[1] |
FRANTA B. Early oil industry disinformation on global warming[J]. Environmental Politics, 2021, 30(4): 663-668.
|
[2] |
JHA U C, NAYYAR H, JHA R, et al. Heat stress and cowpea: genetics, breeding and modern tools for improving genetic gains[J]. Plant Physiology Reports, 2020, 25(4): 645-653.
|
[3] |
DWIVEDI S L, ORTIZ R. Raising productivity of cereal crops in dry and heat stress environments remains a breeding challenge[J]. CABI Reviews, 2021: 16.
|
[4] |
BATCHO A A, SARWAR M B, RASHID B, et al. Heat shock protein gene identified from Agave sisalana(AsHSP70) confers heat stress tolerance in transgenic cotton (Gossypium hirsutum)[J]. Theoretical and Experimental Plant Physiology, 2021, 33(2): 141-156.
|
[5] |
RAHMAN M A, WOO J H, SONG Y, et al. Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass[J]. Life, 2022, 12(9): 1426.
|
[6] |
SONG P, JIA Q R, XIAO X K, et al. HSP70-3 interacts with phospholipase dδ and participates in heat stress defense[J]. Plant Physiology, 2021, 185(3): 1148-1165.
|
[7] |
SAINZ M, DÍAZ P, MONZA J, et al. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus[J]. Physiologia Plantarum, 2010, 140(1): 46-56.
|
[8] |
RAMAKRISHNA G, KAUR P, SINGH A, et al. Comparative transcriptome analyses revealed different heat stress responses in pigeonpea (Cajanus cajan) and its crop wild relatives[J]. Plant Cell Reports, 2021, 40(5): 881-898.
|
[9] |
OUYANG K X, LI J C, HUANG H, et al. A simple method for RNA isolation from various tissues of the tree Neolamarckia cadamba[J]. Biotechnology, Biotechnological Equipment, 2014, 28(6): 1008-1013.
|
[10] |
LI J C, WANG Y L, DAI H F, et al. Global transcriptome dissection of pollen-pistil interactions induced self-incompatibility in dragon fruit (Selenicereus spp.)[J]. PeerJ, 2022, 10: e14165.
|
[11] |
HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643-9684.
|
[12] |
MAHDAVI MASHAKI K, GARG V, NASROLLAHNEZHAD GHOMI A A, et al. RNA-Seq analysis revealed genes associated with drought stress response in Kabuli chickpea (Cicer arietinum L.)[J]. PLoS One, 2018, 13(6): e0199774.
|
[13] |
SHUMAYLA, SHARMA S, TANEJA M, et al. Survey of high throughput RNA-seq data reveals potential roles for lncRNAs during development and stress response in bread wheat[J]. Frontiers in Plant Science, 2017, 8: 1019.
|
[14] |
WAN X L, ZHOU Q, WANG Y Y, et al. Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-seq[J]. Frontiers in Plant Science, 2015, 6: 519.
|
[15] |
LOHANI N, SINGH M B, BHALLA P L. RNA-seq highlights molecular events associated with impaired pollen-pistil interactions following short-term heat stress in Brassica napus[J]. Frontiers in Plant Science, 2020, 11: 622748.
|
[16] |
YE B B, SHANG G D, PAN Y, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration[J]. The Plant Cell, 2020, 32(1): 226-241.
|
[17] |
HE J, LIU Y Q, YUAN D Y, et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 271-277.
|
[18] |
LIU X H, LYU Y S, YANG W P, et al. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnology Journal, 2020, 18(5): 1317-1329.
|
[19] |
XIE Z L, NOLAN T M, JIANG H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 228.
|
[20] |
王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展[J]. 西北植物学报, 2020, 40(10): 1792-1806.
|
|
WANG B, CHEN M D, LIN L, et al. Signal pathways and related transcription factors of drought stress in plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792-1806. (in Chinese with English abstract)
|
[21] |
董勤勇, 张圆圆, 魏景芳, 等. MYB转录因子在水稻抗逆基因工程中的研究进展[J]. 江苏农业学报, 2021, 37(2): 525-530.
|
|
DONG Q Y, ZHANG Y Y, WEI J F, et al. Research progress of MYB transcription factor in stress-resistant genetic engineering of rice[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(2): 525-530. (in Chinese with English abstract)
|
[22] |
JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101.
|
[23] |
BANERJEE A, ROYCHOUDHURY A. Small heat shock proteins[M]//Plant Metabolites and Regulation Under Environmental Stress. Amsterdam: Elsevier, 2018: 367-376.
|
[24] |
QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochemical and Biophysical Research Communications, 2013, 432(2): 203-207.
|