[1] 吴征镒. 中国植物志[M].北京:科学出版社,1978. [2] 魏树和, 周启星, 王新, 等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报, 2004, 49(24): 2568-2573. WEI S H, ZHOU Q X, WANG X, et al.Solanum nigrum L., a promising plant for phytoremediation of Cu-polluted soil[J]. Chinese Science Bulletin, 2004, 49(24): 2568-2573.(in Chinese) [3] NISHIZONO H, ICHIKAWA H, SUZIKI S, et al.The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant and Soil, 1987, 101(1): 15-20. [4] 张虹, 罗洁文, 胡华英, 等. 基于细胞壁吸附固定特性的小飞蓬耐Cd机制研究[J]. 农业环境科学学报, 2019, 38(5): 980-990. ZHANG H, LUO J W, HU H Y, et al.Cadmium tolerance mechanism of Conyza canadensis based on cell wall adsorption and fixation characteristics[J]. Journal of Agro-Environment Science, 2019, 38(5): 980-990.(in Chinese with English abstract) [5] ZHANG F Q, ZHANG H X, WANG G P, et al.Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes[J]. Journal of Hazardous Materials, 2009, 168(1): 76-84. [6] CHAOUI A, JARRAR B, EL FERJANI E.Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots[J]. Journal of Plant Physiology, 2004, 161(11): 1225-1234. [7] FINGER-TEIXEIRA A, DE LOURDES LUCIO FERRARESE M, RICARDO SOARES A, et al. Cadmium-induced lignification restricts soybean root growth[J]. Ecotoxicology and Environmental Safety, 2010, 73(8): 1959-1964. [8] BLUMENKRANTZ N, ASBOE-HANSEN G.New method for quantitative determination of uronic acids[J]. Analytical Biochemistry, 1973, 54(2): 484-489. [9] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. [10] PEDREÑO M A, BARCELÓ A R, SABATER F, et al. Control by pH of cell wall peroxidase activity involved in lignification[J]. Plant and Cell Physiology, 1989, 30(2): 237-241. [11] FECHT-CHRISTOFFERS M M, FÜHRS H, BRAUN H P, et al. The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance[J]. Plant Physiology, 2006, 140(4): 1451-1463. [12] ROMERO-PUERTAS M C, RODRIGUEZ-SERRANO M, CORPAS F J, et al. Cadmium-induced subcellular accumulation of $\mathop{{O}}_{2}^{{\mathop{}_{\ ·}^{-}}}$ and H2O2 in pea leaves[J]. Plant, Cell and Environment, 2004, 27(9): 1122-1134. [13] JIANG M Y, ZHANG J H.Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant and Cell Physiology, 2001, 42(11): 1265-1273. [14] VANACKER H, CARVER T L W, FOYER C H. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves[J]. Plant Physiology, 1998, 117(3): 1103-1114. [15] GIANNOPOLITIS C N, RIES S K.Superoxide dismutases[J]. Plant Physiology, 1977, 59(2): 309-314. [16] BEAUCHAMP C, FRIDOVICH I.Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287. [17] NAKANO Y, ASADA K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22:867-880. [18] KLOTZ M G, HUTCHESON S W.Multiple periplasmic catalases in phytopathogenic strains of Pseudomonas syringae[J]. Applied and Environmental Microbiology, 1992, 58(8): 2468-2473. [19] RAO M V, PALIYATH G, ORMROD D P.Ultraviolet-B-and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J].Plant Physiology, 1996,110(1): 125-136. [20] CSISZÁR J, GALLÉ Á, HORVÁTH E, et al. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress[J]. Plant Physiology and Biochemistry, 2012, 52: 119-129. [21] HERNÁNDEZ L E, SOBRINO-PLATA J, MONTERO-PALMERO M B, et al. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress[J]. Journal of Experimental Botany, 2015, 66(10): 2901-2911. [22] 杨文嘉, 王庆亚, 孙建云. 外源硅对甘蓝镉毒害的缓解机制研究[J]. 西北植物学报, 2018, 38(6): 1088-1098. YANG W J, WANG Q Y, SUN J Y.Alleviation mechanism of exogenous silicon in cabbages under cadmium stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(6): 1088-1098.(in Chinese with English abstract) [23] 辛建攀, 李文明, 祁茜, 等. 镉对梭鱼草叶片保护酶活性、光合及荧光特性的影响[J]. 草业学报, 2018, 27(10): 23-34. XIN J P, LI W M, QI X, et al.Effects of Cd on antixoidant enzyme activities, and leaf photosynthetic and fluorescence characteristics in Pontederia cordata[J]. Acta Prataculturae Sinica, 2018, 27(10): 23-34.(in Chinese with English abstract) [24] ZHU X F, WANG Z W, DONG F, et al.Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J]. Journal of Hazardous Materials, 2013, 263: 398-403. [25] XIONG J, AN L Y, LU H, et al.Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall[J]. Planta, 2009, 230(4): 755-765. [26] WAKABAYASHI K, NAKANO S, SOGA K, et al.Cell wall-bound peroxidase activity and lignin formation in azuki bean epicotyls grown under hypergravity conditions[J]. Journal of Plant Physiology, 2009, 166(9): 947-954. [27] POLLE A, OTTER T, SEIFERT F.Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.)[J]. Plant Physiology, 1994, 106(1): 53-60. [28] 王海华, 谭新中, 彭喜旭, 等. 外质体H2O2和木质素积累在镍诱导的水稻对白叶枯病系统抗性中的作用[J]. 中国农业科学, 2010, 43(5): 949-956. WANG H H, TAN X Z, PENG X X, et al.The role of apoplastic hydrogen peroxide and lignin accumulation in the systemic resistance of rice to bacterial blight induced by nickel[J]. Scientia Agricultura Sinica, 2010, 43(5): 949-956.(in Chinese with English abstract) |