浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 146-155.DOI: 10.3969/j.issn.1004-1524.2023.01.16
杨胜竹1(), 李响1, 李朝文1,2, 陈海念1, 刘丽1,2,*(
), 陆引罡1,2,3, 曹卓洋4
收稿日期:
2021-09-21
出版日期:
2023-01-25
发布日期:
2023-02-21
通讯作者:
*刘丽,E-mail:lliu7@gzu.edu.cn
作者简介:
杨胜竹(1998—),女,贵州镇远人,硕士研究生,研究方向为植物营养。E-mail:1228513475@qq.com
基金资助:
YANG Shengzhu1(), LI Xiang1, LI Chaowen1,2, CHEN Hainian1, LIU Li1,2,*(
), LU Yingang1,2,3, CAO Zhuoyang4
Received:
2021-09-21
Online:
2023-01-25
Published:
2023-02-21
摘要:
本文采用多点随机区组设计,以黔东南低山丘陵区(中亚热带季风性暖湿气候)、黔中丘陵盆地区(北亚热带季风湿润气候)和黔西北高原山地区(亚热带季风性湿润气候)三大气候区为研究区域,研究了贵州省不同气候下健康烟株和患青枯病烟株根际土壤养分及酶活性的差异,以及气候对此差异的影响,为从土壤肥力和酶活性方向探索青枯病害发生规律并进行病害预防提供理论依据。结果表明:与健康烟株相比,患病烟株根际土壤的pH值、有效磷和脲酶活性分别显著降低了4.66%、25.98%和21.92%;而有机质、阳离子交换量(CEC)、全氮、碱解氮、全磷、全钾和速效钾含量及过氧化氢酶活性均显著提高,且升高趋势在高海拔的亚热带季风性湿润气候下更为明显;Pearson相关性分析表明,健康处理的受测指标间呈显著相关性的指标更多且相关性更强;因子分析表明,根际土壤pH值、脲酶和磷酸酶活性偏低及CEC、全氮、全磷和速效钾含量及过氧化氢酶活性偏高有可能使烟草更易患青枯病;通过逐步判别分析可知,由土壤pH值、CEC、全氮、碱解氮和速效钾所构建的判别模型判别准确率达100%,可对未知植烟土壤上烟株是否易患青枯病进行预测预报。可见,烟草根际土壤CEC、全氮、碱解氮、速效钾偏高和土壤pH偏低可能更易使烟草患青枯病害,调控根际营养平衡对提高土壤抑病能力和构建抑病型土壤具有重要作用。
中图分类号:
杨胜竹, 李响, 李朝文, 陈海念, 刘丽, 陆引罡, 曹卓洋. 贵州省烟草青枯病害区根际土壤养分及酶活性特征分析[J]. 浙江农业学报, 2023, 35(1): 146-155.
YANG Shengzhu, LI Xiang, LI Chaowen, CHEN Hainian, LIU Li, LU Yingang, CAO Zhuoyang. Characteristics of soil nutrients and enzyme activities in rhizosphere of tobacco affected by bacterial wilt in Guizhou Province, China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 146-155.
图2 采样点基本情况 该图基于国家测绘局标准地图服务网站下载的审图号为GS(2019)1822号的标准地图制作,底图无修改。
Fig.2 Basic information of sampling locations The map was made based on the standard map [map No. GS(2019)1822] downloaded from the standard map service website of State Bureau of Surveying and Mapping. The base map was unchanged.
养分 Nutrients | 处理Treatments | P | 植烟土壤适宜养分含量 Suitable nutrient content of tobacco planting soil | |
---|---|---|---|---|
H | D | |||
OM/(g·kg-1) | 25.06±2.13 | 31.73±2.95 | ** | 15~30[ |
CEC/ (cmol·kg-1) | 16.40±1.11 | 18.48±1.24 | ** | 10~20[ |
TN/(g·kg-1) | 1.21±0.10 | 1.63±0.10 | ** | 1.0~2.0[ |
AN/(mg·kg-1) | 103.20±5.53 | 138.85±12.06 | ** | 60~120[ |
TP/(g·kg-1) | 0.90±0.06 | 1.07±0.08 | * | 0.4~1.0[ |
TK/(g·kg-1) | 14.49±1.47 | 15.65±1.61 | ** | 10.0~25.0[ |
AK/(mg·kg-1) | 274.86±26.30 | 399.10±26.67 | ** | 150~220[ |
AP/(mg·kg-1) | 18.28±3.27 | 13.53±1.94 | ** | 10~20[ |
pH | 6.01±0.27 | 5.73±0.24 | * | 5.5~7.0[ |
表1 健康(H)与患病(D)烟草根际土壤养分差异
Table 1 The nutrients difference between healthy (H) and diseased (D) tobacco rhizosphere soil
养分 Nutrients | 处理Treatments | P | 植烟土壤适宜养分含量 Suitable nutrient content of tobacco planting soil | |
---|---|---|---|---|
H | D | |||
OM/(g·kg-1) | 25.06±2.13 | 31.73±2.95 | ** | 15~30[ |
CEC/ (cmol·kg-1) | 16.40±1.11 | 18.48±1.24 | ** | 10~20[ |
TN/(g·kg-1) | 1.21±0.10 | 1.63±0.10 | ** | 1.0~2.0[ |
AN/(mg·kg-1) | 103.20±5.53 | 138.85±12.06 | ** | 60~120[ |
TP/(g·kg-1) | 0.90±0.06 | 1.07±0.08 | * | 0.4~1.0[ |
TK/(g·kg-1) | 14.49±1.47 | 15.65±1.61 | ** | 10.0~25.0[ |
AK/(mg·kg-1) | 274.86±26.30 | 399.10±26.67 | ** | 150~220[ |
AP/(mg·kg-1) | 18.28±3.27 | 13.53±1.94 | ** | 10~20[ |
pH | 6.01±0.27 | 5.73±0.24 | * | 5.5~7.0[ |
图3 不同气候下健康(H)和患病(D)烟株根际土壤养分含量的差异 柱上小写字母表示处理间差异达0.05显著水平。TZ,天柱;KY,开阳;WN,威宁。下同。
Fig.3 The nutrients difference between healthy (H) and diseased (D) tobacco rhizosphere soil in different climates Different lowercase letters above the bars meaned significant difference at the level of 0.05 among treatments. TZ, Tianzhu; KY, Kaiyang; WN, Weining. The same as below.
处理Treatment | CAT/(mL·g-1·20 min-1) | Ure/(mg·g-1·24 h-1) | Pho/(mg·g-1·24 h-1) | |
---|---|---|---|---|
TZ | H | 1.59±0.17 b | 0.38±0.05 c | 3.02±0.56 bc |
D | 1.51±0.15 b | 0.45±0.02 c | 2.86±0.50 bc | |
KY | H | 2.03±0.17 a | 1.18±0.14 a | 1.51±0.27 c |
D | 2.18±0.15 a | 0.68±0.14 b | 2.46±0.56 c | |
WN | H | 1.25±0.16 c | 0.62±0.05 b | 5.90±0.84 a |
D | 1.68±0.14 b | 0.59±0.04 b | 4.22±1.20 b | |
H | 1.62±0.12 b | 0.73±0.35 a | 3.47 a | |
D | 1.79±0.11 a | 0.57±0.12 b | 3.18 a |
表2 健康(H)与患病(D)烟株根际土壤酶活性差异
Table 2 Difference of enzyme activities between healthy (H) and diseased (D) tobacco rhizosphere soil
处理Treatment | CAT/(mL·g-1·20 min-1) | Ure/(mg·g-1·24 h-1) | Pho/(mg·g-1·24 h-1) | |
---|---|---|---|---|
TZ | H | 1.59±0.17 b | 0.38±0.05 c | 3.02±0.56 bc |
D | 1.51±0.15 b | 0.45±0.02 c | 2.86±0.50 bc | |
KY | H | 2.03±0.17 a | 1.18±0.14 a | 1.51±0.27 c |
D | 2.18±0.15 a | 0.68±0.14 b | 2.46±0.56 c | |
WN | H | 1.25±0.16 c | 0.62±0.05 b | 5.90±0.84 a |
D | 1.68±0.14 b | 0.59±0.04 b | 4.22±1.20 b | |
H | 1.62±0.12 b | 0.73±0.35 a | 3.47 a | |
D | 1.79±0.11 a | 0.57±0.12 b | 3.18 a |
图4 健康(H)和患病(D)烟株根际土壤养分、酶活性及海拔的相关性分析 右上角表示P值,*,P<0.05;**,P<0.01;***,P<0.001;P>0.05无*,左下角表示相关性系数。Alt,海拔。
Fig.4 Correlation analysis of nutrients, enzyme activity and altitude of healthy (H) and diseased (D) tobacco rhizosphere soil The upper right corner indicated the P value, *, P<0.05; **, P<0.01; ***, P<0.001; P>0.05 without *, the lower left corner indicated the correlation coefficient. Alt, altitude.
指标Index | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
CEC | 0.98 | 0.01 | 0.03 | -0.08 |
AP | -0.78 | 0.49 | 0.06 | 0.03 |
Alt | 0.72 | -0.56 | 0.29 | -0.06 |
pH | 0.71 | 0.45 | -0.43 | 0.25 |
Ure | 0.67 | 0.40 | -0.56 | 0.10 |
TP | 0.58 | -0.13 | 0.20 | -0.10 |
OM | -0.02 | -0.79 | 0.43 | 0.29 |
TK | 0.08 | 0.75 | -0.40 | -0.01 |
TN | -0.35 | 0.75 | 0.19 | 0.30 |
Pho | 0.17 | -0.74 | 0.45 | 0.05 |
AK | -0.18 | 0.14 | -0.84 | -0.19 |
CAT | 0.03 | 0.30 | -0.79 | 0.26 |
AN | -0.08 | -0.03 | -0.03 | 0.96 |
特征值Eigenvalues | 4.82 | 3.63 | 1.29 | 1.00 |
方差贡献 | 3.58 | 3.33 | 2.53 | 1.29 |
Variance contribution | ||||
累积贡献率 | 27.53 | 53.17 | 72.65 | 82.60 |
Cumulative contribution/% |
表3 健康烟株根际土壤因子方差贡献率及旋转因子载荷矩阵
Table 3 Factor variance contribution rate and rotation factor loading matrix of healthy tobacco rhizosphere soil
指标Index | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
CEC | 0.98 | 0.01 | 0.03 | -0.08 |
AP | -0.78 | 0.49 | 0.06 | 0.03 |
Alt | 0.72 | -0.56 | 0.29 | -0.06 |
pH | 0.71 | 0.45 | -0.43 | 0.25 |
Ure | 0.67 | 0.40 | -0.56 | 0.10 |
TP | 0.58 | -0.13 | 0.20 | -0.10 |
OM | -0.02 | -0.79 | 0.43 | 0.29 |
TK | 0.08 | 0.75 | -0.40 | -0.01 |
TN | -0.35 | 0.75 | 0.19 | 0.30 |
Pho | 0.17 | -0.74 | 0.45 | 0.05 |
AK | -0.18 | 0.14 | -0.84 | -0.19 |
CAT | 0.03 | 0.30 | -0.79 | 0.26 |
AN | -0.08 | -0.03 | -0.03 | 0.96 |
特征值Eigenvalues | 4.82 | 3.63 | 1.29 | 1.00 |
方差贡献 | 3.58 | 3.33 | 2.53 | 1.29 |
Variance contribution | ||||
累积贡献率 | 27.53 | 53.17 | 72.65 | 82.60 |
Cumulative contribution/% |
指标Index | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
TP | 0.85 | -0.04 | 0.16 | 0.11 |
Alt | 0.82 | 0.08 | -0.46 | 0.23 |
TN | -0.76 | 0.17 | -0.09 | 0.07 |
AP | -0.75 | 0.13 | 0.35 | -0.28 |
CEC | 0.70 | -0.63 | -0.25 | 0.07 |
Ure | 0.31 | -0.82 | -0.21 | -0.04 |
TK | -0.32 | -0.72 | 0.31 | -0.16 |
pH | 0.37 | -0.71 | 0.05 | 0.35 |
OM | 0.46 | 0.70 | -0.33 | 0.19 |
CAT | 0.20 | -0.70 | 0.15 | -0.02 |
Pho | 0.00 | 0.20 | -0.87 | -0.13 |
AN | 0.08 | 0.09 | 0.27 | 0.89 |
AK | -0.16 | 0.05 | 0.53 | -0.72 |
特征值Eigenvalues | 4.60 | 3.21 | 1.37 | 1.12 |
方差贡献 | 3.64 | 3.17 | 1.82 | 1.67 |
Variance contribution | ||||
累积贡献率 | 28.00 | 52.37 | 66.39 | 79.21 |
Cumulative contribution/% |
表4 患病烟株根际土壤因子方差贡献率及旋转因子载荷矩阵
Table 4 Factor variance contribution rate and rotation factor loading matrix of diseased tobacco rhizosphere soil
指标Index | Factor 1 | Factor 2 | Factor 3 | Factor 4 |
---|---|---|---|---|
TP | 0.85 | -0.04 | 0.16 | 0.11 |
Alt | 0.82 | 0.08 | -0.46 | 0.23 |
TN | -0.76 | 0.17 | -0.09 | 0.07 |
AP | -0.75 | 0.13 | 0.35 | -0.28 |
CEC | 0.70 | -0.63 | -0.25 | 0.07 |
Ure | 0.31 | -0.82 | -0.21 | -0.04 |
TK | -0.32 | -0.72 | 0.31 | -0.16 |
pH | 0.37 | -0.71 | 0.05 | 0.35 |
OM | 0.46 | 0.70 | -0.33 | 0.19 |
CAT | 0.20 | -0.70 | 0.15 | -0.02 |
Pho | 0.00 | 0.20 | -0.87 | -0.13 |
AN | 0.08 | 0.09 | 0.27 | 0.89 |
AK | -0.16 | 0.05 | 0.53 | -0.72 |
特征值Eigenvalues | 4.60 | 3.21 | 1.37 | 1.12 |
方差贡献 | 3.64 | 3.17 | 1.82 | 1.67 |
Variance contribution | ||||
累积贡献率 | 28.00 | 52.37 | 66.39 | 79.21 |
Cumulative contribution/% |
因素Factors | 发生类别Category | ||
---|---|---|---|
判别因子变量 Discriminant variable (X) | X对应的土壤指标 X corresponding soil index | 健康Y1 Healthy Y1 | 患病Y2 Diseased Y2 |
X0 | - | -39.387 | -69.265 |
X1 | pH | 0.328 | -5.270 |
X3 | CEC | 1.725 | 3.233 |
X4 | TN | 16.995 | 25.353 |
X5 | AN | 0.128 | 0.227 |
X9 | AK | 0.054 | 0.091 |
表5 逐步判别函数系数表
Table 5 Stepwise discriminant function coefficient table
因素Factors | 发生类别Category | ||
---|---|---|---|
判别因子变量 Discriminant variable (X) | X对应的土壤指标 X corresponding soil index | 健康Y1 Healthy Y1 | 患病Y2 Diseased Y2 |
X0 | - | -39.387 | -69.265 |
X1 | pH | 0.328 | -5.270 |
X3 | CEC | 1.725 | 3.233 |
X4 | TN | 16.995 | 25.353 |
X5 | AN | 0.128 | 0.227 |
X9 | AK | 0.054 | 0.091 |
[1] |
孙悦, 徐兴良, KUZYAKOV Yakov. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1): 62-75.
DOI |
SUN Y, XU X L, YAKOV K. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 62-75. (in Chinese with English abstract)
DOI URL |
|
[2] |
马志良, 赵文强, 刘美, 等. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 2019, 30(6): 1893-1900.
DOI |
MA Z L, ZHAO W Q, LIU M, et al. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1893-1900. (in Chinese with English abstract) | |
[3] | ZHANG F S, SHEN J B, ZHANG J L, et al. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China[J]. Advances in Agronomy, 2010, 107: 1-32. |
[4] | 李雪萍, 李建宏, 漆永红, 等. 青稞根腐病对根际土壤微生物及酶活性的影响[J]. 生态学报, 2017, 37(17): 5640-5649. |
LI X P, LI J H, QI Y H, et al. Effects of naked barley root rot on rhizosphere soil microorganisms and enzyme activity[J]. Acta Ecologica Sinica, 2017, 37(17): 5640-5649. (in Chinese with English abstract) | |
[5] | 褚德朋, 许永幸, 高强, 等. 海藻多糖与有机物料对烟草青枯病的防控效果[J]. 中国烟草科学, 2020, 41(4): 58-65. |
CHU D P, XU Y X, GAO Q, et al. Control effect of seaweed polysaccharides and organic materials on tobacco bacterial wilt[J]. Chinese Tobacco Science, 2020, 41(4): 58-65. (in Chinese with English abstract) | |
[6] | QI G F, MA G Q, CHEN S, et al. Microbial network and soil properties are changed in bacterial wilt-susceptible soil[J/OL]. Applied and Environmental Microbiology, 2019, 85(13). . |
[7] |
WANG R, ZHANG H C, SUN L G, et al. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 2017, 7: 343.
DOI PMID |
[8] | 黎妍妍, 覃光炯, 王林, 等. 清江流域烟区烟草青枯病发生的土壤营养因素分析[J]. 南方农业学报, 2018, 49(4): 656-661. |
LI Y Y, QIN G J, WANG L, et al. Soil nutrient elements affecting the occurrence of tobacco bacterial wilt in Qingjiang River Basin[J]. Journal of Southern Agriculture, 2018, 49(4): 656-661. (in Chinese with English abstract) | |
[9] | 郑世燕, 陈弟军, 丁伟, 等. 烟草青枯病发病烟株根际土壤营养状况分析[J]. 中国烟草学报, 2014, 20(4): 57-64. |
ZHENG S Y, CHEN D J, DING W, et al. Nutritional status of rhizosphere soil around bacterial wilt diseased tobacco plant[J]. Acta Tabacaria Sinica, 2014, 20(4): 57-64. (in Chinese with English abstract) | |
[10] | 万川, 蒋珍茂, 赵秀兰, 等. 深翻和施用土壤改良剂对烟草青枯病发生的影响[J]. 烟草科技, 2015, 48(2): 11-15,26. |
WAN C, JIANG Z M, ZHAO X L, et al. Effects of deep-ploughing and soil amendment application on incidence of tobacco bacterial wilt[J]. Tobacco Science & Technology, 2015, 48(2): 11-15,26. (in Chinese with English abstract) | |
[11] | 闫新甫, 孔劲松, 罗安娜, 等. 近20年全国烤烟产区种植规模消长变化分析[J]. 中国烟草科学, 2021, 42(4): 92-101. |
YAN X F, KONG J S, LUO A N, et al. Changes in planting scale of flue-cured tobacco production regions in China in recent 20 years[J]. Chinese Tobacco Science, 2021, 42(4): 92-101. (in Chinese with English abstract) | |
[12] | 胡吉凤, 谷小平, 刘健锋, 等. 贵州省不同气候区烟草青枯病发生现状研究[J]. 广东农业科学, 2013, 40(21): 88-90. |
HU J F, GU X P, LIU J F, et al. Occurring situation of tobacco bacterial wilt in different climatic regions of Guizhou Province[J]. Guangdong Agricultural Sciences, 2013, 40(21): 88-90. (in Chinese with English abstract) | |
[13] | 滕凯, 陈前锋, 周志成, 等. 烟草连作障碍与土壤理化性质及微生物多样性特征的关联[J]. 微生物学通报, 2020, 47(9): 2848-2856. |
TENG K, CHEN Q F, ZHOU Z C, et al. Effect of soil physical and chemical properties and microbial community on continuous cropping obstacles in tobacco field[J]. Microbiology China, 2020, 47(9): 2848-2856. (in Chinese with English abstract) | |
[14] |
ZHANG X H, LANG D Y, ZHANG E H, et al. Diurnal changes in photosynthesis and antioxidants of Angelica sinensis as influenced by cropping systems[J]. Photosynthetica, 2013, 51(2): 252-258.
DOI URL |
[15] | 冯洁. 植物病原细菌分类最新进展[J]. 中国农业科学, 2017, 50(12): 2305-2314. |
FENG J. Recent advances in taxonomy of plant pathogenic bacteria[J]. Scientia Agricultura Sinica, 2017, 50(12): 2305-2314. (in Chinese with English abstract) | |
[16] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 25-169. |
[17] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 274-276. |
[18] | 刘国顺. 烟草栽培学[M]. 2版. 北京: 中国农业出版社, 2017: 179-181. |
[19] | 石媛媛, 邓明军, 林北森, 等. 基于GIS和地统计学的百色植烟土壤养分空间分析[J]. 南方农业学报, 2014, 45(8): 1403-1409. |
SHI Y Y, DENG M J, LIN B S, et al. Spatial analysis of tobacco soil nutrients in Baise based on GIS and geostatistics[J]. Journal of Southern Agriculture, 2014, 45(8): 1403-1409. (in Chinese with English abstract) | |
[20] | 吕倩, 康文斯, 郭茂金, 等. 柏木人工林目标树经营初期对林下植物多样性及土壤理化性质的影响[J]. 应用与环境生物学报, 2019, 25(5): 1036-1043. |
LYU Q, KANG W S, GUO M J, et al. Early effects of target tree management on undergrowth plant diversity and soil physicochemical properties in Cupressus funebris plantations[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(5): 1036-1043. (in Chinese with English abstract) | |
[21] | 马海宾, 王胜坤, 陆俊锟, 等. 桉树青枯病林地根际土壤营养分析[J]. 桉树科技, 2016, 33(4): 9-13. |
MA H B, WANG S K, LU J K, et al. Analyses of rhizosphere soil nutrition in Eucalyptus plantations affected by bacterial wilt disease[J]. Eucalypt Science & Technology, 2016, 33(4): 9-13. (in Chinese with English abstract) | |
[22] | 陆景陵. 植物营养学-上册[M]. 2版. 北京: 中国农业大学出版社, 2003. |
[23] | WILLIAMS J, SMITH S G. Correcting potassium deficiency can reduce rice stem diseases[J]. Better Crops, 2001, 85(1): 7-9. |
[24] | 王贻鸿, 赵云峰, 孔凡玉, 等. 不同pH下胞外多糖和脂多糖对烟草青枯菌根部定殖的影响[J]. 中国烟草科学, 2017, 38(5): 24-31. |
WANG Y H, ZHAO Y F, KONG F Y, et al. Effect of exopolysaccharides and lipopolysaccride on colonization of tobacco roots by Ralstonia solanacearum at different pH values[J]. Chinese Tobacco Science, 2017, 38(5): 24-31. (in Chinese with English abstract) | |
[25] | 游春梅, 陆晓菊, 官会林. 三七设施栽培根腐病害与土壤酶活性的关联性[J]. 云南师范大学学报(自然科学版), 2014, 34(6): 25-29. |
YOU C M, LU X J, GUAN H L. The relevance of notoginseng root rot to the enzyme activity in soil[J]. Journal of Yunnan Normal University (Natural Sciences Edition), 2014, 34(6): 25-29. (in Chinese with English abstract) | |
[26] | 莫雪, 陈斐杰, 游冲, 等. 黄河三角洲不同植物群落土壤酶活性特征及影响因子分析[J]. 环境科学, 2020, 41(2): 895-904. |
MO X, CHEN F J, YOU C, et al. Characteristics and factors of soil enzyme activity for different plant communities in Yellow River Delta[J]. Environmental Science, 2020, 41(2): 895-904. (in Chinese with English abstract) | |
[27] |
FAN Z Z, LU S Y, LIU S, et al. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China[J]. Journal of Forestry Research, 2020, 31(5): 1949-1957.
DOI URL |
[28] | 池再香, 龙先菊, 晏理华, 等. 贵州东部中亚热带季风湿润区椪柑气候区划[J]. 气象, 2008, 34(11): 101-105. |
CHI Z X, LONG X J, YAN L H, et al. Climatic regionalization of Citrus in the middle subtropical monsoon wetness areas of eastern Guizhou Province[J]. Meteorological Monthly, 2008, 34(11): 101-105. (in Chinese with English abstract) | |
[29] | 吴则焰, 林文雄, 陈志芳, 等. 武夷山不同海拔植被带土壤微生物PLFA分析[J]. 林业科学, 2014, 50(7): 105-112. |
WU Z Y, LIN W X, CHEN Z F, et al. Phospholipid fatty acid analysis of soil microbes at different elevation of Wuyi mountains[J]. Scientia Silvae Sinicae, 2014, 50(7): 105-112. (in Chinese with English abstract) |
[1] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
[2] | 孙文艳, 刘小刚, 张文慧, 李慧永, 吴朗, 杨启良, 熊国美. 基于根区土壤质量指数优化小粒种咖啡滴灌施肥方案[J]. 浙江农业学报, 2022, 34(3): 566-573. |
[3] | 龚伟伟, 赵懿琛, 罗显麟, 杨玲玲, 赵德刚. 花烟草NaD1基因的表达及其启动子序列分析[J]. 浙江农业学报, 2022, 34(2): 232-239. |
[4] | 张健利, 王振华, 陈睿, 王东旺, 梁永辉, 刘茹华. 水肥互作对滴灌红枣产量、品质与土壤养分的影响[J]. 浙江农业学报, 2022, 34(11): 2428-2437. |
[5] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[6] | 李清斌, 秦奔奔, 李盈盈, 范凯锋, 杨栋, 陈磊, 刘鹍. 连阴雨寡日照对大棚草莓小气候、产量和品质的影响[J]. 浙江农业学报, 2021, 33(5): 831-839. |
[7] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
[8] | 隋夕然, 王妍, 刘云根, 张雅洁, 吴丽芳. 典型喀斯特区云南松林土壤养分和细菌群落对海拔的响应[J]. 浙江农业学报, 2021, 33(12): 2348-2357. |
[9] | 熊廷浩, 黄益国, 周旋, 鲁艳红, 资涛, 胡宇倩, 宋海星. 湖南省油菜主产区土壤养分含量与重金属污染风险评价[J]. 浙江农业学报, 2021, 33(10): 1904-1912. |
[10] | 陈贵, 鲁晨妮, 石艳平, 倪雄伟, 程旺大, 张红梅, 王保君, 张丽萍, 孙达. 不同缓控释肥搭配脲铵对水稻产量、氮素利用效率和土壤养分的影响[J]. 浙江农业学报, 2021, 33(1): 122-130. |
[11] | 徐秀红, 刘金亮, 李栋成, 刘仁祥. 不同类型烟草种质的烟碱含量变化与相关基因表达水平[J]. 浙江农业学报, 2020, 32(9): 1555-1563. |
[12] | 李金武, 郁继华, 吕剑, 冯致, 杨海兴, 车旭升, 秦启杰, 张洋, 金宁. 不同覆盖方式对高原夏季露地松花菜产量、品质和土壤养分的影响[J]. 浙江农业学报, 2020, 32(9): 1626-1633. |
[13] | 牛素贞, 赵支飞, 宋勤飞, 陈正武. 贵州野生茶树种质资源立地环境多样性[J]. 浙江农业学报, 2020, 32(7): 1223-1232. |
[14] | 牛素贞, 安红卫, 宋勤飞, 陈正武. 贵州野生茶树立地土壤养分状况分析及综合评价[J]. 浙江农业学报, 2020, 32(6): 1039-1048. |
[15] | 周丽, 聂常乐, 任钇潼, 梁晶晶, 徐华. 四川冬春季参考作物蒸散量时空变化及其成因[J]. 浙江农业学报, 2020, 32(4): 559-570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||