浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 790-799.DOI: 10.3969/j.issn.1004-1524.20230502
李亚萍1(
), 金福来2, 黄宗贵3, 张涛4, 段晓婧1, 姜武1, 陶正明1,*(
), 陈家栋1
收稿日期:2023-04-18
出版日期:2024-04-25
发布日期:2024-04-29
作者简介:李亚萍(1997—),女,河南开封人,硕士研究生,主要从事药用植物有效成分合成机制研究。E-mail: Lyy100400@163.com
通讯作者:
*陶正明,E-mail: 312633768@qq.com
基金资助:
LI Yaping1(
), JIN Fulai2, HUANG Zonggui3, ZHANG Tao4, DUAN Xiaojing1, JIANG Wu1, TAO Zhengming1,*(
), CHEN Jiadong1
Received:2023-04-18
Online:2024-04-25
Published:2024-04-29
Contact:
TAO Zhengming
摘要:
利用生物信息学方法对铁皮石斛 GH3 基因家族成员进行筛选、鉴定,对其基因结构、蛋白理化性质、亚细胞定位、系统进化、蛋白质二级结构及跨膜预测、基序及染色体定位进行分析,同时分析GH3 基因家族在不同组织以及低磷与正常磷水平下的表达模式。在铁皮石斛全基因组中筛选得到13个GH3家族基因,其中一个基因存在可变剪切,表达为14个GH3蛋白。GH3基因家族蛋白可分为3个亚家族,各亚家族中不同基因相对保守;各成员均含有内含子与外显子,内含子相位在0~2,13个基因分布在8染色体上。GH3基因家族在铁皮石斛的8个组织中均有表达,其中白根和花蕾表达量高,茎和唇瓣低,推测GH3基因家族可能参与铁皮石斛根系生长以及开花现蕾。低磷与正常磷水平表达结果表明,低磷水平下叶中基因LOC110110392、LOC110100144表达上调,根中基因LOC110095762、LOC110107269表达上调。该研究对铁皮石斛糖苷水解酶GH3 基因家族成员生物信息学、在不同组织以及正常磷与低磷条件下的表达水平进行研究分析,筛选响应低磷信号的糖苷水解酶基因,为后期研究糖苷水解酶参与低磷条件下铁皮石斛多糖代谢调节机制提供研究基础。
中图分类号:
李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799.
LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799.
| 蛋白ID Protein ID | 基因ID Gene ID | 染色体 Chromosome | 基因长度 Length/bp | CDS序列号 CDS ID |
|---|---|---|---|---|
| XP_028554809.1 | LOC110095762 | NW_021319658.1 | 4 029 | XM_028698976.1 |
| XP_028554802.1 | LOC110095760 | NW_021319658.1 | 13 801 | XM_028698969.1 |
| XP_028549622.1 | LOC114578346 | NW_021318505.1 | 3 024 | XM_028693789.1 |
| XP_028549465.1 | LOC110107249 | NW_021318505.1 | 2 586 | XM_028693632.1 |
| XP_028549390.1 | LOC110107248 | NW_021318505.1 | 4 203 | XM_028693557.1 |
| XP_020705298.1 | LOC110116159 | NW_021420086.1 | 6 817 | XM_020849639.2 |
| XP_020697503.1 | LOC110110392 | NW_021319315.1 | 4 737 | XM_020841844.2 |
| XP_020693131.1 | LOC110107269 | NW_021318505.1 | 5 362 | XM_020837472.2 |
| XP_020689109.1 | LOC110104374 | NW_021319682.1 | 4 260 | XM_020833450.2 |
| XP_020684254.1 | LOC110100884 | NW_021319733.1 | 5 838 | XM_020828595.2 |
| XP_020683228.1 | LOC110100144 | NW_021319820.1 | 43 378 | XM_020827569.2 |
| XP_020677781.1 | LOC110096263 | NW_021528311.1 | 2 964 | XM_020822122.1 |
| XP_020677766.1 | LOC110096253 | NW_021528311.1 | 5 580 | XM_020822107.2 |
| XP_020677074.1 | LOC110095760 | NW_021319658.1 | 13 801 | XM_020821415.2 |
表1 GH3基因家族蛋白筛选结果及相关信息
Table 1 Screening results and related information of GH3 gene family proteins
| 蛋白ID Protein ID | 基因ID Gene ID | 染色体 Chromosome | 基因长度 Length/bp | CDS序列号 CDS ID |
|---|---|---|---|---|
| XP_028554809.1 | LOC110095762 | NW_021319658.1 | 4 029 | XM_028698976.1 |
| XP_028554802.1 | LOC110095760 | NW_021319658.1 | 13 801 | XM_028698969.1 |
| XP_028549622.1 | LOC114578346 | NW_021318505.1 | 3 024 | XM_028693789.1 |
| XP_028549465.1 | LOC110107249 | NW_021318505.1 | 2 586 | XM_028693632.1 |
| XP_028549390.1 | LOC110107248 | NW_021318505.1 | 4 203 | XM_028693557.1 |
| XP_020705298.1 | LOC110116159 | NW_021420086.1 | 6 817 | XM_020849639.2 |
| XP_020697503.1 | LOC110110392 | NW_021319315.1 | 4 737 | XM_020841844.2 |
| XP_020693131.1 | LOC110107269 | NW_021318505.1 | 5 362 | XM_020837472.2 |
| XP_020689109.1 | LOC110104374 | NW_021319682.1 | 4 260 | XM_020833450.2 |
| XP_020684254.1 | LOC110100884 | NW_021319733.1 | 5 838 | XM_020828595.2 |
| XP_020683228.1 | LOC110100144 | NW_021319820.1 | 43 378 | XM_020827569.2 |
| XP_020677781.1 | LOC110096263 | NW_021528311.1 | 2 964 | XM_020822122.1 |
| XP_020677766.1 | LOC110096253 | NW_021528311.1 | 5 580 | XM_020822107.2 |
| XP_020677074.1 | LOC110095760 | NW_021319658.1 | 13 801 | XM_020821415.2 |
| 蛋白ID Protein ID | 氨基酸长度 Amino acid/aa | 分子量 Molecular weight/u | 等电点 Isoelectric point | 不稳定指数 Instability index | 脂肪指数 Aliphatic index | 总平均疏 水指数 GRAVY | 亚细胞定位 Location |
|---|---|---|---|---|---|---|---|
| XP_028554809.1 | 624 | 68 931.43 | 7.56 | 32.67 | 94.34 | -0.092 | 质体/细胞质Plastid/cytoplasm |
| XP_028554802.1 | 569 | 62 043.3 | 6.15 | 24.64 | 92.92 | -0.009 | 质体Plastid |
| XP_028549622.1 | 434 | 48 049.32 | 7.14 | 28.64 | 91.84 | -0.04 | 叶绿体Chloroplast |
| XP_028549465.1 | 182 | 19 743.06 | 9.46 | 30.44 | 100.77 | 0.207 | 线粒体Mitochondrion |
| XP_028549390.1 | 626 | 68 173.11 | 6.47 | 27.63 | 92.67 | -0.049 | 细胞外/质体Extracellular/plastid |
| XP_020705298.1 | 629 | 69 196.69 | 6.64 | 32.68 | 94.07 | -0.01 | 质体Plastid |
| XP_020697503.1 | 617 | 67 640.07 | 6.67 | 33.83 | 87.59 | -0.135 | 细胞外Extracellular |
| XP_020693131.1 | 631 | 69 537.96 | 6.55 | 30.51 | 91.28 | -0.041 | 细胞质Cytoplasm |
| XP_020689109.1 | 795 | 86 669.85 | 6.25 | 41.01 | 86.65 | -0.106 | 叶绿体Chloroplast |
| XP_020684254.1 | 788 | 85 006.68 | 8.26 | 34.65 | 87.77 | -0.099 | 细胞外Extracellular |
| XP_020683228.1 | 614 | 67 201.81 | 5.72 | 32.41 | 92.1 | -0.05 | 细胞质Cytoplasm |
| XP_020677781.1 | 624 | 67 993.29 | 5.83 | 24.91 | 86.23 | -0.192 | 细胞外Extracellular |
| XP_020677766.1 | 766 | 82 994.27 | 6.29 | 28.41 | 83.73 | -0.121 | 细胞外Extracellular |
| XP_020677074.1 | 655 | 71 534.72 | 8.23 | 24.08 | 93.08 | -0.024 | 线粒体/叶绿体 |
| Mitochondrion/chloroplast |
表2 GH3基因家族蛋白成员理化性质及亚细胞定位
Table 2 Physicochemical properties and subcellular localization of GH3 gene family
| 蛋白ID Protein ID | 氨基酸长度 Amino acid/aa | 分子量 Molecular weight/u | 等电点 Isoelectric point | 不稳定指数 Instability index | 脂肪指数 Aliphatic index | 总平均疏 水指数 GRAVY | 亚细胞定位 Location |
|---|---|---|---|---|---|---|---|
| XP_028554809.1 | 624 | 68 931.43 | 7.56 | 32.67 | 94.34 | -0.092 | 质体/细胞质Plastid/cytoplasm |
| XP_028554802.1 | 569 | 62 043.3 | 6.15 | 24.64 | 92.92 | -0.009 | 质体Plastid |
| XP_028549622.1 | 434 | 48 049.32 | 7.14 | 28.64 | 91.84 | -0.04 | 叶绿体Chloroplast |
| XP_028549465.1 | 182 | 19 743.06 | 9.46 | 30.44 | 100.77 | 0.207 | 线粒体Mitochondrion |
| XP_028549390.1 | 626 | 68 173.11 | 6.47 | 27.63 | 92.67 | -0.049 | 细胞外/质体Extracellular/plastid |
| XP_020705298.1 | 629 | 69 196.69 | 6.64 | 32.68 | 94.07 | -0.01 | 质体Plastid |
| XP_020697503.1 | 617 | 67 640.07 | 6.67 | 33.83 | 87.59 | -0.135 | 细胞外Extracellular |
| XP_020693131.1 | 631 | 69 537.96 | 6.55 | 30.51 | 91.28 | -0.041 | 细胞质Cytoplasm |
| XP_020689109.1 | 795 | 86 669.85 | 6.25 | 41.01 | 86.65 | -0.106 | 叶绿体Chloroplast |
| XP_020684254.1 | 788 | 85 006.68 | 8.26 | 34.65 | 87.77 | -0.099 | 细胞外Extracellular |
| XP_020683228.1 | 614 | 67 201.81 | 5.72 | 32.41 | 92.1 | -0.05 | 细胞质Cytoplasm |
| XP_020677781.1 | 624 | 67 993.29 | 5.83 | 24.91 | 86.23 | -0.192 | 细胞外Extracellular |
| XP_020677766.1 | 766 | 82 994.27 | 6.29 | 28.41 | 83.73 | -0.121 | 细胞外Extracellular |
| XP_020677074.1 | 655 | 71 534.72 | 8.23 | 24.08 | 93.08 | -0.024 | 线粒体/叶绿体 |
| Mitochondrion/chloroplast |
| 蛋白ID Protein ID | 跨膜区 Transmembrane helices | α-螺旋 Alpha-helix (Hh)/% | 延伸链 Extended strand (Ee)/% | β-转角 Beta turn (Tt)/% | 无规卷曲 Random coil (Cc)/% |
|---|---|---|---|---|---|
| XP_028554809.1 | 否No | 35.74 | 15.71 | 5.77 | 42.79 |
| XP_028554802.1 | 否No | 35.15 | 16.17 | 6.15 | 42.53 |
| XP_028549622.1 | 否No | 32.26 | 14.75 | 6.91 | 46.08 |
| XP_028549465.1 | 是Yes | 46.70 | 12.64 | 4.40 | 36.26 |
| XP_028549390.1 | 是Yes | 36.58 | 15.34 | 5.75 | 42.33 |
| XP_020705298.1 | 否No | 36.25 | 15.90 | 5.72 | 42.13 |
| XP_020697503.1 | 是Yes | 33.39 | 15.72 | 6.16 | 44.73 |
| XP_020693131.1 | 是Yes | 36.13 | 15.37 | 5.71 | 42.79 |
| XP_020689109.1 | 是Yes | 27.55 | 20.25 | 5.66 | 46.54 |
| XP_020684254.1 | 是Yes | 28.43 | 21.57 | 6.22 | 43.78 |
| XP_020683228.1 | 否No | 35.83 | 14.98 | 5.37 | 43.81 |
| XP_020677781.1 | 否No | 25.00 | 23.40 | 8.17 | 43.43 |
| XP_020677766.1 | 否No | 27.68 | 21.54 | 7.05 | 43.73 |
| XP_020677074.1 | 否No | 35.57 | 15.57 | 5.95 | 42.90 |
表3 GH3基因家族蛋白二级结构预测及跨膜结构预测
Table 3 Secondary structure prediction and transmembrane structure prediction of GH3 gene family
| 蛋白ID Protein ID | 跨膜区 Transmembrane helices | α-螺旋 Alpha-helix (Hh)/% | 延伸链 Extended strand (Ee)/% | β-转角 Beta turn (Tt)/% | 无规卷曲 Random coil (Cc)/% |
|---|---|---|---|---|---|
| XP_028554809.1 | 否No | 35.74 | 15.71 | 5.77 | 42.79 |
| XP_028554802.1 | 否No | 35.15 | 16.17 | 6.15 | 42.53 |
| XP_028549622.1 | 否No | 32.26 | 14.75 | 6.91 | 46.08 |
| XP_028549465.1 | 是Yes | 46.70 | 12.64 | 4.40 | 36.26 |
| XP_028549390.1 | 是Yes | 36.58 | 15.34 | 5.75 | 42.33 |
| XP_020705298.1 | 否No | 36.25 | 15.90 | 5.72 | 42.13 |
| XP_020697503.1 | 是Yes | 33.39 | 15.72 | 6.16 | 44.73 |
| XP_020693131.1 | 是Yes | 36.13 | 15.37 | 5.71 | 42.79 |
| XP_020689109.1 | 是Yes | 27.55 | 20.25 | 5.66 | 46.54 |
| XP_020684254.1 | 是Yes | 28.43 | 21.57 | 6.22 | 43.78 |
| XP_020683228.1 | 否No | 35.83 | 14.98 | 5.37 | 43.81 |
| XP_020677781.1 | 否No | 25.00 | 23.40 | 8.17 | 43.43 |
| XP_020677766.1 | 否No | 27.68 | 21.54 | 7.05 | 43.73 |
| XP_020677074.1 | 否No | 35.57 | 15.57 | 5.95 | 42.90 |
图7 GH3 基因在不同磷水平下铁皮石斛根和茎叶的表达水平 +PL,正常供磷的茎叶;-PL,缺磷培养下的茎叶;+PR,正常供磷的根;-PR,缺磷培养下的根。
Fig.7 Expression levels of GH3 gene in the roots and leaves of D. officinale under different phosphorus levels +PL, Stems and leaves normally supplied with phosphorus; - PL, Stems and leaves cultured under phosphorus deficiency; + PR, Roots normally supplied with phosphorus; - PR, Roots cultured under phosphorus deficiency.
| [1] | 彭程. 三种糖苷水解酶的异源表达及其对茶叶香气改良的作用[D]. 厦门: 集美大学, 2021. |
| PENG C. Heterologous expression of three glycoside hydrolases and their use of improveing tea aroma[D]. Xiamen: Jimei University, 2021. (in Chinese with English abstract) | |
| [2] | 周斌. 水稻Beta-葡萄糖苷酶RLW1的功能鉴定[D]. 武汉: 华中农业大学, 2013. |
| ZHOU B. Functional identification of rice beta-glucosidase RLW1[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese with English abstract) | |
| [3] | MINIC Z. Physiological roles of plant glycoside hydrolases[J]. Planta, 2008, 227(4): 723-740. |
| [4] | MINIC Z, JOUANIN L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation[J]. Plant Physiology and Biochemistry, 2006, 44(7/8/9): 435-449. |
| [5] | 岳智亮. 拟南芥类糖苷水解酶基因AtGHL的功能研究[D]. 保定: 河北农业大学, 2012. |
| YUE Z L. Functional analysis of glycoside hydrolase-like gene AtGHL in Arabidopsis thaliana[D]. Baoding: Hebei Agricultural University, 2012. (in Chinese with English abstract) | |
| [6] | LI W N, FAN D D. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2020, 104(9): 3807-3823. |
| [7] | ZHONG P, XIU Y, ZHOU K L, et al. Characterization of a novel thermophilic beta-glucosidase from Thermotoga sp. and its application in the transformation of notoginsenoside R1 [J]. 3 Biotech, 2022, 12(11): 289. |
| [8] | TAKAHASHI H, KIKUCHI-FUJISAKI S, YOSHIDA C, et al. Gtgen3A, a novel plant GH3 β-glucosidase, modulates gentio-oligosaccharide metabolism in Gentiana[J]. The Biochemical Journal, 2018, 475(7): 1309-1322. |
| [9] | CHEN W H, LU J M, ZHANG J H, et al. Traditional uses, phytochemistry, pharmacology, and quality control of Dendrobium officinale Kimura et. Migo[J]. Frontiers in Pharmacology, 2021, 12: 726528. |
| [10] | HE Y, LI L, CHANG H, et al. Research progress on extraction, purification, structure and biological activity of Dendrobium officinale polysaccharides[J]. Frontiers in Nutrition, 2022, 9: 965073. |
| [11] | DA SILVA J A T, NG T B. The medicinal and pharmaceutical importance of Dendrobium species[J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2227-2239. |
| [12] | KETUDAT CAIRNS J R, ESEN A. β-glucosidases[J]. Cellular and Molecular Life Sciences, 2010, 67(20): 3389-3405. |
| [13] | HEREDIA A, JIMÉNEZ A, GUILLÉN R. Composition of plant cell walls[J]. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 1995, 200(1): 24-31. |
| [14] | FAURE D. The family-3 glycoside hydrolases: from housekeeping functions to host-microbe interactions[J]. Applied and Environmental Microbiology, 2002, 68(4): 1485-1490. |
| [15] | 王志才, 赵美丽, 张晓捷, 等. 植物激素处理诱导的转录组改变揭示铁皮石斛β葡糖苷酶在多糖合成中的关键作用[J]. 生物化学与生物物理进展, 2022, 49(9): 1751-1762. |
| WANG Z C, ZHAO M L, ZHANG X J, et al. Transcriptome changes induced by plant hormone treatment reveal the key role of β-glucosidase in polysaccharide synthesis of Dendrobium candidum[J]. Progress in Biochemistry and Biophysics, 2022, 49(9): 1751-1762. (in Chinese) | |
| [16] | ALBASER A, KAZANA E, BENNETT M H, et al. Discovery of a bacterial glycoside hydrolase family 3 (GH3) β-glucosidase with myrosinase activity from a Citrobacter strain isolated from soil[J]. Journal of Agricultural and Food Chemistry, 2016, 64(7): 1520-1527. |
| [17] | SUZUKI K, SUMITANI J I, NAM Y W, et al. Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus[J]. The Biochemical Journal, 2013, 452(2): 211-221. |
| [18] | YOSHIDA E, HIDAKA M, FUSHINOBU S, et al. Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus[J]. The Biochemical Journal, 2010, 431(1): 39-49. |
| [19] | DODD D, KIYONARI S, MACKIE R I, et al. Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14[J]. Journal of Bacteriology, 2010, 192(9): 2335-2345. |
| [20] | 蔡璨璨, 李卿, 段承俐, 等. 铁皮石斛Csl基因家族生物信息学及表达分析[J]. 基因组学与应用生物学, 2019, 38(5): 2159-2166. |
| CAI C C, LI Q, DUAN C L, et al. Bioinformatics and expression analysis on csl gene family in Dendrobium catenatum[J]. Genomics and Applied Biology, 2019, 38(5): 2159-2166. (in Chinese with English abstract) |
| [1] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [2] | 孙凤婷, 王旭, 韩新雨, 许振岚, 吴声敢, 黄浩, 汤涛, 盛清, 王强, 沈国强, 赵学平. 复硝酚钠对铁皮石斛中黄酮含量和抗氧化活性的影响[J]. 浙江农业学报, 2025, 37(4): 934-942. |
| [3] | 乔慧茹, 房祥军, 吴伟杰, 刘瑞玲, 陈杭君, 邓尚贵, 沙浩, 郜海燕. 蓝莓与铁皮石斛叶复合乳酸菌发酵饮料工艺优化与品质分析[J]. 浙江农业学报, 2025, 37(3): 654-666. |
| [4] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
| [5] | 黄浩, 汤涛, 许振岚, 赵学平. 吡唑醚菌酯对铁皮石斛中多糖和黄酮的影响研究[J]. 浙江农业学报, 2025, 37(1): 115-125. |
| [6] | 张妮, 陶文扬, 罗梦帆, 周万怡, 郑晓杰, 李彦坡, 金火喜, 杨颖. 酶解辅助提取对铁皮石斛多糖结构和菌群调节功能的影响[J]. 浙江农业学报, 2024, 36(9): 2099-2109. |
| [7] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
| [8] | 赵小亮, 鲁雲, 康兴兴, 龙则宇, 郑晓杰. 雁荡山铁皮石斛多糖的提取、结构表征与体外抗氧化活性[J]. 浙江农业学报, 2024, 36(8): 1898-1908. |
| [9] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
| [10] | 王晓梅, 骆玉琴, 赵学平, 陆兰菲, 方楠, 王祥云, 蒋金花, 何红梅, 张昌朋, 王强. 氟吡菌酰胺在铁皮石斛中的残留与膳食风险[J]. 浙江农业学报, 2024, 36(7): 1666-1676. |
| [11] | 李镜锐, 陶文扬, 杨颖, 周万怡, 陆胜民, 王阳光. 三种浙产铁皮石斛多糖的结构及免疫功效探究[J]. 浙江农业学报, 2023, 35(8): 1888-1895. |
| [12] | 陆兰菲, 赵学平, 马正, 方楠, 骆玉琴, 王晓梅, 叶会, 雷圆, 王强, 张昌朋. 固相萃取-高效液相色谱-质谱联用法测定铁皮石斛中2,4-表芸苔素内酯残留[J]. 浙江农业学报, 2023, 35(8): 1896-1903. |
| [13] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
| [14] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
| [15] | 宋雅萍, 雷召雄, 赵毅昂, 姜超, 王兴平, 罗仍卓么, 马云, 魏大为. 牛FoxO1基因CDS区克隆及其在脂肪细胞分化过程中的表达分析[J]. 浙江农业学报, 2023, 35(5): 1016-1027. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||