status of tea-forest[J]. Journal of Anhui Agricultural Sciences, 2021, 49(13): 10-11. (in Chinese with English abstract) | |
[37] |
朱荫, 张悦, 严寒, 等. 不同茶叶中游离氨基酸的对映异构体[J]. 中国农业科学, 2021, 54(4): 804-819.
DOI |
ZHU Y, ZHANG Y, YAN H, et al. Enantiomeric analysis of free amino acids in different teas[J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819. (in Chinese with English abstract)
DOI |
[1] | 罗海平, 潘柳欣, 胡学英, 刘祖光. 我国粮食主产区耕地利用变化的粮食与生态效应研究[J]. 浙江农业学报, 2023, 35(1): 226-237. |
[2] | 陶晶, 邬奇峰, 石江, 李松昊, 葛江飞, 陈俊辉, 徐秋芳, 梁辰飞, 秦华. 间作与接种丛枝菌根真菌对新垦山地玉米产量和土壤肥力的影响[J]. 浙江农业学报, 2020, 32(1): 115-123. |
[3] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[4] | 杨亚亚, 吴娜, 刘吉利, 杨娜娜, 蔡明, 何海锋. 马铃薯-燕麦间作对马铃薯氮含量和土壤氮素的影响[J]. 浙江农业学报, 2019, 31(12): 1955-1962. |
[5] | 龚莎莎1,江洪1,2,*,马锦丽1,舒海燕3,陈晓峰1. 安吉毛竹林净生态系统碳交换量及叶绿素荧光参数的变化[J]. 浙江农业学报, 2016, 28(6): 1003-. |
[6] | 杜会石1,滕泽宇1,王华2,陈智文1,*,陈艳楠1. 吉林省白城市生态系统服务价值预测研究[J]. 浙江农业学报, 2014, 26(6): 1583-. |
[7] | 张珏;张慧;*. 土地利用变化对嘉兴市生态系统服务价值损益的影响[J]. , 2014, 26(2): 0-444450. |
[8] | 陈志峰;曾玉荣;林晓桂;林国华;刘荣章;* . 休闲农业园区生态系统经济能值投入产出分析[J]. , 2011, 23(6): 0-1260. |
[9] | 牛凯. 中国农业结构调整的多目标线性规划模型研究[J]. , 2011, 23(4): 0-846. |
[10] | 孙思志;郑忠明. 大型底栖动物的生物干扰对沉积环境影响的研究进展[J]. , 2010, 22(2): 0-268. |
[11] | 沈刚;王昆欣. 天台县景区群落多样性的分析[J]. , 2006, 18(4): 0-233. |
[12] | 王连生;刘志龙;李小荣;苏朝安;吴敏芳. 山区单季稻田鱼-鸭-稻共育生态系统中主要病虫害控制关键技术的研究[J]. , 2006, 18(3): 0-187. |
[13] | 刘伟明;叶安民 . 春玉米+春大豆间作复合群体结构的优化[J]. , 2004, 16(3): 0-135. |
[14] | 顾宏辉;朱金庆;陈润兴;徐玉华. 旱地多熟制春玉米+棉花间作技术研究[J]. , 2001, 13(01): 0-12. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 672
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 435
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||