浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1132-1143.DOI: 10.3969/j.issn.1004-1524.2023.05.17
吴传美1(), 何季1,*(
), 吴文珊1, 蔡俊1, 向仰州2
收稿日期:
2022-03-07
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
吴传美(1998—),女,贵州黔西人,硕士研究生,从事茶园土壤学研究。E-mail: 3211535458@qq.com
通讯作者:
*何季,E-mail:heji15@163.com
基金资助:
WU Chuanmei1(), HE Ji1,*(
), WU Wenshan1, CAI Jun1, XIANG Yangzhou2
Received:
2022-03-07
Online:
2023-05-25
Published:
2023-06-01
摘要:
设置玉米-刺梨间作、辣椒-刺梨间作、刺梨单作3种种植模式,对比不同种植模式下刺梨园土壤团聚体的生态化学计量特征、速效养分含量和土壤养分贡献率,揭示间作对刺梨园土壤团聚体化学计量特征和土壤养分的影响。结果表明:间作可有效提高刺梨园0~20 cm土层土壤大团聚体(粒径≥0.25 mm)的养分含量,玉米-刺梨间作对不同粒级团聚体有机碳的提升效果优于辣椒-刺梨,但辣椒-刺梨间作对不同粒级团聚体全氮和速效养分的提升效果优于玉米-刺梨间作。在0~20 cm土层,各粒级团聚体的碳氮比整体表现为间作>单作,但氮磷比表现为间作<单作,说明长期间作可增加土壤氮素对刺梨生长的限制作用,而长期单作易导致土壤磷素对刺梨生长产生限制。间作模式下,大团聚体对土壤有机碳、全氮、全磷、碱解氮、有效磷、速效钾的贡献率分别为41.2%~56.8%、44.8%~58.2%、46.3%~60.0%、51.9%~62.3%、52.4%~66.3%和43.5%~58.9%,而刺梨单作的贡献率分别为31.1%~31.6%、30.6%~38.7%、30.6%~46.4%、37.9%~52.8%、30.8%~38.9%和27.2%~38.6%。综上,在刺梨园采取适宜的间作模式有利于增加土壤大团聚体含量及其对土壤养分的贡献率,从而提升刺梨园土壤养分的供给能力。
中图分类号:
吴传美, 何季, 吴文珊, 蔡俊, 向仰州. 间作对刺梨园土壤团聚体化学计量特征和养分贡献率的影响[J]. 浙江农业学报, 2023, 35(5): 1132-1143.
WU Chuanmei, HE Ji, WU Wenshan, CAI Jun, XIANG Yangzhou. Effects of intercropping on stoichiometric characteristics and nutrients contribution rate of soil aggregates in Rosa roxbunghii Tratt. orchard[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1132-1143.
图1 不同间作模式下刺梨园土壤的团聚体组成 柱上无相同字母的表示同一粒级下不同处理间差异显著(P<0.05)。下同。
Fig.1 Aggregate composition of soil in Rosa roxbunghii Tratt. orchard under different intercropping modes Bars marked without the same letters indicate significant difference at P<0.05 within treatments under the same particle size. The same as below.
土层 Soil layer/cm | 处理 Treatment | 不同粒径(mm)团聚体的C/N C/N of soil aggregates with different particle size (mm) | |||||
---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | 0.25~0.5 | <0.25 | ||
0~20 | M1 | 25.90±0.85 a | 28.65±4.88 a | 22.72±3.27 a | 19.47±1.98 a | 20.48±1.15 a | 17.85±0.26 a |
M2 | 18.91±1.55 b | 19.59±1.82 ab | 15.20±150 ab | 16.42±1.82 ab | 15.89±1.05 b | 12.25±2.28 b | |
CK | 11.96±1.92 c | 11.78±1.73 b | 10.70±1.69 b | 11.24±1.12 b | 11.37±1.13 c | 10.26±1.24 b | |
20~40 | M1 | 17.93±2.41 a | 18.11±2.01 a | 20.20±2.66 a | 20.44±3.44 a | 19.60±1.33 a | 22.16±0.76 a |
M2 | 12.49±1.97 a | 11.77±1.77 a | 12.09±2.13 b | 9.89±1.29 b | 9.70±1.12 b | 8.90±1.30 c | |
CK | 14.89±3.61 a | 15.39±2.55 a | 16.05±1.59 ab | 17.52±3.13 ab | 16.92±1.72 a | 15.72±1.64 b |
表1 不同处理下土壤团聚体的碳氮比(C/N)
Table 1 C/N ratio (C/N)of soil aggregates under different treatments
土层 Soil layer/cm | 处理 Treatment | 不同粒径(mm)团聚体的C/N C/N of soil aggregates with different particle size (mm) | |||||
---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | 0.25~0.5 | <0.25 | ||
0~20 | M1 | 25.90±0.85 a | 28.65±4.88 a | 22.72±3.27 a | 19.47±1.98 a | 20.48±1.15 a | 17.85±0.26 a |
M2 | 18.91±1.55 b | 19.59±1.82 ab | 15.20±150 ab | 16.42±1.82 ab | 15.89±1.05 b | 12.25±2.28 b | |
CK | 11.96±1.92 c | 11.78±1.73 b | 10.70±1.69 b | 11.24±1.12 b | 11.37±1.13 c | 10.26±1.24 b | |
20~40 | M1 | 17.93±2.41 a | 18.11±2.01 a | 20.20±2.66 a | 20.44±3.44 a | 19.60±1.33 a | 22.16±0.76 a |
M2 | 12.49±1.97 a | 11.77±1.77 a | 12.09±2.13 b | 9.89±1.29 b | 9.70±1.12 b | 8.90±1.30 c | |
CK | 14.89±3.61 a | 15.39±2.55 a | 16.05±1.59 ab | 17.52±3.13 ab | 16.92±1.72 a | 15.72±1.64 b |
土层 Soil layer/cm | 处理 Treatment | 不同粒径(mm)团聚体的C/P C/P of soil aggregates with different particle size (mm) | |||||
---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | 0.25~0.5 | <0.25 | ||
0~20 | M1 | 67.02±7.20 a | 67.32±5.18 a | 63.72±7.86 a | 54.29±4.86 a | 54.13±5.51 a | 51.72±4.10 a |
M2 | 47.30±6.97 ab | 52.02±11.48 a | 40.37±2.47 b | 43.85±1.53 ab | 43.87±2.81 a | 37.96±7.28 a | |
CK | 39.67±6.86 b | 40.41±6.69 a | 38.37±7.07 b | 39.53±4.45 b | 40.28±4.37 a | 51.43±13.04 a | |
20~40 | M1 | 43.14±0.25 a | 39.61±2.74 a | 38.91±2.28 a | 36.55±2.72 b | 34.24±0.69 b | 33.54±2.22 b |
M2 | 37.74±9.60 a | 35.84±8.25 a | 35.78±7.68 a | 28.83±4.79 b | 30.16±4.70 b | 31.95±5.00 b | |
CK | 42.44±9.03 a | 49.72±11.93 a | 52.42±4.95 a | 50.39±3.67 a | 52.24±5.97 a | 47.33±1.54 a |
表2 不同处理下土壤团聚体的碳磷比(C/P)
Table 2 C/P ratio (C/P) of soil aggregates under different treatments
土层 Soil layer/cm | 处理 Treatment | 不同粒径(mm)团聚体的C/P C/P of soil aggregates with different particle size (mm) | |||||
---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | 0.25~0.5 | <0.25 | ||
0~20 | M1 | 67.02±7.20 a | 67.32±5.18 a | 63.72±7.86 a | 54.29±4.86 a | 54.13±5.51 a | 51.72±4.10 a |
M2 | 47.30±6.97 ab | 52.02±11.48 a | 40.37±2.47 b | 43.85±1.53 ab | 43.87±2.81 a | 37.96±7.28 a | |
CK | 39.67±6.86 b | 40.41±6.69 a | 38.37±7.07 b | 39.53±4.45 b | 40.28±4.37 a | 51.43±13.04 a | |
20~40 | M1 | 43.14±0.25 a | 39.61±2.74 a | 38.91±2.28 a | 36.55±2.72 b | 34.24±0.69 b | 33.54±2.22 b |
M2 | 37.74±9.60 a | 35.84±8.25 a | 35.78±7.68 a | 28.83±4.79 b | 30.16±4.70 b | 31.95±5.00 b | |
CK | 42.44±9.03 a | 49.72±11.93 a | 52.42±4.95 a | 50.39±3.67 a | 52.24±5.97 a | 47.33±1.54 a |
土层 Soil layer/cm | 处理 Treatment | 不同粒径(mm)团聚体的N/P N/P of soil aggregates with different particle size (mm) | |||||
---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | 0.25~0.5 | <0.25 | ||
0~20 | M1 | 2.59±0.26 b | 2.46±0.33 b | 2.82±0.05 b | 2.80±0.13 b | 2.64±0.20 b | 2.90±0.26 b |
M2 | 2.48±0.19 b | 2.60±0.36 b | 2.71±0.33 b | 2.74±0.33 b | 2.78±0.23 b | 3.09±0.19 b | |
CK | 3.30±0.05 a | 3.42±0.86 a | 3.55±0.11 a | 3.51±0.06 a | 3.54±0.12 a | 4.86±0.70 a | |
20~40 | M1 | 2.48±0.29 a | 2.23±0.23 a | 1.98±0.26 b | 1.86±0.23 b | 1.77±0.16 b | 1.52±0.15 b |
M2 | 2.92±0.37 a | 2.96±0.34 a | 2.93±0.36 ab | 2.89±0.24 ab | 3.08±0.15 a | 3.59±0.32 a | |
CK | 2.89±0.11 a | 3.17±0.25 a | 3.32±0.39 a | 3.02±0.45 a | 3.16±0.53 a | 3.11±0.46 a |
表3 不同处理下土壤团聚体的氮磷比(N/P)
Table 3 N/P ratio (N/P) of soil aggregates under different treatments
土层 Soil layer/cm | 处理 Treatment | 不同粒径(mm)团聚体的N/P N/P of soil aggregates with different particle size (mm) | |||||
---|---|---|---|---|---|---|---|
>5 | >2~5 | >1~2 | >0.5~1 | 0.25~0.5 | <0.25 | ||
0~20 | M1 | 2.59±0.26 b | 2.46±0.33 b | 2.82±0.05 b | 2.80±0.13 b | 2.64±0.20 b | 2.90±0.26 b |
M2 | 2.48±0.19 b | 2.60±0.36 b | 2.71±0.33 b | 2.74±0.33 b | 2.78±0.23 b | 3.09±0.19 b | |
CK | 3.30±0.05 a | 3.42±0.86 a | 3.55±0.11 a | 3.51±0.06 a | 3.54±0.12 a | 4.86±0.70 a | |
20~40 | M1 | 2.48±0.29 a | 2.23±0.23 a | 1.98±0.26 b | 1.86±0.23 b | 1.77±0.16 b | 1.52±0.15 b |
M2 | 2.92±0.37 a | 2.96±0.34 a | 2.93±0.36 ab | 2.89±0.24 ab | 3.08±0.15 a | 3.59±0.32 a | |
CK | 2.89±0.11 a | 3.17±0.25 a | 3.32±0.39 a | 3.02±0.45 a | 3.16±0.53 a | 3.11±0.46 a |
[1] | 芦星淼, 朱毅. 刺梨中氨基酸随成熟度变化及营养价值分析[J]. 食品研究与开发, 2020, 41(22): 12-16. |
LU X M, ZHU Y. Changes of amino acids in Rosa roxburghii with maturity and nutritional value analysis[J]. Food Research and Development, 2020, 41(22): 12-16. (in Chinese with English abstract) | |
[2] | 王翼, 顾苑婷, 丁筑红, 等. 超高效液相色谱-串联高分辨质谱对刺梨槲皮素及其糖苷类化合物的鉴定分析[J]. 分析化学, 2020, 48(7): 955-961. |
WANG Y, GU Y T, DING Z H, et al. Identification and analysis of quercetin and its glycosides in Rosa roxburghii by ultra high performance liquid chromatography-tandem high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2020, 48(7): 955-961. (in Chinese with English abstract) | |
[3] | 李婷婷, 黄名正, 唐维媛, 等. 刺梨汁中挥发性成分测定及其呈香贡献分析[J]. 食品与发酵工业, 2021, 47(4): 237-246. |
LI T T, HUANG M Z, TANG W Y, et al. Determination of volatile components in Rosa roxburghii Tratt juice and the analysis of its contribution for aroma[J]. Food and Fermentation Industries, 2021, 47(4): 237-246. (in Chinese with English abstract) | |
[4] |
XU Y Y, YU C, ZENG Q B, et al. Assessing the potential value of Rosa roxburghii Tratt in arsenic-induced liver damage based on elemental imbalance and oxidative damage[J]. Environmental Geochemistry and Health, 2021, 43(3): 1165-1175.
DOI |
[5] |
WU H Y, LI M M, YANG X R, et al. Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from Roxburgh rose (Rosa roxburghii Tratt.) leaves[J]. International Journal of Biological Macromolecules, 2020, 165: 517-529.
DOI URL |
[6] | 吴彤林, 肖朝锋, 莫熙礼. 无籽刺梨主要病虫害防控技术探究[J]. 南方农业, 2020, 14(24): 1-2. |
WU T L, XIAO C F, MO X L. Study on prevention and control technology of main pests and diseases of seedless Rosa roxburghii[J]. South China Agriculture, 2020, 14(24): 1-2. (in Chinese) | |
[7] | 邹涛, 成忠均, 吉云, 等. 超临界CO2萃取刺梨果肉挥发性物质工艺研究[J]. 中药材, 2020, 43(4): 942-945. |
ZOU T, CHENG Z J, JI Y, et al. Study on supercritical CO2 extraction of volatile substances from Rosa roxburghii pulp[J]. Journal of Chinese Medicinal Materials, 2020, 43(4): 942-945. (in Chinese with English abstract) | |
[8] | 周禹佳, 樊卫国. 刺梨果渣的营养、保健成分及利用价值评价[J]. 食品与发酵工业, 2021, 47(7): 217-224. |
ZHOU Y J, FAN W G. Nutrition and health-care composition of Rosa roxburghii Tratt pomace and its utilization potential[J]. Food and Fermentation Industries, 2021, 47(7): 217-224. (in Chinese with English abstract) | |
[9] | 陆国敏. 刺梨种植管理及养护措施[J]. 农业与技术, 2017, 37(22): 213. |
LU G M. Planting management and maintenance measures of Rosa roxburghii[J]. Agriculture and Technology, 2017, 37(22): 213. (in Chinese with English abstract) | |
[10] | 李伶俐, 黄耿华, 李彦鹏, 等. 棉花与不同作物同穴互作育苗对土壤微生物、酶活性和根系分泌物的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1475-1482. |
LI L L, HUANG G H, LI Y P, et al. Effects of mutual aid grow seedlings of cotton with other crops in the same aperture on soil microorganisms quantity, enzyme activity and root secretion[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1475-1482. (in Chinese with English abstract) | |
[11] | 代会会, 胡雪峰, 曹明阳, 等. 豆科间作对番茄产量、土壤养分及酶活性的影响[J]. 土壤学报, 2015, 52(4): 911-918. |
DAI H H, HU X F, CAO M Y, et al. Effects of intercropping with leguminous crops on tomato yield, soil nutrients and enzyme activity[J]. Acta Pedologica Sinica, 2015, 52(4): 911-918. (in Chinese with English abstract) | |
[12] | 成婧, 吴发启, 云峰, 等. 渭北旱塬坡耕地玉米-苜蓿间作对土壤养分和产量的影响[J]. 水土保持通报, 2013, 33(4): 228-232. |
CHENG J, WU F Q, YUN F, et al. Effect of intercropping corn and alfalfa on soil nutrients and yield of sloping field in Weibei dryland[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 228-232. (in Chinese with English abstract) | |
[13] | 刘亚军. 马铃薯不同间作模式对作物与土壤的影响[D]. 银川: 宁夏大学, 2017. |
LIU Y J. Effect of different intercropping cultivation patterns of potato on crop and soil[D]. Yinchuan: Ningxia University, 2017. (in Chinese with English abstract) | |
[14] |
MA Y H, FU S L, ZHANG X P, et al. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality[J]. Applied Soil Ecology, 2017, 119: 171-178.
DOI URL |
[15] | 滕维超. 油茶-农作物间作系统生理生态及经济效益评价[D]. 南京: 南京林业大学, 2013. |
TENG W C. Physiological, ecological effects and economic benefits evaluation of Camellia oleifera-crop intercropping system[D]. Nanjing: Nanjing Forestry University, 2013. (in Chinese with English abstract) | |
[16] | 党小燕, 刘建国, 帕尼古丽, 等. 棉花间作模式中作物养分竞争吸收和积累动态的研究[J]. 植物营养与肥料学报, 2013, 19(1): 166-173. |
DANG X Y, LIU J G, PANI G, et al. Accumulation and competition of nitrogen, phosphorus and potassium in cotton-based intercropping systems in Xinjiang, China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 166-173. (in Chinese with English abstract) | |
[17] | 郭欣照, 刘英, 李松, 等. 间作对刺梨园土壤养分的影响[J]. 林业科技通讯, 2021(3): 66-69. |
GUO X Z, LIU Y, LI S, et al. Effect of intercropping on soil nutrient in Rosa roxbunghii orchard[J]. Forest Science and Technology, 2021(3): 66-69. (in Chinese with English abstract) | |
[18] | 刘岚君, 何季, 文雪峰. 间作不同农作物对刺梨园土壤微生物类群及酶活性的影响[J]. 山地农业生物学报, 2019, 38(6): 8-13. |
LIU L J, HE J, WEN X F. Effects of intercropping different crops on soil microbial group and enzyme activities in rose roxburghii orchard[J]. Journal of Mountain Agriculture and Biology, 2019, 38(6): 8-13. (in Chinese with English abstract) | |
[19] | 王华, 向仰州, 郭颖, 等. 间作对刺梨园土壤水稳性团聚体及有机碳含量的影响[J]. 贵州农业科学, 2019, 47(9): 88-92. |
WANG H, XIANG Y Z, GUO Y, et al. Effect of intercropping between Rosa roxbunghii+maize or pepper on content of water-stable aggregates and organic carbon in soil of Rosa roxbunghii orchard[J]. Guizhou Agricultural Sciences, 2019, 47(9): 88-92. (in Chinese with English abstract) | |
[20] |
ELSER J, STERNER R, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550.
DOI URL |
[21] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135-1142.
DOI PMID |
[22] |
TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139-151.
DOI URL |
[23] |
XIAO S S, ZHANG W, YE Y Y, et al. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem[J]. Scientific Reports, 2017, 7: 41402.
DOI PMID |
[24] |
王晓荣, 胡文杰, 潘磊, 等. 三峡库区花岗岩母质石英砂土不同经济林模式土壤养分特征研究[J]. 中国农学通报, 2020, 36(21): 82-91.
DOI |
WANG X R, HU W J, PAN L, et al. Different economic forest modes in quartz sandy soil from granite parent in the Three Gorges Reservoir area: soil nutrient characteristics[J]. Chinese Agricultural Science Bulletin, 2020, 36(21): 82-91. (in Chinese with English abstract)
DOI |
|
[25] | 郑子成, 何淑勤, 王永东, 等. 不同土地利用方式下土壤团聚体中养分的分布特征[J]. 水土保持学报, 2010, 24(3): 170-174. |
ZHENG Z C, HE S Q, WANG Y D, et al. Distrbution feature of soil nutrients in aggregate under different land use[J]. Journal of Soil and Water Conservation, 2010, 24(3): 170-174. (in Chinese with English abstract) | |
[26] | 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素[J]. 土壤通报, 2005, 36(3): 415-421. |
WANG Q K, WANG S L. Forming and stable mechanism of soil aggregate and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(3): 415-421. (in Chinese with English abstract) | |
[27] | PAUL B K, VANLAUWE B, AYUKE F, et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity[J]. Agriculture, Ecosystems & Environment, 2013, 164: 14-22. |
[28] | 陈朝, 吕昌河, 范兰, 等. 土地利用变化对土壤有机碳的影响研究进展[J]. 生态学报, 2011, 31(18): 5358-5371. |
CHEN Z, LÜ C H, FAN L, et al. Effects of land use change on soil organic carbon: a review[J]. Acta Ecologica Sinica, 2011, 31(18): 5358-5371. (in Chinese with English abstract) | |
[29] | 莫晶. 油茶-花生间作土壤酶活性及养分研究[D]. 长沙: 中南林业科技大学, 2017. |
MO J. Soil enzyme activity and nutrient contents in Camellia oleifera-Arachis hypogaea intercropping system[D]. Changsha: Central South University of Forestry & Technology, 2017. (in Chinese with English abstract) | |
[30] | 王慧敏, 蔡洪月, 何蓉蓉, 等. 间作芳香地被植物对茶园土壤理化性状及养分的影响[J]. 西南林业大学学报, 2016, 36(5): 71-77. |
WANG H M, CAI H Y, HE R R, et al. Effects of intercropping of aromatic plants with tea on physicochemical properties and soil nutrients in tea plantation[J]. Journal of Southwest Forestry University, 2016, 36(5): 71-77. (in Chinese with English abstract) | |
[31] | 罗洋, 张桂玲, 王芳, 等. 辣椒秸秆生物炭对黄壤化学特性及小白菜生长的影响[J]. 四川农业大学学报, 2022, 40(6): 847-852. |
LUO Y, ZHANG G L, WANG F, et al. Effect of chili straw biochar on chemical characteristics of yellow soil and growth of chinese Cabbage[J]. Journal of Sichuan Agricultural University, 2022, 40(6): 847-852. (in Chinese with English abstract) | |
[32] | 徐健程, 王晓维, 朱晓芳, 等. 不同绿肥种植模式下玉米秸秆腐解特征研究[J]. 植物营养与肥料学报, 2016, 22(1): 48-58. |
XU J C, WANG X W, ZHU X F, et al. Study on decomposition of maize straw under different green manure cropping patterns[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1): 48-58. (in Chinese with English abstract) | |
[33] | 刘腾飞, 董明辉, 张丽, 等. 不同间作模式对茶园土壤和茶叶营养品质的影响[J]. 食品科学技术学报, 2017, 35(6): 67-76. |
LIU T F, DONG M H, ZHANG L, et al. Effects of different intercropping patterns on tea-planted soil and tea nutritional quality[J]. Journal of Food Science and Technology, 2017, 35(6): 67-76. (in Chinese with English abstract) | |
[34] | 李燕培, 林佳琦, 肖世祥, 等. 蕉园间作红薯对土壤微生物功能多样性的影响[J]. 中国生态农业学报(中英文), 2022, 30(6): 990-1001. |
LI Y P, LIN J Q, XIAO S X, et al. Effects of intercropping sweet potato in banana plantation on functional diversity of soil microorganisms[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 990-1001. (in Chinese with English abstract) | |
[35] | 安婉丽, 谢海云, 王维奇, 等. 秸秆还田对稻田土壤水稳性团聚体养分及其生态化学计量比的影响[J]. 生态学杂志, 2017, 36(1): 150-156. |
AN W L, XIE H Y, WANG W Q, et al. Effects of straw returning on nutrient content and ecological stoichiometric ratio of soil water-stable aggregates in paddy field[J]. Chinese Journal of Ecology, 2017, 36(1): 150-156. (in Chinese with English abstract) | |
[36] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. |
WANG S Q, YU G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. (in Chinese with English abstract) | |
[37] | 许宇星, 王志超, 竹万宽, 等. 不同品种桉树林生活叶-凋落物-土壤碳氮磷化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2018, 46(3): 94-100. |
XU Y X, WANG Z C, ZHU W K, et al. Stoichiometric characteristics of C, N and P in leaf-litter-soil of different Eucalyptus varieties[J]. Journal of Northwest A & F University(Natural Science Edition), 2018, 46(3): 94-100. (in Chinese with English abstract) | |
[38] | 李玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21): 6326-6336. |
LI W, ZHENG Z C, LI T X, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21): 6326-6336. (in Chinese with English abstract) | |
[39] |
GÜSEWELL S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
DOI URL |
[40] |
SARDANS J, RIVAS-UBACH A, PEÑUELAS J. The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14(1): 33-47.
DOI URL |
[41] |
ZHANG Z S, SONG X L, LU X G, et al. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seawalls[J]. Journal of Soils and Sediments, 2013, 13(6): 1043-1051.
DOI URL |
[42] |
TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40(3): 523-534.
DOI URL |
[43] | 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3): 522-527. |
DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C: N: P stoichiometry in different ages of Leucaena leucocephala[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522-527. (in Chinese with English abstract) | |
[44] | 邱莉萍, 张兴昌, 张晋爱. 黄土高原长期培肥土壤团聚体中养分和酶的分布[J]. 生态学报, 2006, 26(2): 364-372. |
QIU L P, ZHANG X C, ZHANG J A. Distribution of nutrients and enzymes in Loess Plateau soil aggregates after long-term fertilization[J]. Acta Ecologica Sinica, 2006, 26(2): 364-372. (in Chinese with English abstract) | |
[45] | 王晟强, 郑子成, 李廷轩. 植茶年限对土壤团聚体氮、磷、钾含量变化的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1393-1402. |
WANG S Q, ZHENG Z C, LI T X. Effects of ages of tea plantations on changes of nitrogen, phosphorus and potassium contents in soil aggregates[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1393-1402. (in Chinese with English abstract) | |
[46] |
李春越, 常顺, 钟凡心, 等. 种植模式和施肥对黄土旱塬农田土壤团聚体及其碳分布的影响[J]. 应用生态学报, 2021, 32(1): 191-200.
DOI |
LI C Y, CHANG S, ZHONG F X, et al. Effects of fertilization and planting patterns on soil aggregate and carbon distribution in farmland of the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 191-200. (in Chinese with English abstract) |
[1] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[2] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[3] | 王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533. |
[4] | 高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435. |
[5] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
[6] | 杨胜竹, 李响, 李朝文, 陈海念, 刘丽, 陆引罡, 曹卓洋. 贵州省烟草青枯病害区根际土壤养分及酶活性特征分析[J]. 浙江农业学报, 2023, 35(1): 146-155. |
[7] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[8] | 张健利, 王振华, 陈睿, 王东旺, 梁永辉, 刘茹华. 水肥互作对滴灌红枣产量、品质与土壤养分的影响[J]. 浙江农业学报, 2022, 34(11): 2428-2437. |
[9] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[10] | 隋夕然, 王妍, 刘云根, 张雅洁, 吴丽芳. 典型喀斯特区云南松林土壤养分和细菌群落对海拔的响应[J]. 浙江农业学报, 2021, 33(12): 2348-2357. |
[11] | 熊廷浩, 黄益国, 周旋, 鲁艳红, 资涛, 胡宇倩, 宋海星. 湖南省油菜主产区土壤养分含量与重金属污染风险评价[J]. 浙江农业学报, 2021, 33(10): 1904-1912. |
[12] | 陈贵, 鲁晨妮, 石艳平, 倪雄伟, 程旺大, 张红梅, 王保君, 张丽萍, 孙达. 不同缓控释肥搭配脲铵对水稻产量、氮素利用效率和土壤养分的影响[J]. 浙江农业学报, 2021, 33(1): 122-130. |
[13] | 李金武, 郁继华, 吕剑, 冯致, 杨海兴, 车旭升, 秦启杰, 张洋, 金宁. 不同覆盖方式对高原夏季露地松花菜产量、品质和土壤养分的影响[J]. 浙江农业学报, 2020, 32(9): 1626-1633. |
[14] | 牛素贞, 安红卫, 宋勤飞, 陈正武. 贵州野生茶树立地土壤养分状况分析及综合评价[J]. 浙江农业学报, 2020, 32(6): 1039-1048. |
[15] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||