浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 319-328.DOI: 10.3969/j.issn.1004-1524.2023.02.09
李晓娟1,2(
), 赵文菊1,2, 赵孟良1,2, 邵登魁1,2, 马一栋1,2, 任延靖1,2,*(
)
收稿日期:2021-11-02
出版日期:2023-02-25
发布日期:2023-03-14
作者简介:*任延靖,E-mail: renyan0202@163.com通讯作者:
任延靖
基金资助:
LI Xiaojuan1,2(
), ZHAO Wenju1,2, ZHAO Mengliang1,2, SHAO Dengkui1,2, MA Yidong1,2, REN Yanjing1,2,*(
)
Received:2021-11-02
Online:2023-02-25
Published:2023-03-14
Contact:
REN Yanjing
摘要:
为了研究芜菁(Brassica rapa L.)种质资源的多样性水平,本研究采用转录组测序的方法挖掘芜菁的SSR分子标记。结果表明:转录组测序分析共获得了253 720条unigene,其中13 247条unigene序列中含有2个或2个以上SSR位点,SSR的发生频率为25.05%,平均每3.15 kb出现1个SSR,分布频率为31.42%。30对引物最终均获得了多态性高、条带清晰的结果,共扩增出多态性条带有126条,平均每对引物扩增出4.2条,平均多态率100%。根据电泳检测扩增结果,最终得到24对多态性高、条带清晰的芜菁SSR引物,24对SSR引物在50份芜菁材料中共扩增获得了101个等位基因,平均每个位点等位基因数4.21个,分析显示,平均有效等位基因数(Ne)为1.481 7个,有效等位变异率为35.19%,这些结果表明,筛选出的引物能较好地表现50份芜菁的遗传多样性,同时对于更多芜菁品种的DNA指纹图谱构建和杂交种鉴定均具有重要意义。
中图分类号:
李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328.
LI Xiaojuan, ZHAO Wenju, ZHAO Mengliang, SHAO Dengkui, MA Yidong, REN Yanjing. Development and application of SSR markers based on transcriptome sequencing of turnip (Brassica rapa ssp. rapa)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 319-328.
| 编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
|---|---|---|---|---|---|
| 1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
| 2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
| 3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
| 4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
| 5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
| 6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
| 7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
| 8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
| 9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
| 10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
| 11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
| 12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
| 13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
| 14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
| 15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
| 16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
| 17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
| 18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
| 19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
| 20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
| 21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
| 22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
| 23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
| 24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
| 25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
表1 供试材料信息
Table 1 Information of materials tested
| 编号No. | 名称Name | 产地Production area | 编号No. | 名称Name | 产地Production area |
|---|---|---|---|---|---|
| 1 | 1401 | 青海Qinghai | 26 | W29 | 青海Qinghai |
| 2 | 1402 | 青海Qinghai | 27 | W30 | 青海Qinghai |
| 3 | 1403 | 西藏Tibet | 28 | W31 | 青海Qinghai |
| 4 | 1404 | 青海Qinghai | 29 | T1 | 河北Hebei |
| 5 | 1405 | 青海Qinghai | 30 | T2 | 河北Hebei |
| 6 | 1406 | 四川Sichuan | 31 | T4 | 黑龙江Heilongjiang |
| 7 | 1407 | 四川Sichuan | 32 | T5 | 内蒙古Inner Mongolia |
| 8 | 1408 | 新疆Xinjiang | 33 | T6 | 内蒙古Inner Mongolia |
| 9 | 1409 | 新疆Xinjiang | 34 | T11 | 日本Japan |
| 10 | 1410 | 青海Qinghai | 35 | T14 | 日本Japan |
| 11 | 1411 | 西藏Tibet | 36 | T15 | 日本Japan |
| 12 | 1412 | 云南Yunnan | 37 | T16 | 青海Qinghai |
| 13 | 1413 | 云南Yunnan | 38 | T17 | 青海Qinghai |
| 14 | G1 | 青海Qinghai | 39 | T18 | 甘肃Gansu |
| 15 | G2 | 青海Qinghai | 40 | IC9 | 国家种质资源库The National Germplasm Bank |
| 16 | G3 | 青海Qinghai | 41 | IC22 | 国家种质资源库The National Germplasm Bank |
| 17 | G4 | 青海Qinghai | 42 | IC23 | 国家种质资源库The National Germplasm Bank |
| 18 | W21 | 北京Beijing | 43 | IC28 | 国家种质资源库The National Germplasm Bank |
| 19 | W22 | 河南Henan | 44 | IC39 | 国家种质资源库The National Germplasm Bank |
| 20 | W23 | 河北Hebei | 45 | IC40 | 国家种质资源库The National Germplasm Bank |
| 21 | W24 | 河北Hebei | 46 | IC43 | 国家种质资源库The National Germplasm Bank |
| 22 | W25 | 河北Hebei | 47 | IC44 | 国家种质资源库The National Germplasm Bank |
| 23 | W26 | 内蒙古Inner Mongolia | 48 | BLK | 内蒙古Inner Mongolia |
| 24 | W27 | 北京Beijing | 49 | SK | 黑龙江Heilongjiang |
| 25 | W28 | 内蒙古Inner Mongolia | 50 | NS1 | 内蒙古Inner Mongolia |
| 重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
| 单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
| 二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
| 三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
| 四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
| 五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
| 六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
| 合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
| 合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 | ||
表2 芜菁单一SSR的类型、数量及分布特征
Table 2 Number and ratio of SSR in turnip
| 重复基元 Repeat motif length | 重复次数Repeat number | 合计 Total | 比例 Percentage/% | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 7 | 8 | 9 | 10 | >10 | |||
| 单核苷酸Mononucleotide | 0 | 0 | 0 | 0 | 0 | 16 975 | 7 820 | 24 795 | 45.50 |
| 二核苷酸Dinucleotide | 0 | 6 174 | 3 311 | 2 421 | 1 550 | 0 | 0 | 13 456 | 24.70 |
| 三核苷酸Trinucleotide | 9 813 | 3 591 | 1 388 | 620 | 97 | 0 | 0 | 15 509 | 28.47 |
| 四核苷酸Tetranucleotide | 342 | 94 | 12 | 7 | 2 | 0 | 6 | 461 | 0.85 |
| 五核苷酸Pentanucleotide | 95 | 18 | 5 | 2 | 0 | 4 | 0 | 124 | 0.23 |
| 六核苷酸Hexanucleotide | 77 | 32 | 17 | 6 | 1 | 0 | 5 | 137 | 0.25 |
| 合计Total | 10 327 | 9 909 | 4 733 | 3 056 | 1 650 | 16 979 | 7 831 | 54 482 | 100 |
| 合计占比Total proportion/% | 18.95 | 18.19 | 8.69 | 5.61 | 3.03 | 31.16 | 14.37 | ||
| 重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
|---|---|---|---|---|---|---|---|
| 单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
| 二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
| AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
| 三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
| AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
| AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
| ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
| ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
| 四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
| AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
| 五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
| AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
| 六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
| TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
表3 芜菁SSR基序类型分布
Table 3 SSR repeat motifs, number and their ratio of turnip
| 重复类型 Repeat type | 基序类型数 Number of motif type | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% | 重复基序 Repeat motif | 数量 Number | 比例 Percentage% |
|---|---|---|---|---|---|---|---|
| 单核苷酸Mononucleotide | 2 | A/T | 24 649 | 45.24 | C/G | 146 | 0.27 |
| 二核苷酸Dinucleotide | 4 | AT/AT | 2 585 | 4.74 | AG/CT | 9 288 | 17.05 |
| AC/GT | 1 551 | 2.85 | CG/CG | 32 | 0.06 | ||
| 三核苷酸Trinucleotide | 10 | AAT/ATT | 553 | 1.02 | ACC/GGT | 1 216 | 2.23 |
| AAC/GTT | 1 535 | 2.82 | ACG/CGT | 517 | 0.95 | ||
| AAG/CTT | 5 054 | 9.28 | AGC/GCT | 713 | 1.31 | ||
| ATC/GAT | 1 381 | 2.53 | AGG/CCT | 2656 | 4.88 | ||
| ATG/CAT | 1 511 | 2.77 | CCG/TCC | 464 | 0.85 | ||
| 四核苷酸Tetranucleotide | 26 | AAAC/GTTT | 96 | 0.18 | AAAG/CTTT | 112 | 0.21 |
| AAAT/ATTT | 80 | 0.15 | 其他Others | 173 | 0.32 | ||
| 五核苷酸Pentanucleotide | 26 | AAAAT/ATTTT | 24 | 0.04 | AAAAG/CTTTT | 13 | 0.02 |
| AACCA/TGGTT | 16 | 0.03 | 其他Others | 71 | 0.13 | ||
| 六核苷酸Hexanucleotide | 44 | GGCTGT/ACAGCC | 14 | 0.03 | CCAGCT/AGCTGG | 13 | 0.02 |
| TTTTTG/CAAAAA | 11 | 0.02 | 其他Others | 99 | 0.18 |
| 序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
|---|---|---|---|---|---|---|---|---|
| 1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
| TCTACGTATGGGACCAGCCA | ||||||||
| 2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
| CCGGAGATCCAATGTACCCG | ||||||||
| 3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
| CCCAGTAGATTCTCGCGTCC | ||||||||
| 4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
| GCCCAATCTACCGAGTCGAG | ||||||||
| 5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
| ATGCCGTTCCGAGTTTCCAT | ||||||||
| 6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
| CTGGTGCGCATTTATCTGCC | ||||||||
| 7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
| GCGCTAGGCTTTGCTTTTGT | ||||||||
| 8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
| GACCACGCTCCTTCAGACAA | ||||||||
| 9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
| TAACAGCAACCTCGTTGGCT | ||||||||
| 10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
| TCCCTCAGGACCAAAAGTGC | ||||||||
| 11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
| CCAGTGGGTGTCTCAGGTTC | ||||||||
| 12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
| CACCCGACAGTATACGTCCG | ||||||||
| 13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
| AGAAATCGGACCCGGGTTTC | ||||||||
| 14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
| GCCGTCTTCATCACATTCGC | ||||||||
| 15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
| GGGGATCAAGAAACGCCTGA | ||||||||
| 16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
| AGCAAAGCTCCCATCAGACC | ||||||||
| 17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
| TCGGACAAGACACGGTGAAG | ||||||||
| 18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
| CGTCTCACTCGGTGTTCCAA | ||||||||
| 19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
| GGTGGCTCTAATCGGTGGAG | ||||||||
| 20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
| TGTCGGAGGAGCTGAAACAC | ||||||||
| 21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
| GTTCTCCACTGCCTCTGTCC | ||||||||
| 22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
| GTCCAGTTCTCGCCATTCCA | ||||||||
| 23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
| TAACAGGGACCGGCAAAGAC | ||||||||
| 24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
| ATGAGCGTCTTCCTCCTCCT | ||||||||
| 25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
| AACGGAAAGCTCGAGGTCTG | ||||||||
| 26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
| TCATCTGGTACCTCGGAGCA | ||||||||
| 27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
| TCAGATAACTCGAGGGGGC | ||||||||
| 28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
| TGCTCTCTTCAACAGCCTGG | ||||||||
| 29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
| ATTCGGAGAGCGAGGTTGAC | ||||||||
| 30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
| TCAATTTCCCTGGCGTCTCC |
表4 芜菁SSR引物序列及扩增结果
Table 4 Primer sequences and amplification information of turnip
| 序号 No. | 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 预期产物大小 Expected product size/bp | 退火温度 Annealing temperature/ ℃ | GC含量 GC content | 扩增条带数 Number of amplification bands | 多态性条带数 Number of polymorphism bands | 多态性比例 Percentage of polymorphism/ % |
|---|---|---|---|---|---|---|---|---|
| 1 | Cluster-10000.0 | TTAATCGATCTCCGGTGGCG | 217 | 60.00 | 55.00 | 3 | 3 | 100 |
| TCTACGTATGGGACCAGCCA | ||||||||
| 2 | Cluster-27140.0 | GACTGATGAGATGCCTCGGG | 209 | 59.97 | 60.00 | 3 | 3 | 100 |
| CCGGAGATCCAATGTACCCG | ||||||||
| 3 | Cluster-30924.104122 | CGGTTGTCTCCCCGGTTTAA | 200 | 59.97 | 57.50 | 1 | 1 | 100 |
| CCCAGTAGATTCTCGCGTCC | ||||||||
| 4 | Cluster-30924.109584 | GGACGCACCAATCTCCTTGA | 204 | 60.00 | 57.50 | 1 | 1 | 100 |
| GCCCAATCTACCGAGTCGAG | ||||||||
| 5 | Cluster-30924.114983 | AAGGAGACGTCTTGCGAAGG | 208 | 60.04 | 52.50 | 6 | 6 | 100 |
| ATGCCGTTCCGAGTTTCCAT | ||||||||
| 6 | Cluster-30924.120390 | CCTTGTGTTGCAAAGAGGGC | 211 | 59.97 | 55.00 | 1 | 1 | 100 |
| CTGGTGCGCATTTATCTGCC | ||||||||
| 7 | Cluster-30924.126255 | TGATGATGATGGCTGGGCTG | 211 | 60.11 | 52.50 | 8 | 8 | 100 |
| GCGCTAGGCTTTGCTTTTGT | ||||||||
| 8 | Cluster-30924.132245 | TCGGCATATGCTAGCTGGTG | 209 | 59.97 | 55.00 | 2 | 2 | 100 |
| GACCACGCTCCTTCAGACAA | ||||||||
| 9 | Cluster-30924.138446 | TCCGTTTGAACCACACCCAA | 213 | 59.96 | 50.00 | 5 | 5 | 100 |
| TAACAGCAACCTCGTTGGCT | ||||||||
| 10 | Cluster-30924.144894 | CGGAGCGGATGCAAGACTAT | 221 | 59.93 | 55.00 | 6 | 6 | 100 |
| TCCCTCAGGACCAAAAGTGC | ||||||||
| 11 | Cluster-30924.151200 | AAGGAGGCTGCAAGAGTGAC | 221 | 59.96 | 57.50 | 6 | 6 | 100 |
| CCAGTGGGTGTCTCAGGTTC | ||||||||
| 12 | Cluster-30924.157883 | CATTCGACCCGCTCTCTCTC | 206 | 59.97 | 60.00 | 2 | 2 | 100 |
| CACCCGACAGTATACGTCCG | ||||||||
| 13 | Cluster-30924.164312 | GGAGACTGAGGGGATGAGGT | 219 | 60.03 | 57.50 | 4 | 4 | 100 |
| AGAAATCGGACCCGGGTTTC | ||||||||
| 14 | Cluster-30924.171259 | TGTGAACCCAAGCTCCGTAC | 228 | 59.97 | 55.00 | 3 | 3 | 100 |
| GCCGTCTTCATCACATTCGC | ||||||||
| 15 | Cluster-30924.22191 | TGGCTATCATCCCCTGTCCA | 207 | 60.03 | 55.00 | 1 | 1 | 100 |
| GGGGATCAAGAAACGCCTGA | ||||||||
| 16 | Cluster-30924.28557 | TCTTCATGCGGCTTCCTCTG | 229 | 60.07 | 55.00 | 7 | 7 | 100 |
| AGCAAAGCTCCCATCAGACC | ||||||||
| 17 | Cluster-30924.35340 | AGAGAGGCTATTGGCGCATC | 218 | 59.97 | 55.00 | 6 | 6 | 100 |
| TCGGACAAGACACGGTGAAG | ||||||||
| 18 | Cluster-30924.41968 | CGCAGTTGGTTGTCACACAG | 203 | 59.97 | 55.00 | 3 | 3 | 100 |
| CGTCTCACTCGGTGTTCCAA | ||||||||
| 19 | Cluster-30924.48364 | GAAGGGTGGAGTCGACAAGG | 206 | 59.97 | 60.00 | 1 | 1 | 100 |
| GGTGGCTCTAATCGGTGGAG | ||||||||
| 20 | Cluster-30924.54426 | CTGCTTCTCCTCTTGCACCA | 257 | 59.97 | 55.00 | 3 | 3 | 100 |
| TGTCGGAGGAGCTGAAACAC | ||||||||
| 21 | Cluster-30924.60140 | AGGTGGGGATAAGCACAAGC | 203 | 60.04 | 57.50 | 12 | 12 | 100 |
| GTTCTCCACTGCCTCTGTCC | ||||||||
| 22 | Cluster-30924.65654 | GCCATCTCCGACTTCCCAAA | 224 | 60.04 | 55.00 | 2 | 2 | 100 |
| GTCCAGTTCTCGCCATTCCA | ||||||||
| 23 | Cluster-30924.71367 | GCTGTCGGTGGTGTTCAAAC | 245 | 59.97 | 55.00 | 4 | 4 | 100 |
| TAACAGGGACCGGCAAAGAC | ||||||||
| 24 | Cluster-30924.76636 | AGAGATGGCTGTGTTGGTGG | 203 | 60.00 | 55.00 | 13 | 13 | 100 |
| ATGAGCGTCTTCCTCCTCCT | ||||||||
| 25 | Cluster-30924.82553 | ATTCGAGTTGGTGCCTGAGG | 241 | 60.04 | 55.00 | 2 | 2 | 100 |
| AACGGAAAGCTCGAGGTCTG | ||||||||
| 26 | Cluster-30924.87846 | GAGCAATCGGTTCCCTGGAA | 217 | 60.03 | 55.00 | 2 | 2 | 100 |
| TCATCTGGTACCTCGGAGCA | ||||||||
| 27 | Cluster-30924.93982 | CCAACTTGACGGTCGAAGGA | 218 | 60.00 | 55.00 | 1 | 1 | 100 |
| TCAGATAACTCGAGGGGGC | ||||||||
| 28 | Cluster-30924.99449 | GCTCTGCCTGTTTTGGAAGC | 217 | 60.00 | 55.00 | 6 | 6 | 100 |
| TGCTCTCTTCAACAGCCTGG | ||||||||
| 29 | Cluster-62597.0 | TGGACAAGGTGAAGTCTCCG | 212 | 59.57 | 55.00 | 6 | 6 | 100 |
| ATTCGGAGAGCGAGGTTGAC | ||||||||
| 30 | Cluster-9993.0 | GCGAGTCAGGCCTAAAGGTT | 228 | 60.04 | 55.00 | 6 | 6 | 100 |
| TCAATTTCCCTGGCGTCTCC |
| 引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
|---|---|---|---|---|---|
| Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
| Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
| Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
| Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
| Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
| Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
| Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
| Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
| Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
| Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
| Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
| Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
| Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
| Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
| Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
| Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
| Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
| Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
| Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
| Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
| Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
| Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
| Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
| Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
| 平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
| 标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
表5 二十四对SSR引物的遗传参数
Table 5 Genetic parameters of 24 pairs of primers for SSR
| 引物 Primer | 观测等位基因数 Na | 有效等位基因数 Ne | Nei’s期望杂合度 h | 多样性指数 I | 多态性信息含量 PIC |
|---|---|---|---|---|---|
| Cluster-30924.35340 | 6 | 1.167 4 | 0.140 3 | 0.265 4 | 0.438 1 |
| Cluster-30924.171259 | 3 | 1.408 7 | 0.277 3 | 0.443 3 | 0.698 6 |
| Cluster-30924.151200 | 6 | 1.665 4 | 0.365 3 | 0.536 1 | 0.866 8 |
| Cluster-30924.41968 | 3 | 1.701 0 | 0.377 6 | 0.551 1 | 0.689 3 |
| Cluster-30924.28557 | 7 | 1.328 8 | 0.239 2 | 0.397 8 | 0.616 9 |
| Cluster-30924.164312 | 4 | 1.856 3 | 0.455 1 | 0.646 0 | 0.737 0 |
| Cluster-30924.157883 | 2 | 1.336 0 | 0.224 1 | 0.363 7 | 0.235 6 |
| Cluster-9993.0 | 6 | 1.662 7 | 0.373 2 | 0.549 9 | 0.825 7 |
| Cluster-62597.0 | 6 | 1.220 0 | 0.136 7 | 0.234 0 | 0.459 9 |
| Cluster-30924.65654 | 2 | 1.456 3 | 0.265 6 | 0.407 9 | 0.312 4 |
| Cluster-30924.71367 | 4 | 1.338 1 | 0.218 4 | 0.348 8 | 0.572 3 |
| Cluster-30924.76636 | 6 | 1.761 2 | 0.428 9 | 0.619 4 | 0.858 5 |
| Cluster-30924.99449 | 3 | 1.698 9 | 0.411 4 | 0.601 7 | 0.497 6 |
| Cluster-30924.82553 | 2 | 1.423 5 | 0.255 4 | 0.397 3 | 0.289 0 |
| Cluster-30924.87846 | 2 | 1.020 3 | 0.019 9 | 0.056 2 | 0.038 4 |
| Cluster-30924.60140 | 6 | 1.742 9 | 0.422 9 | 0.613 1 | 0.639 7 |
| Cluster-10000.0 | 3 | 1.366 2 | 0.198 8 | 0.306 1 | 0.439 9 |
| Cluster-27140.0 | 3 | 1.796 7 | 0.442 2 | 0.633 9 | 0.575 0 |
| Cluster-30924.54426 | 3 | 1.577 0 | 0.346 9 | 0.525 7 | 0.592 2 |
| Cluster-30924.114983 | 6 | 1.181 4 | 0.111 0 | 0.190 9 | 0.310 7 |
| Cluster-30924.126255 | 5 | 1.618 5 | 0.370 8 | 0.554 1 | 0.914 7 |
| Cluster-30924.132245 | 2 | 1.197 9 | 0.160 5 | 0.292 7 | 0.404 7 |
| Cluster-30924.138446 | 5 | 1.529 6 | 0.322 4 | 0.489 9 | 0.875 8 |
| Cluster-30924.144894 | 6 | 1.505 7 | 0.322 9 | 0.498 8 | 0.769 0 |
| 平均值Mean | 4.208 3 | 1.481 7 | 0.287 0 | 0.438 5 | 0.569 1 |
| 标准差Standard deviation | 1.718 9 | 0.230 0 | 0.118 7 | 0.157 3 | 0.232 3 |
| [1] | 任延靖, 韩睿, 赵孟良. 芜菁实时荧光定量PCR内参基因筛选[J]. 青海农林科技, 2021(3): 1-6. |
| REN Y J, HAN R, ZHAO M L. Internal reference genes screening of turnip by real-time fluorescence quantiative PCR[J]. Science and Technology of Qinghai Agriculture and Forestry, 2021(3): 1-6. (in Chinese with English abstract) | |
| [2] | 李欢欢, 陈春丽, 海力茜·陶尔大洪. 芜菁中性多糖对D-半乳糖致衰老小鼠的抗氧化作用[J]. 食品科技, 2021, 46(5): 168-173. |
| LI H H, CHEN C L, HAILIQIAN T D. Antioxidant effect of turnip neutral polysaccharide on D-galactose-induced aging mice[J]. Food Science and Technology, 2021, 46(5): 168-173. (in Chinese with English abstract) | |
| [3] | 张丽静, 付劢, 张文会, 等. 芜菁膏超声提取工艺优化及其抗氧化活性研究[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 111-119. |
| ZHANG L J, FU M, ZHANG W H, et al. Optimization of ultrasonic extraction technology of Brassica radix and its antioxidant activity[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(10): 111-119. (in Chinese with English abstract) | |
| [4] | 刘建兵, 林风, 林军, 等. 芜菁的降血脂活性评价及作用机制探讨[J]. 海南医学院学报, 2022, 28(3):171-180. |
| LIU J B, LIN F, LIN J, et al. Evaluation of hypolipidemic activity of Brassica rapa and its mechanism analysis[J]. Journal of Hainan Medical University, 2022, 28(3):171-180. (in Chinese with English abstract) | |
| [5] | DEJANOVIC G M, ASLLANAJ E, GAMBA M, et al. Phytochemical characterization of turnip greens (Brassica rapa ssp. rapa): a systematic review[J]. PLoS One, 2021, 16(2): e0247032. |
| [6] | 乔舒婷, 董文其, 胡齐赞, 等. 基于丝瓜全基因组序列SSR分子标记开发[J/OL]. 分子植物育种: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. |
| QIAO S T, DONG W Q, HU Q Z, et al. Development of SSR molecular markers based on whole genome sequences of sponge gourd[J/OL]. Molecular Plant Breeding: 1-18[2021-10-13].http://kns.cnki.net/kcms/detail/46.1068.S.20210414.0946.004.html. (in Chinese with English abstract) | |
| [7] | 刘美娟, 郑司浩, 赵莎, 等. 不同产区黄芩SSR分子标记鉴别研究[J]. 中国现代中药, 2021, 23(11):1876-1882. |
| LIU M J, ZHENG S H, ZHAO S, et al, Research on identification of SSR molecular markers about Scutellaria baicalensis in different producing areas[J]. Modern Chinese Medicine, 2021, 23(11):1876-1882. (in Chinese with English abstract) | |
| [8] | 李桂花, 陈汉才, 张艳, 等. 小白菜种质遗传多样性与亲缘关系的SRAP和SSR分析[J]. 广东农业科学, 2017, 44(5): 37-45. |
| LI G H, CHEN H C, ZHANG Y, et al. Genetic diversity and phylogenetic relationships analysis of Chinese cabbage germplasm resources by SRAP and SSR[J]. Guangdong Agricultural Sciences, 2017, 44(5): 37-45. (in Chinese with English abstract) | |
| [9] | 徐营莉, 华德平, 张红, 等. 白菜类蔬菜种子纯度SSR分子标记鉴定[J]. 分子植物育种, 2020, 18(1): 187-192. |
| XU Y L, HUA D P, ZHANG H, et al. Identification of SSR molecular markers for purity of Chinese cabbage seeds[J]. Molecular Plant Breeding, 2020, 18(1): 187-192. (in Chinese with English abstract) | |
| [10] | 何晓丽, 杨丹青, 杜志杰, 等. 不结球白菜形态性状及SSR遗传多样性关联分析[J]. 分子植物育种, 2021, 19(6): 1919-1927. |
| HE X L, YANG D Q, DU Z J, et al. Association analysis of morphological traits and SSR genetic diversity in non-heading Chinese cabbage[J]. Molecular Plant Breeding, 2021, 19(6): 1919-1927. (in Chinese with English abstract) | |
| [11] | 李永平, 张双照, 薛珠政, 等. 利用芥菜转录组信息挖掘SSR标记及用于种质分析[J]. 福建农业学报, 2020, 35(2): 169-177. |
| LI Y P, ZHANG S Z, XUE Z Z, et al. Using SSR markers from Brassica juncea transcriptome for germplasm analysis[J]. Fujian Journal of Agricultural Sciences, 2020, 35(2): 169-177. (in Chinese with English abstract) | |
| [12] | 颜新林, 管中荣, 温雯, 等. 基于SSR标记的芥菜品种鉴定技术体系建立及应用[J]. 植物遗传资源学报, 2021, 22(3): 758-770. |
| YAN X L, GUAN Z R, WEN W, et al. Establishment and application of mustard variety identification system based on SSR markers(Brassica juncea L.)[J]. Journal of Plant Genetic Resources, 2021, 22(3): 758-770. (in Chinese with English abstract) | |
| [13] | 胡齐赞, 乔舒婷, 董文其, 等. 浙江地方芥菜种质资源表型鉴定及遗传多样性分析[J/OL]. 分子植物育种:1-20[2021-09-10]. http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. |
| HU Q Z, QIAO S T, DONG W Q, et al. Phenotype identification and genetic diversity analysis of mustard local germplasm resources in Zhejiang[J/OL]. Molecular Plant Breeding: 1-20[2021-09-10].http://kns.cnki.net/kcms/detail/46.1068.S.20210331.1339.011.html. (in Chinese with English abstract) | |
| [14] | ZHAO M, ZHONG Q, TIAN M, et al. Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber (Helianthus tuberosus L.)[J]. Industrial Crops & Products, 2020, 151, 112455. |
| [15] | POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter, 1997, 15(1): 8-15. |
| [16] | 栾生, 孔杰, 王清印, 等. 日本囊对虾(Marsupenaeus japonicus)基因组微卫星特征分析[J]. 自然科学进展, 2007, 17(6): 731-740. |
| LUAN S, KONG J, WANG Q Y, et al. Analysis of mirosatellites in the genome of Kuruma prawn Marsupenaeus japonicus[J]. Progress in Natural Science, 2007, 17(6): 731-740. (in Chinese) | |
| [17] | ALI M E, WALIULLAH S. A Core35S promoter of cauliflower mosaic virus drives more efficient replication of turnip crinkle virus[J]. Plants, 2021, 10(8): 1700. |
| [18] | 原静云, 李小军, 任翠翠, 等. 基于SSR标记的49个大白菜自交系遗传多样性分析[J]. 河南农业科学, 2016, 45(11): 92-95. |
| YUAN J Y, LI X J, REN C C, et al. Genetic diversity analysis of forty-nine Chinese cabbage varieties using SSR markers[J]. Journal of Henan Agricultural Sciences, 2016, 45(11): 92-95. (in Chinese with English abstract) | |
| [19] | 李菊, 杨亮, 苗明军, 等. 大蒜农艺性状与SSR遗传多样性关联分析[J]. 分子植物育种, 2022, 20(23):7857-7867. |
| LI J, YANG L, MIAO M J, et al. Association analysis of agronomic traits and SSR genetic diversity in garlic[J]. Molecular Plant Breeding, 2022, 20(23):7857-7867. (in Chinese with English abstract) | |
| [20] | 赵湘, 于拴仓, 薛林宝, 等. 利用SSR和InDel标记构建白菜×芜菁分子遗传图谱[J]. 西北农业学报, 2011, 20(12): 111-115. |
| ZHAO X, YU S C, XUE L B, et al. Construction of a genetic linkage map in Chinese cabbage × turnip based on SSR and InDel markers[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(12): 111-115. (in Chinese with English abstract) | |
| [21] | 陈春艳, 马杰, 屈雯, 等. 基于转录组序列的胡萝卜EST-SSR标记开发及遗传多样性分析[J/OL]. 分子植物育种: 1-12[2021-10-21]. http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. |
| CHENG C Y, MA J, QU W, et al. Development of EST-SSR markers based on transcriptome sequencing and genetic diversity analysis of carrot[J/OL]. Molecular Plant Breeding: 1-12[2021-10-21].http://kns.cnki.net/kcms/detail/46.1068.S.20210318.1142.016.html. (in Chinese with English abstract) | |
| [22] | 张春红, 黄正金, 樊苏帆, 等. 不同栽培类型蓝莓遗传多样性的SSR分析[J]. 中国南方果树, 2021, 50(2): 154-160. |
| ZHANG C H, HUANG Z J, FAN S F, et al. SSR analysis of the genetic diversity of blueberry in different cultivated types[J]. South China Fruits, 2021, 50(2): 154-160. (in Chinese) | |
| [23] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
| LIU X Y, TIAN J. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1615-1625. (in Chinese with English abstract) | |
| [24] | 杨亮, 李菊, 李志, 等. 基于SSR分子标记的番茄遗传多样性分析[J]. 分子植物育种, 2022, 20(22):7511-7521. |
| YANG L, LI J, LI Z, et al. Genetic diversity analysis of tomato based on SSR molecular markers[J]. Molecular Plant Breeding, 2022, 20(22):7511-7521. (in Chinese with English abstract) | |
| [25] | 李延龙, 张华敏, 崔蕴刚, 等. 韭菜全长转录组SSR信息分析及分子标记开发[J]. 园艺学报, 2020, 47(4): 759-768. |
| LI Y L, ZHANG H M, CUI Y G, et al. Analysis on SSR information in full-length transcriptome and development of molecular markers in Allium tuberosum[J]. Acta Horticulturae Sinica, 2020, 47(4): 759-768. (in Chinese with English abstract) |
| [1] | 洪霞, 卢基来, 漆慧娟, 陈孝赏. 姜种质资源遗传多样性分析与核心种质资源库的构建[J]. 浙江农业学报, 2025, 37(6): 1233-1243. |
| [2] | 王一镝, 汪精磊, 胡天华, 徐云敏, 包崇来. 十字花科蔬菜抗根肿病分子标记开发及其在育种上的应用[J]. 浙江农业学报, 2025, 37(6): 1272-1284. |
| [3] | 岳丽, 庄红梅, 祖力皮牙·买买提, 王佳敏, 毛红艳, 张英仙, 尼格尔热依·亚迪卡尔, 于明. 基于主成分分析与聚类分析的芜菁肉质根质地品质综合评价[J]. 浙江农业学报, 2025, 37(5): 1057-1071. |
| [4] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [5] | 陈凤, 陈虹, 陈兵权, 宝春杰, 周昊亮, 赵鑫, 郭来珍. 核桃无融合生殖核仁内源激素含量变化与基因表达分析[J]. 浙江农业学报, 2025, 37(2): 381-393. |
| [6] | 秦斗文, 刘伟强, 田吉婷, 巨秀婷. 伊犁郁金香cpDNA-PCR体系构建与遗传多样性分析[J]. 浙江农业学报, 2025, 37(1): 78-89. |
| [7] | 张元元, 冯举伶, 肖婧凤, 关宇, 龙楚儿, 姚立蓉, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 周喜荣, 刘梅金, 汪军成. 青稞遗传多样性及其农艺性状与SSR标记的关联分析[J]. 浙江农业学报, 2024, 36(9): 1977-1989. |
| [8] | 董莉莉, 徐志浩, 严灿龙, 范小平, 金泽兰, 王忠华. 基于表型与分子标记对浙贝母不同育种群体的分子鉴定与亲缘关系研究[J]. 浙江农业学报, 2024, 36(8): 1719-1730. |
| [9] | 黄辉, 储忝江, 谢楠, 刘凯. 基于线粒体COI序列片段研究华鳈不同地理群体及其他鳈属鱼类的遗传多样性[J]. 浙江农业学报, 2024, 36(8): 1779-1788. |
| [10] | 马黎, 兰艺, 谢冰心, 周春露, 罗舒元, 许文坤, 董新星, 严达伟. 杜撒×大长撒VRTN基因多态及其与生产性状的关联研究[J]. 浙江农业学报, 2024, 36(7): 1502-1510. |
| [11] | 汪宝根, 陈小央, 吴健, 李潇, 汪颖, 王尖, 吴晓花, 鲁忠富, 孙玉燕, 董文其, 李国景, 吴新义. 浙江豇豆地方品种的遗传多样性[J]. 浙江农业学报, 2024, 36(7): 1569-1582. |
| [12] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
| [13] | 李俊成, 党芸芝, 孙清明. 高温胁迫下火龙果转录组及热激蛋白响应分析[J]. 浙江农业学报, 2024, 36(5): 1067-1075. |
| [14] | 刘慧春, 许雯婷, 周江华, 张加强, 史小华, 朱开元. 基于牡丹涝害胁迫的转录组分析及SSR引物开发[J]. 浙江农业学报, 2024, 36(3): 544-558. |
| [15] | 张婷, 王雪艳, 郭勤卫, 李朝森, 刘慧琴, 项小敏, 韦静, 赵东风, 万红建. 基于农艺性状的辣椒种质资源遗传多样性[J]. 浙江农业学报, 2024, 36(2): 325-333. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||