浙江农业学报 ›› 2021, Vol. 33 ›› Issue (3): 506-515.DOI: 10.3969/j.issn.1004-1524.2021.03.16
范琳娟1, 刘子荣1, 徐雪亮1, 王奋山1, 彭德良2, 姚英娟1,*()
收稿日期:
2020-08-25
出版日期:
2021-04-02
发布日期:
2021-03-25
通讯作者:
姚英娟
作者简介:
, 姚英娟, E-mail: yaoyingjuan@webmail.hzau.edu.cn基金资助:
FAN Linjuan1, LIU Zirong1, XU Xueliang1, WANG Fenshan1, PENG Deliang2, YAO Yingjuan1,*()
Received:
2020-08-25
Online:
2021-04-02
Published:
2021-03-25
Contact:
YAO Yingjuan
摘要:
为明确常用杀线剂对土壤环境的影响,采用土壤常规分析方法,研究2种化学杀线剂(阿维·噻唑膦和氟吡菌酰胺)和4种生物杀线剂(厚孢轮枝菌、淡紫拟青霉、辣根素和茶枯抑线生物菌肥)对土壤微生物数量、酶活性和土壤养分的影响。结果表明,与不施用杀线剂的对照相比,2种化学杀线剂对苗期土壤细菌和真菌数量均表现出显著(P<0.05)的促进作用,而至成熟期后土壤细菌和真菌数量均降至对照水平及以下。4种生物杀线剂中,茶枯抑线生物菌肥对苗期土壤细菌/真菌表现出显著(P<0.05)的抑制作用,对真菌数量表现出显著(P<0.05)的促进作用,在成熟期对土壤细菌数量和细菌/真菌表现出显著(P<0.05)的促进作用,而对真菌数量无显著影响。6种杀线剂施用后对土壤脲酶活性均无显著影响。2种化学杀线剂和生物杀线剂厚孢轮枝菌、淡紫拟青霉和辣根素对土壤酸性磷酸酶活性在苗期和成熟期分别表现出显著(P<0.05)的增强作用和抑制作用,茶枯抑线生物菌肥仅对成熟期的土壤酸性磷酸酶活性表现出显著(P<0.05)的抑制作用。茶枯抑线生物菌肥对苗期和成熟期的土壤蔗糖酶活性分别表现出显著(P<0.05)的抑制作用和促进作用,其他杀线剂则始终表现出显著(P<0.05)的抑制作用。6种杀线剂显著(P<0.05)影响土壤铵态氮、速效钾和速效磷含量。施用杀线剂后,土壤铵态氮和速效钾含量在苗期时与对照相比无显著变化,至成熟期后,除茶枯抑线生物菌肥处理的土壤铵态氮含量外,其他处理的土壤铵态氮和速效钾含量均显著(P<0.05)高于对照。苗期时,施用杀线剂各处理的土壤速效磷含量均显著(P<0.05)低于对照;但成熟期时,各处理的土壤速效磷含量无显著差异。综上,这6种杀线剂对土壤微生物、土壤脲酶和土壤养分的影响随着时间的延长可逐渐恢复,但对土壤酸性磷酸酶和蔗糖酶活性的作用效果持续时间较长,可在一定程度上干扰土壤中的有机磷矿化和碳循环。
中图分类号:
范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515.
FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of six kinds of nematicides on soil microbial population, enzymes activities and nutrients in replanted Chinese yam field[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 506-515.
处理 Treatment | 第一次用药The first time | 第二次用药The second time | ||
---|---|---|---|---|
药剂Reagent | 用量Dose | 药剂Reagent | 用量Dose | |
CK | — | — | — | — |
T1 | AG | 3 g·m-2 | AM | 2.25 mL·m-2 |
T2 | Fl | 0.15 mL·m-2 | — | — |
T3 | Vc | 7.5 g·m-2 | — | — |
T4 | Pl | 0.75 g·m-2 | Pl | 0.75 g·m-2 |
T5 | Ho | 6 mL·m-2 | — | — |
T6 | tc | 0.15 g·m-2 | — | — |
表1 各处理的供试药剂与施药量
Table 1 Reagent and dose of different treatments
处理 Treatment | 第一次用药The first time | 第二次用药The second time | ||
---|---|---|---|---|
药剂Reagent | 用量Dose | 药剂Reagent | 用量Dose | |
CK | — | — | — | — |
T1 | AG | 3 g·m-2 | AM | 2.25 mL·m-2 |
T2 | Fl | 0.15 mL·m-2 | — | — |
T3 | Vc | 7.5 g·m-2 | — | — |
T4 | Pl | 0.75 g·m-2 | Pl | 0.75 g·m-2 |
T5 | Ho | 6 mL·m-2 | — | — |
T6 | tc | 0.15 g·m-2 | — | — |
图1 不同处理对山药土壤微生物数量的影响 同一生育期柱上无相同字母的表示处理间差异显著(P<0.05)。下同。
Fig.1 Effects of different treatments on quantity of soil microorganisms in replanted Chinese yam field Bars marked without the same letters at the same growth stage indicated significant difference within treatments at P<0.05. The same as below.
处理 Treatment | pH | 有机质 Organic matter/% | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 4.25±0.05 a | 1.47±0.32 a | 18.00±1.12 ab | 40.90±4.45 a | 1.64±0.14 a |
T1 | 4.43±0.12 a | 1.67±0.32 a | 27.73±0.67 a | 37.37±3.49 a | 0.51±0.01 c |
T2 | 4.45±0.08 a | 1.33±0.17 a | 11.07±0.54 b | 35.43±5.60 a | 0.55±0.02 bc |
T3 | 4.43±0.05 a | 1.37±0.17 a | 24.50±2.60 a | 41.23±1.17 a | 0.30±0.04 d |
T4 | 4.34±0.07 a | 2.07±0.35 a | 17.27±2.48 ab | 41.53±1.28 a | 0.61±0.05 bc |
T5 | 4.62±0.29 a | 1.77±0.38 a | 22.17±1.24 a | 41.37±0.80 a | 0.64±0.03 bc |
T6 | 4.72±0.21 a | 1.30±0.15 a | 24.37±7.16 a | 35.27±2.42 a | 0.73±0.07 b |
表2 不同处理对苗期山药土壤养分的影响
Table 2 Effects of different treatments on soil nutrients of replanted Chinese yam field at seedling stage
处理 Treatment | pH | 有机质 Organic matter/% | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 4.25±0.05 a | 1.47±0.32 a | 18.00±1.12 ab | 40.90±4.45 a | 1.64±0.14 a |
T1 | 4.43±0.12 a | 1.67±0.32 a | 27.73±0.67 a | 37.37±3.49 a | 0.51±0.01 c |
T2 | 4.45±0.08 a | 1.33±0.17 a | 11.07±0.54 b | 35.43±5.60 a | 0.55±0.02 bc |
T3 | 4.43±0.05 a | 1.37±0.17 a | 24.50±2.60 a | 41.23±1.17 a | 0.30±0.04 d |
T4 | 4.34±0.07 a | 2.07±0.35 a | 17.27±2.48 ab | 41.53±1.28 a | 0.61±0.05 bc |
T5 | 4.62±0.29 a | 1.77±0.38 a | 22.17±1.24 a | 41.37±0.80 a | 0.64±0.03 bc |
T6 | 4.72±0.21 a | 1.30±0.15 a | 24.37±7.16 a | 35.27±2.42 a | 0.73±0.07 b |
处理 Treatment | pH | 有机质 Organic matter/% | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 4.77±0.17 ab | 0.10±0.01 a | 5.67±0.48 e | 41.45±2.51 e | ND |
T1 | 5.27±0.02 a | 0.13±0.08 a | 42.37±1.59 b | 74.50±1.33 c | 1.00±1.00 a |
T2 | 4.66±0.18 b | 0.30±0.06 a | 35.57±1.21 c | 55.73±4.91 d | 0.83±0.33 a |
T3 | 4.71±0.09 b | 0.20±0.10 a | 15.17±1.13 d | 74.03±6.11 c | 0.47±0.47 a |
T4 | 4.98±0.21 ab | 0.17±0.12 a | 14.00±1.79 d | 89.55±1.36 b | 0.33±0.17 a |
T5 | 4.44±0.25 b | 0.13±0.07 a | 72.83±4.37 a | 108.00±4.62 a | 1.73±0.72 a |
T6 | 4.68±0.15 b | 0.18±0.02 a | 11.33±0.67 de | 99.33±0.67 ab | ND |
表3 不同处理对成熟期山药土壤养分的影响
Table 3 Effects of different treatments on soil nutrients of replanted Chinese yam field at maturity stage
处理 Treatment | pH | 有机质 Organic matter/% | 铵态氮 Ammonium nitrogen/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 速效磷 Available phosphorus/ (mg·kg-1) |
---|---|---|---|---|---|
CK | 4.77±0.17 ab | 0.10±0.01 a | 5.67±0.48 e | 41.45±2.51 e | ND |
T1 | 5.27±0.02 a | 0.13±0.08 a | 42.37±1.59 b | 74.50±1.33 c | 1.00±1.00 a |
T2 | 4.66±0.18 b | 0.30±0.06 a | 35.57±1.21 c | 55.73±4.91 d | 0.83±0.33 a |
T3 | 4.71±0.09 b | 0.20±0.10 a | 15.17±1.13 d | 74.03±6.11 c | 0.47±0.47 a |
T4 | 4.98±0.21 ab | 0.17±0.12 a | 14.00±1.79 d | 89.55±1.36 b | 0.33±0.17 a |
T5 | 4.44±0.25 b | 0.13±0.07 a | 72.83±4.37 a | 108.00±4.62 a | 1.73±0.72 a |
T6 | 4.68±0.15 b | 0.18±0.02 a | 11.33±0.67 de | 99.33±0.67 ab | ND |
[1] | 涂伟凤, 汤洁, 涂玉琴 , 等. 江西山药生产现状及发展优势[J]. 江西农业学报, 2012,24(11):21-24. |
TU W F, TANG J, TU Y Q , et al. Advantage and status of Chinese yam production in Jiangxi[J]. Acta Agriculturae Jiangxi, 2012,24(11):21-24. (in Chinese with English abstract) | |
[2] | 刘廷辉, 贾海民, 李瑞军 , 等. 6种药剂对山药种薯短体线虫的防治效果[J]. 农药, 2017,56(6):450-452. |
LIU T H, JIA H M, LI R J , et al. Control effect of six kinds of insecticides against Pratylenchus on the yam seed[J]. Agrochemicals, 2017,56(6):450-452.(in Chinese with English abstract) | |
[3] | 贺哲, 黄婷, 李俊科 , 等. 瑞昌山药根腐线虫病病原鉴定[J]. 江西农业大学学报, 2016,38(5):879-883. |
HE Z, HUANG T, LI J K , et al. Identification of nematode causing yam root rot in Ruichang City, Jiangxi Province[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016,38(5):879-883.(in Chinese with English abstract) | |
[4] | 谢平 . 生物肥料“宁盾”对药用植物根结线虫病防治及促生研究[D]. 南京: 南京农业大学, 2015. |
XIE P . Research on promotion and biocontrol of root-knot disease on medicinal plants by bio-fertilizer “NS”[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[5] | 石鸿文, 谢风超 . 山药根结线虫病综合防治技术[J]. 河南农业科学, 2003,32(3):42. |
SHI H W, XIE F C . Integrated control technology of root-knot nematode in Chinese yam[J]. Journal of Henan Agricultural Sciences, 2003,32(3):42.(in Chinese) | |
[6] |
CLAUDIUS-COLE A O, FAWOLE B, ASIEDU R , et al. Management of Meloidogyne incognita in yam-based cropping systems with cover crops[J]. Crop Protection, 2014,63:97-102.
DOI URL |
[7] |
CLAUDIUS-COLE A O, OMOTAYO T O, MONTES A L . Nodal vine cutting technique for assessing nematode resistance in yams[J]. Tropical Plant Pathology, 2020,45(1):56-63.
DOI URL |
[8] | 黄婷, 蒋军喜, 余国庆 , 等. 山药病害最新研究进展[J]. 生物灾害科学, 2014,37(1):74-78. |
HUANG T, JIANG J X, YU G Q , et al. Latest advance in researches on Dioscorea opposite thunb diseases[J]. Biological Disaster Science, 2014,37(1):74-78.(in Chinese with English abstract) | |
[9] | 迟元凯, 叶梦迪, 赵伟 , 等. 氟吡菌酰胺对南方根结线虫的作用效果[J]. 植物保护学报, 2019,46(6):1364-1370. |
CHI Y K, YE M D, ZHAO W , et al. Effect of fluopyram on root-knot nematode Meloidogyne incognita[J]. Journal of Plant Protection, 2019,46(6):1364-1370.(in Chinese with English abstract) | |
[10] | 董文芳, 刘廷辉, 贾海民 , 等. 3种药剂对山药短体线虫病的田间防治效果[J]. 河北农业科学, 2017,21(1):46-48. |
DONG W F, LIU T H, JIA H M , et al. Field efficacy of three nematocides on the shortbody nematode of Dioscorea opposite thunb[J]. Journal of Hebei Agricultural Sciences, 2017,21(1):46-48. (in Chinese with English abstract) | |
[11] |
FASKE T R, HURD K . Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram[J]. Journal of Nematology, 2015,47(4):316-321.
URL PMID |
[12] | 时立波, 王振华, 刘静 , 等. 几种杀线剂对土壤微生物数量及真菌多样性影响[J]. 农药, 2008,47(12):917-919. |
SHI L B, WANG Z H, LIU J , et al. Effects of different nematicides on number of soil microorganism and fungi diversity[J]. Agrochemicals, 2008,47(12):917-919.(in Chinese with English abstract) | |
[13] | 杨叶青, 范琳娟, 刘奇志 , 等. 棉隆和氯化苦熏蒸对重茬草莓土壤线虫群落及养分含量的影响[J]. 园艺学报, 2018,45(4):725-733. |
YANG Y Q, FAN L J, LIU Q Z , et al. Effects of dazomet and chloropicrin on the soil nematode communities and nutrient content of replanted strawberry[J]. Acta Horticulturae Sinica, 2018,45(4):725-733.(in Chinese with English abstract) | |
[14] | 刘淑琮, 冯炘, 于洁 . 植物根际促生菌的研究进展及其环境作用[J]. 湖北农业科学, 2009,48(11):2882-2887. |
LIU S C, FENG X, YU J . Research progress of plant growth-promoting rhizobacteria and its environmental effects[J]. Hubei Agricultural Sciences, 2009,48(11):2882-2887.(in Chinese with English abstract) | |
[15] | 张焕军, 郁红艳, 丁维新 . 长期施用有机无机肥对潮土微生物群落的影响[J]. 生态学报, 2011,31(12):3308-3314. |
ZHANG H J, YU H Y, DING W X . The influence of the long-term application of organic manure and mineral fertilizer on microbial community in calcareous fluvo-aquic soil[J]. Acta Ecologica Sinica, 2011,31(12):3308-3314.(in Chinese with English abstract) | |
[16] |
ELLIS R J, NEISH B, TRETT M W , et al. Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination[J]. Journal of Microbiological Methods, 2001,45(3):171-185.
DOI URL PMID |
[17] | 邹小明, 朱立成, 肖春玲 , 等. 三唑磷的土壤微生物生态效应研究[J]. 农业环境科学学报, 2008,27(1):238-242. |
ZOU X M, ZHU L C, XIAO C L , et al. Ecological effect of triazophos on soil microbe[J]. Journal of Agro-Environment Science, 2008,27(1):238-242.(in Chinese with English abstract) | |
[18] | 武贺, 段玉玺, 陈立杰 . 施用杀线剂对大豆根际真菌的影响[J]. 大豆科学, 2008,27(4):715-719. |
WU H, DUAN Y X, CHEN L J . Effect of nematicide on rhizosphere fungi in the root of soybean[J]. Soybean Science, 2008,27(4):715-719.(in Chinese with English abstract) | |
[19] | 鲍士旦 . 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[20] |
刘恩太, 李园园, 胡艳丽 , 等. 棉隆对苹果连作土壤微生物及平邑甜茶幼苗生长的影响[J]. 生态学报, 2014,34(4):847-852.
DOI URL |
LIU E T, LI Y Y, HU Y L , et al. Effects of dazomet on edaphon and growth of Malus hupehensis Rehd. under continuous apple cropping[J]. Acta Ecologica Sinica, 2014,34(4):847-852.(in Chinese with English abstract) | |
[21] | 孙秀山, 封海胜, 万书波 , 等. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用[J]. 作物学报, 2001,27(5):617-621. |
SUN X S, FENG H S, WAN S B , et al. Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions[J]. Acta Agronomica Sinica, 2001,27(5):617-621.(in Chinese with English abstract) | |
[22] | 吴海燕, 范作伟, 刘春光 , 等. 保护性耕作条件下玉米田土壤微生物区系变化与影响因素分析[J]. 玉米科学, 2008,16(4):135-139. |
WU H Y, FAN Z W, LIU C G , et al. Analysis on the regularity and influence factors of change of soil micro flora under maize planting technology of conservation tillage[J]. Journal of Maize Sciences, 2008,16(4):135-139.(in Chinese with English abstract) | |
[23] | 姜莉莉 . 氟醚菌酰胺对番茄四种病害的控制效果及对土壤微生物多样性的影响[D]. 泰安: 山东农业大学, 2015. |
JIANG L L . Control efficacy of LH-2010A on 4 tomato diseases and its effect on soil microbe diversity[D]. Tai'an: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
[24] | 张盈 . 杀菌剂氟吡菌酰胺对土壤微生物群落多样性的影响[D]. 长沙: 湖南农业大学, 2013. |
ZHANG Y . Effects of fungicide fluopyram on soil microbial community diversity[D]. Changsha: Hunan Agricultural University, 2013. (in Chinese with English abstract) | |
[25] |
LEE S, GAN J Y, KIM J S , et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry, 2004,23(1):1-6.
DOI URL PMID |
[26] | 胡基华, 李晶, 张淑梅 , 等. 解淀粉芽孢杆菌TF28对设施连作黄瓜根际土壤酶活性和微生物的调节[J]. 江苏农业科学, 2020,48(7):152-156. |
HU J H, LI J, ZHANG S M , et al. Regulation of Bacillus amyloliquefaciens TF28 on soil enzyme activities and microorganisms in rhizosphere of cucumber under continuous cropping in greenhouse[J]. Jiangsu Agricultural Sciences, 2020,48(7):152-156.(in Chinese) | |
[27] |
GOMES N C M, FAGBOLA O, COSTA R , et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics[J]. Applied and Environmental Microbiology, 2003,69(7):3758-3766.
DOI URL PMID |
[28] | 董艳, 董坤, 郑毅 , 等. 种植年限和种植模式对设施土壤微生物区系和酶活性的影响[J]. 农业环境科学学报, 2009,28(3):527-532. |
DONG Y, DONG K, ZHENG Y , et al. Soil microbial community and enzyme activities in greenhouse with different cultivation years and planting system[J]. Journal of Agro-Environment Science, 2009,28(3):527-532.(in Chinese with English abstract) | |
[29] | 纪春涛, 姜兴印, 房锋 , 等. 噻唑膦对冬暖式大棚土壤酶活性的影响[J]. 农药学学报, 2009,11(1):137-140. |
JI C T, JIANG X Y, FANG F , et al. Effects of fosthiazate on activity of soil enzymes in vegetable greenhouse[J]. Chinese Journal of Pesticide Science, 2009,11(1):137-140.(in Chinese with English abstract) | |
[30] | 纪春涛 . 噻唑膦对土壤酶活性及黄瓜幼苗安全性研究[D]. 泰安: 山东农业大学, 2009. |
JI C T . Effects of fosthiazate to soil enzyme and cucumber seedling[D]. Tai'an: Shandong Agricultural University, 2009. (in Chinese with English abstract) | |
[31] | 傅丽君, 杨文金 . 4种农药对枇杷园土壤磷酸酶活性及微生物呼吸的影响[J]. 中国生态农业学报, 2007,15(6):113-116. |
FU L J, YANG W J . Effects of pesticides on soil phosphatase activity and respiration of soil microorganisms in loquat orchard[J]. Chinese Journal of Eco-Agriculture, 2007,15(6):113-116.(in Chinese with English abstract) | |
[32] | 仉欢, 朱玉坤, 乔康 , 等. 磷化铝对土壤微生物数量和酶活性的影响[J]. 农业环境科学学报, 2012,31(1):143-148. |
ZHANG H, ZHU Y K, QIAO K , et al. Effects of aluminum phosphide on soil microbial population and enzyme activities[J]. Journal of Agro-Environment Science, 2012,31(1):143-148.(in Chinese with English abstract) | |
[33] | 贾红梅, 方千, 张秫华 , 等. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020,29(6):83-92. |
JIA H M, FANG Q, ZHANG S H , et al. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza[J]. Acta Prataculturae Sinica, 2020,29(6):83-92.(in Chinese with English abstract) | |
[34] | 颜冬冬, 王秋霞, 郭美霞 , 等. 4种熏蒸剂对土壤氮素转化的影响[J]. 中国生态农业学报, 2010,18(5):934-938. |
YAN D D, WANG Q X, GUO M X , et al. Effects of four fumigants on soil nitrogen transformation[J]. Chinese Journal of Eco-Agriculture, 2010,18(5):934-938.(in Chinese with English abstract) |
[1] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 山药不同种植模式对土壤线虫群落结构和土壤理化性质的影响[J]. 浙江农业学报, 2021, 33(2): 316-325. |
[2] | 陈贵, 鲁晨妮, 石艳平, 倪雄伟, 程旺大, 张红梅, 王保君, 张丽萍, 孙达. 不同缓控释肥搭配脲铵对水稻产量、氮素利用效率和土壤养分的影响[J]. 浙江农业学报, 2021, 33(1): 122-130. |
[3] | 李金武, 郁继华, 吕剑, 冯致, 杨海兴, 车旭升, 秦启杰, 张洋, 金宁. 不同覆盖方式对高原夏季露地松花菜产量、品质和土壤养分的影响[J]. 浙江农业学报, 2020, 32(9): 1626-1633. |
[4] | 牛素贞, 安红卫, 宋勤飞, 陈正武. 贵州野生茶树立地土壤养分状况分析及综合评价[J]. 浙江农业学报, 2020, 32(6): 1039-1048. |
[5] | 王小明, 陈爱玲, 董璐, 石玉军, 郑刘长, 赵连慧, 张瑞琪, 张芬琴. 基于叶片质外体相关成分和酶活性响应的龙葵耐Cd机理研究[J]. 浙江农业学报, 2020, 32(5): 816-823. |
[6] | 王保君, 程旺大, 陈贵, 沈亚强, 沈盟, 袁晔, 王蕾, 张红梅. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响[J]. 浙江农业学报, 2020, 32(2): 183-190. |
[7] | 边建文, 崔岩, 杨宋琪, 罗光宏, 孟宪刚. 衣藻和固氮鱼腥藻对盐胁迫下小麦幼苗生长的影响[J]. 浙江农业学报, 2020, 32(10): 1748-1756. |
[8] | 陶晶, 邬奇峰, 石江, 李松昊, 葛江飞, 陈俊辉, 徐秋芳, 梁辰飞, 秦华. 间作与接种丛枝菌根真菌对新垦山地玉米产量和土壤肥力的影响[J]. 浙江农业学报, 2020, 32(1): 115-123. |
[9] | 董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9): 1485-1492. |
[10] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[11] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
[12] | 李洋, 刘凯, 魏吉鹏, 张兰, 李鑫, 韩文炎, 李青云. 不同浓度EGCG对NaCl胁迫下黄瓜种子萌发及其抗性的影响[J]. 浙江农业学报, 2018, 30(7): 1160-1167. |
[13] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
[14] | 王颖洁, 左其生, 张良良, 张文慧, 金晶, 王飞, 纪艳芹, 靳锴, 何娜娜, 李碧春, 张亚妮. 靶向鸡Stra8基因的miRNA预测及鉴定[J]. 浙江农业学报, 2017, 29(5): 729-736. |
[15] | 徐锴, 张少瑜, 袁继存, 闫帅, 侯桂学, 赵德英. 地膜和秸秆覆盖对梨园土壤养分的影响[J]. 浙江农业学报, 2017, 29(3): 421-427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||