浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 10-22.DOI: 10.3969/j.issn.1004-1524.2023.01.02
尤翠翠1(), 贺一哲1, 徐鹏1, 黄亚茹1, 王辉1, 何海兵1, 柯健1, 武立权1,2,*(
)
收稿日期:
2022-03-28
出版日期:
2023-01-25
发布日期:
2023-02-21
通讯作者:
*武立权,E-mail: wlq_001@163.com
作者简介:
尤翠翠(1986—),女,安徽淮北人,博士,讲师,主要从事作物栽培与生理研究。E-mail:youcuicui@126.com
基金资助:
YOU Cuicui1(), HE Yizhe1, XU Peng1, HUANG Yaru1, WANG Hui1, HE Haibing1, KE Jian1, WU Liquan1,2,*(
)
Received:
2022-03-28
Online:
2023-01-25
Published:
2023-02-21
摘要:
全球气候变暖背景下,高温天气频发,高温热害已成为严重影响水稻高产稳产的主要问题之一。文章概述了高温胁迫对水稻生长发育、颖花育性、活性氧积累与膜损伤、光合作用、内源植物激素、产量和品质等的影响,提出水稻高温热害的防御对策,包括选育耐高温品种、合理调整播期、加强稻田水肥管理、合理施用植物生长调节剂等,并对今后水稻高温热害的研究方向作了展望,以期为开展水稻抗热栽培和耐高温水稻品种的选育提供参考。
中图分类号:
尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22.
YOU Cuicui, HE Yizhe, XU Peng, HUANG Yaru, WANG Hui, HE Haibing, KE Jian, WU Liquan. Injury effect of high temperature stress on growth and development of rice and its defense countermeasures[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 10-22.
[1] | IPCC. Climate change 2013:the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge and New York: Cambridge University Press, 2014: 659-740. |
[2] |
PENG S B, HUANG J L, SHEEHY J E, et al. Rice yields decline with higher night temperature from global warming[J]. PNAS, 2004, 101(27): 9971-9975.
DOI PMID |
[3] | 朱德峰, 张玉屏, 陈惠哲, 等. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学, 2015, 48(17):3404-3414. |
ZHU D F, ZHANG Y P, CHEN H Z, et al. Innovation and practice of high-yield rice cultivation technology in china[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[4] | 张佩, 于庚康, 徐敏, 等. 2013年持续高温对江苏省水稻生产的影响[J]. 江苏农业科学, 2019, 47(5): 225-229. |
ZHANG P, YU G K, XU M, et al. Impact of continuous high temperature on paddy rice production in 2013 in Jiangsu Province[J]. Jiangsu Agricultural Sciences, 2019, 47(5): 225-229. (in Chinese) | |
[5] | 任义方, 赵艳霞, 张旭晖, 等. 江苏水稻高温热害气象指数保险风险综合区划[J]. 中国农业气象, 2019, 40(6): 391-401. |
REN Y F, ZHAO Y X, ZHANG X H, et al. Comprehensive risk regionalization of meteorological index insurance for high temperature heat damage of rice in Jiangsu Province[J]. Chinese Journal of Agrometeorology, 2019, 40(6): 391-401. (in Chinese with English abstract) | |
[6] | 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2012, 26(4): 393-400. |
DUAN H, YANG J C. Research advances in the effect of high temperature on rice and its mechanism[J]. Chinese Journal of Rice Science, 2012, 26(4): 393-400. (in Chinese with English abstract)
DOI |
|
[7] |
王啟梅, 李岩, 刘明, 等. 营养生长期高温对水稻生长及干物质积累的影响[J]. 中国稻米, 2015, 21(4): 33-37.
DOI |
WANG Q M, LI Y, LIU M, et al. Effects of high temperature at vegetative stage on rice growth and dry weight[J]. China Rice, 2015, 21(4): 33-37. (in Chinese with English abstract) | |
[8] |
LAZA M R C, SAKAI H, CHENG W G, et al. Differential response of rice plants to high night temperatures imposed at varying developmental phases[J]. Agricultural and Forest Meteorology, 2015, 209/210: 69-77.
DOI URL |
[9] |
LIU J P, ZHANG C C, WEI C C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice[J]. Plant Physiology, 2015, 170(1): 429-443.
DOI URL |
[10] |
WEI H, LIU J P, WANG Y, et al. A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 ℃ high temperature at seedling stage[J]. Journal of Heredity, 2012, 104(2): 287-294.
DOI URL |
[11] |
SITA K, SEHGAL A, HANUMANTHARAO B, et al. Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance[J]. Frontiers in Plant Science, 2017, 8: 1658.
DOI PMID |
[12] | WASSMANN R, JAGADISH S V K, HEUER S, et al. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies[J]. Advances in Agronomy, 2009, 101: 59-122. |
[13] | KRISHNAN P, RAMAKRISHNAN B, REDDY K R, et al. High-temperature effects on rice growth, yield, and grain quality[M]// Advances in Agronomy. Amsterdam: Elsevier, 2011: 87-206. |
[14] |
AYENEH A, VAN GINKEL M, REYNOLDS M P, et al. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress[J]. Field Crops Research, 2002, 79(2/3): 173-184.
DOI URL |
[15] |
YAN C, DING Y F, WANG Q S, et al. Effect of panicle fertilizer application rate on morphological, ecological characteristics, and organ temperature of rice[J]. Acta Agronomica Sinica, 2009, 34(12): 2176-2183.
DOI URL |
[16] | CAO Y Y, DUAN H, YANG L N, et al. Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12): 2134-2142. |
[17] |
PRASAD P V V, BOOTE K J, ALLEN L H J, et al. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J]. Field Crops Research, 2006, 95(2/3): 398-411.
DOI URL |
[18] |
ARSHAD M S, FAROOQ M, ASCH F, et al. Thermal stress impacts reproductive development and grain yield in rice[J]. Plant Physiology and Biochemistry, 2017, 115: 57-72.
DOI PMID |
[19] |
FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18(1): 245.
DOI PMID |
[20] |
YI J, MOON S, LEE Y S, et al. Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration[J]. Plant Physiology, 2015, 170(3): 1611-1623.
DOI URL |
[21] | 邓运, 田小海, 吴晨阳, 等. 热害胁迫条件下水稻花药发育异常的早期特征[J]. 中国生态农业学报, 2010, 18(2): 377-383. |
DENG Y, TIAN X H, WU C Y, et al. Early signs of heat stress-induced abnormal development of anther in rice[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2): 377-383. (in Chinese with English abstract)
DOI URL |
|
[22] | 刘春溪, 孙备, 王国骄, 等. 开放式增温对粳稻光合作用和叶绿素荧光参数的影响[J]. 生态环境学报, 2018, 27(9): 1665-1672. |
LIU C X, SUN B, WANG G J, et al. Effects of open temperature increasing on photosynthesis and chlorophyll fluorescence parameters of Japonica rice[J]. Ecology and Environmental Sciences, 2018, 27(9): 1665-1672. (in Chinese with English abstract) | |
[23] |
HIROSE T, ZHANG Z J, MIYAO A, et al. Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected[J]. Journal of Experimental Botany, 2010, 61(13): 3639-3646.
DOI PMID |
[24] |
HU Q Q, WANG W C, LU Q F, et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage[J]. BMC Plant Biology, 2021, 21: 428.
DOI URL |
[25] |
CARRIZO GARCÍA C, NEPI M, PACINI E. It is a matter of timing: asynchrony during pollen development and its consequences on pollen performance in angiosperms: a review[J]. Protoplasma, 2017, 254(1): 57-73.
DOI URL |
[26] | 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻花粉粒性状及花药显微结构的影响[J]. 生态学报, 2008, 28(3): 1089-1097. |
ZHANG G L, CHEN L Y, ZHANG S T, et al. Effects of high temperature stress on pollen characters and anther microstructure of rice[J]. Acta Ecologica Sinica, 2008, 28(3): 1089-1097. (in Chinese with English abstract) | |
[27] |
RANG Z W, JAGADISH S V K, ZHOU Q M, et al. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice[J]. Environmental and Experimental Botany, 2011, 70(1): 58-65.
DOI URL |
[28] |
SATAKE T, YOSHIDA S. High temperature-induced sterility in indica rices at flowering[J]. Japanese Journal of Crop Science, 1978, 47(1): 6-17.
DOI URL |
[29] |
WANG Y L, WANG L, ZHOU J X, et al. Research progress on heat stress of rice at flowering stage[J]. Rice Science, 2019, 26(1): 1-10.
DOI |
[30] | 张桂莲, 刘思言, 张顺堂, 等. 抽穗开花期不同高温处理对水稻开花习性和结实率的影响[J]. 中国农学通报, 2012, 28(30): 116-120. |
ZHANG G L, LIU S Y, ZHANG S T, et al. Effects of different high temperature treatment on flowering characteristics and seed setting of rice during heading and flowering period[J]. Chinese Agricultural Science Bulletin, 2012, 28(30): 116-120. (in Chinese with English abstract) | |
[31] |
JAGADISH S V K, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2009, 61(1): 143-156.
DOI URL |
[32] | KARUPPANAPANDIAN T, MOON J C, KIM C, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms[J]. Australian Journal of Crop Science, 2011, 5(6): 709-725. |
[33] |
TANG R S, ZHENG J C, JIN Z Q, et al. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.)[J]. Plant Growth Regulation, 2008, 54(1): 37-43.
DOI URL |
[34] |
MATSUI T, OMASA K, HORIE T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.)[J]. Plant Production Science, 2000, 3(4): 430-434.
DOI URL |
[35] |
DUAN Q H, KITA D, JOHNSON E A, et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis[J]. Nature Communications, 2014, 5: 3129.
DOI URL |
[36] | SHI W J, LI X, SCHMIDT R C, et al. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice[J]. Plant, Cell & Environment, 2018, 41(6): 1287-1297. |
[37] |
SHIN S B, GOLOVKIN M, REDDY A S N. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases[J]. Scientific Reports, 2014, 4: 5263.
DOI URL |
[38] |
MONTEIRO D, LIU Q L, LISBOA S, et al. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+] and membrane secretion[J]. Journal of Experimental Botany, 2005, 56(416): 1665-1674.
DOI URL |
[39] |
DJANAGUIRAMAN M, PRASAD P V V, SCHAPAUGH W T. High day-or nighttime temperature alters leaf assimilation, reproductive success, and phosphatidic acid of pollen grain in soybean[Glycine max(L.) merr.][J]. Crop Science, 2013, 53(4): 1594-1604.
DOI URL |
[40] | SANTIAGO J P, SHARKEY T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J]. Plant, Cell & Environment, 2019, 42(10): 2759-2775. |
[41] | 李健陵, 张晓艳, 杜尧东, 等. 高温对抽穗开花期至灌浆结实期水稻源库特性的影响[J]. 中国农业气象, 2013, 34(1): 23-29. |
LI J L, ZHANG X Y, DU Y D, et al. Effects of high temperature on rice source-sink characteristics during heading stage to grain filling stage[J]. Chinese Journal of Agrometeorology, 2013, 34(1): 23-29. (in Chinese with English abstract) | |
[42] |
SHI W J, YIN X Y, STRUIK P C, et al. High day-and night-time temperatures affect grain growth dynamics in contrasting rice genotypes[J]. Journal of Experimental Botany, 2017, 68(18): 5233-5245.
DOI URL |
[43] | 韩展誉, 吴春艳, 许艳秋, 等. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响[J]. 中国农业科学, 2021, 54(7): 1439-1454. |
HAN Z Y, WU C Y, XU Y Q, et al. Effects of high-temperature at filling stage on grain storage protein accumulation and its biosynthesis metabolism for rice plants under different nitrogen application levels[J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454. (in Chinese with English abstract) | |
[44] | 徐恒, 郭小雨, 朱英. 灌浆期高温影响水稻胚乳储藏物质代谢相关基因表达的研究[J]. 植物生理学报, 2013, 49(8): 793-802. |
XU H, GUO X Y, ZHU Y. Effect of high temperature on expression of genes involved in storage materials accumulation in rice endosperm[J]. Plant Physiology Journal, 2013, 49(8): 793-802. (in Chinese with English abstract) | |
[45] | 张桂莲, 廖斌, 武小金, 等. 高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响[J]. 植物生理学报, 2014, 50(12): 1840-1844. |
ZHANG G L, LIAO B, WU X J, et al. Effect of high temperature on activities of enzymes associated with starch synthesis and hormones contents in endosperm of rice[J]. Plant Physiology Journal, 2014, 50(12): 1840-1844. (in Chinese with English abstract) | |
[46] |
杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展[J]. 应用生态学报, 2020, 31(8): 2817-2830.
DOI |
YANG J, ZHANG Y Z, HE H H, et al. Current status and research advances of high-temperature hazards in rice[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2817-2830. (in Chinese with English abstract)
DOI |
|
[47] |
CHAKRABORTY A, BHATTACHARJEE S. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars[J]. Journal of Plant Physiology, 2015, 176: 65-77.
DOI PMID |
[48] |
BAHUGUNA R N, JHA J, PAL M, et al. Physiological and biochemical characterization of NERICA-L-44: a novel source of heat tolerance at the vegetative and reproductive stages in rice[J]. Physiologia Plantarum, 2015, 154(4): 543-559.
DOI URL |
[49] |
ZHAO Q, ZHOU L J, LIU J C, et al. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility[J]. Plant Cell Reports, 2018, 37(5): 741-757.
DOI PMID |
[50] |
ZHAO Q, ZHOU L J, LIU J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101.
DOI PMID |
[51] |
SURIYASAK C, HARANO K, TANAMACHI K, et al. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness[J]. Journal of Plant Physiology, 2017, 216: 52-57.
DOI URL |
[52] |
QIAO B, ZHANG Q, LIU D L, et al. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2[J]. Journal of Experimental Botany, 2015, 66(19): 5853-5866.
DOI PMID |
[53] |
SAILAJA B, SUBRAHMANYAM D, NEELAMRAJU S, et al. Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature[J]. Frontiers in Plant Science, 2015, 6: 1044.
DOI PMID |
[54] |
HIGASHI Y, SAITO K. Lipidomic studies of membrane glycerolipids in plant leaves under heat stress[J]. Progress in Lipid Research, 2019, 75: 100990.
DOI URL |
[55] | 吴思佳, 李仁英, 谢晓金, 等. 抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响[J]. 南方农业学报, 2021, 52(1): 20-27. |
WU S J, LI R Y, XIE X J, et al. Effects of high temperature on characteristics of photosynthesis and chlorophyll fluorescence and yield components of rice at heading stage[J]. Journal of Southern Agriculture, 2021, 52(1): 20-27. (in Chinese with English abstract) | |
[56] | 武立权, 尤翠翠, 柯建, 等. 高温对水稻黄叶突变体剑叶光合特性和叶绿体超微结构的影响[J]. 西北植物学报, 2012, 32(11): 2264-2269. |
WU L Q, YOU C C, KE J, et al. Response of high-temperature stress on photosynthetic characteristics and chloroplast ultrastructure of flag leaves in xantha rice mutant[J]. Acta Botanica Boreali-occidentalia Sinica, 2012, 32(11): 2264-2269. (in Chinese with English abstract) | |
[57] | 周伟辉, 薛大伟, 张国平. 高温胁迫下水稻叶片的蛋白响应及其基因型和生育期差异[J]. 作物学报, 2011, 37(5): 820-831. |
ZHOU W H, XUE D W, ZHANG G P. Protein response of rice leaves to high temperature stress and its difference of genotypes at different growth stage[J]. Acta Agronomica Sinica, 2011, 37(5): 820-831. (in Chinese with English abstract)
DOI URL |
|
[58] |
PERDOMO J A, CAPÓ-BAUÇÀ S, CARMO-SILVA E, et al. Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit[J]. Frontiers in Plant Science, 2017, 8: 490.
DOI PMID |
[59] | 李霞, 焦德茂, 戴传超. 转PEPC基因水稻对光氧化逆境的响应[J]. 作物学报, 2005, 31(4): 408-413. |
LI X, JIAO D M, DAI C C. The response to photooxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2005, 31(4): 408-413. (in Chinese with English abstract) | |
[60] | 杨卫丽, 黄福灯, 曹珍珍, 等. 高温胁迫对水稻光合PSⅡ系统伤害及其与叶绿体D1蛋白间关系[J]. 作物学报, 2013, 39(6): 1060-1068. |
YANG W L, HUANG F D, CAO Z Z, et al. Effects of high temperature stress on PSⅡ function and its relation to D1 protein in chloroplast thylakoid in rice flag leaves[J]. Acta Agronomica Sinica, 2013, 39(6): 1060-1068. (in Chinese with English abstract)
DOI URL |
|
[61] |
WU C, CUI K H, WANG W C, et al. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice[J]. Frontiers in Plant Science, 2017, 8: 371.
DOI PMID |
[62] | 刘晓龙, 季平, 杨洪涛, 等. 高温胁迫对水稻内源脱落酸含量及相关基因表达的影响[J/OL]. 分子植物育种, [2022-03-27]. https://kns.cnki.net/kcms/detail/46.1068.S.20211217.1436.006.html. |
LIU X L, JI P, YANG H T, et al. Effect of high temperature stress on endogenous abscisic acid content and expression levels of related genes in rice[J/OL]. Molecular Plant Breeding, [2022-03-27]. https://kns.cnki.net/kcms/detail/46.1068.S.20211217.1436.006.html. (in Chinese with English abstract) | |
[63] |
张玉屏, 王军可, 王亚梁, 等. 水稻淀粉合成对夜温变化的响应[J]. 中国水稻科学, 2020, 34(6): 525-538.
DOI |
ZHANG Y P, WANG J K, WANG Y L, et al. Response of rice starch synthesis to night temperature changes[J]. Chinese Journal of Rice Science, 2020, 34(6): 525-538. | |
[64] | 杜巧丽, 蒋君梅, 陈美晴, 等. 水稻热休克蛋白HSP70基因克隆、表达分析及原核表达[J]. 植物保护学报, 2021, 48(3): 620-629. |
DU Q L, JIANG J M, CHEN M Q, et al. Cloning, expression analysis and prokaryotic expression of heat shock protein HSP70 gene in rice[J]. Journal of Plant Protection, 2021, 48(3): 620-629. (in Chinese with English abstract) | |
[65] |
CHEN J, FEI K Q, ZHANG W Y, et al. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines[J]. The Crop Journal, 2021, 9(1): 109-119.
DOI URL |
[66] |
CHEN J, MIAO W Q, FEI K Q, et al. Jasmonates alleviate the harm of high-temperature stress during anthesis to stigma vitality of photothermosensitive genetic male sterile rice lines[J]. Frontiers in Plant Science, 2021, 12: 634959.
DOI URL |
[67] |
WANG L J, FAN L, LOESCHER W, et al. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves[J]. BMC Plant Biology, 2010, 10: 34.
DOI URL |
[68] |
沈泓, 姚栋萍, 吴俊, 等. 灌浆期不同时段高温对稻米淀粉理化特性的影响[J]. 中国水稻科学, 2022, 36(4): 377-387.
DOI |
SHEN H, YAO D P, WU J, et al. Effects of high temperature in various phases of grain filling on rice starch physicochemical propertieS[J]. Chinese Journal of Rice Science, 2022, 36(4): 377-387. (in Chinese with English abstract)
DOI |
|
[69] |
宋有金, 吴超, 李子煜, 等. 水稻产量对生殖生长阶段不同时期高温的响应差异[J]. 中国水稻科学, 2021, 35(2): 177-186.
DOI |
SONG Y J, WU C, LI Z Y, et al. Differential responses of grain yields to high temperature in different stages of reproductive growth in rice[J]. Chinese Journal of Rice Science, 2021, 35(2): 177-186. (in Chinese with English abstract)
DOI |
|
[70] |
王亚梁, 张玉屏, 朱德峰, 等. 水稻器官形态和干物质积累对穗分化不同时期高温的响应[J]. 中国水稻科学, 2016, 30(2): 161-169.
DOI |
WANG Y L, ZHANG Y P, ZHU D F, et al. Response of rice organ morphology and dry matter accumulation to high temperature at different panicle initiation stages[J]. Chinese Journal of Rice Science, 2016, 30(2): 161-169. (in Chinese with English abstract) | |
[71] |
兰旭, 顾正栋, 丁艳菲, 等. 花期高温胁迫对水稻颖花生理特性的影响[J]. 中国水稻科学, 2016, 30(6): 637-646.
DOI |
LAN X, GU Z D, DING Y F, et al. Effect of high temperature stress on physiological characteristics of spikelet of rice during flowering stage[J]. Chinese Journal of Rice Science, 2016, 30(6): 637-646. (in Chinese with English abstract)
DOI |
|
[72] | 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响[J]. 中国水稻科学, 2007, 21(4): 396-402. |
SHENG J, TAO H J, CHEN L G. Response of seed-setting and grain quality of rice to temperature at different time during grain filling period[J]. Chinese Journal of Rice Science, 2007, 21(4): 396-402. (in Chinese with English abstract) | |
[73] |
ARTURSSON V, FINLAY R D, JANSSON J K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth[J]. Environmental Microbiology, 2006, 8(1): 1-10.
DOI PMID |
[74] |
DOU Z, TANG S, CHEN W Z, et al. Effects of open-field warming during grain-filling stage on grain quality of two japonica rice cultivars in lower reaches of Yangtze River Delta[J]. Journal of Cereal Science, 2018, 81: 118-126.
DOI URL |
[75] |
MORITA S, YONEMARU J I, TAKANASHI J I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.)[J]. Annals of Botany, 2005, 95(4): 695-701.
DOI URL |
[76] | 张文倩, 王亚梁, 朱德峰, 等. 常规籼稻黄华占籽粒淀粉和蔗糖代谢相关酶活性对夜温升高的响应[J]. 生物技术进展, 2019, 9(3): 283-289. |
ZHANG W Q, WANG Y L, ZHU D F, et al. Response of grain starch and sucrose metabolism-related enzyme activities to night temperature rise in conventional indica rice Huanghuazhan[J]. Current Biotechnology, 2019, 9(3): 283-289. (in Chinese with English abstract) | |
[77] |
HAKATA M, KURODA M, MIYASHITA T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117.
DOI PMID |
[78] |
LI Y B, FAN C C, XING Y Z, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404.
DOI URL |
[79] | 景立权, 户少武, 穆海蓉, 等. 大气环境变化导致水稻品质总体变劣[J]. 中国农业科学, 2018, 51(13): 2462-2475. |
JING L Q, HU S W, MU H R, et al. Change of atmospheric environment leads to deterioration of rice quality[J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475. (in Chinese with English abstract) | |
[80] | 谢晓金, 李秉柏, 李映雪, 等. 抽穗期高温胁迫对水稻产量构成要素和品质的影响[J]. 中国农业气象, 2010, 31(3): 411-415. |
XIE X J, LI B B, LI Y X, et al. Effects of high temperature stress on yield components and grain quality during heading stage[J]. Chinese Journal of Agrometeorology, 2010, 31(3): 411-415. (in Chinese with English abstract) | |
[81] | 王军可, 王亚梁, 陈惠哲, 等. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12): 774-784. |
WANG J K, WANG Y L, CHEN H Z, et al. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling[J]. Chinese Journal of Agrometeorology, 2020, 41(12): 774-784. (in Chinese with English abstract) | |
[82] |
ZHANG C Q, ZHOU L H, ZHU Z B, et al. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057.
DOI URL |
[83] |
YAMAKAWA H, HAKATA M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and Cell Physiology, 2010, 51(5): 795-809.
DOI PMID |
[84] | 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系[J]. 生态学报, 2000, 20(4): 646-652. |
CHENG F M, DING Y S, ZHU B Y. The formation of amylose content in rice grain and its relation with field temperature[J]. Acta Ecologica Sinica, 2000, 20(4): 646-652. (in Chinese with English abstract) | |
[85] |
SIDDIK M A, ZHANG J, CHEN J, et al. Responses of indica rice yield and quality to extreme high and low temperatures during the reproductive period[J]. European Journal of Agronomy, 2019, 106: 30-38.
DOI URL |
[86] |
LIN C J, LI C Y, LIN S K, et al. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10545-10552.
DOI URL |
[87] | 段骅. 高温与干旱对水稻产量和品质的影响及其生理机制[D]. 扬州: 扬州大学, 2013. |
DUAN H. Effect of high temperature and soil drying on the yield quality and quantity of rice and its physiological mechanism[D]. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract) | |
[88] | 高焕晔, 王三根, 宗学凤, 等. 灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响[J]. 中国生态农业学报, 2012, 20(1): 40-47. |
GAO H Y, WANG S G, ZONG X F, et al. Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 40-47. (in Chinese with English abstract)
DOI URL |
|
[89] |
HUANG M, ZHANG H D, ZHAO C R, et al. Amino acid content in rice grains is affected by high temperature during the early grain-filling period[J]. Scientific Reports, 2019, 9: 2700.
DOI PMID |
[90] |
梁成刚, 陈利平, 汪燕, 等. 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响[J]. 中国水稻科学, 2010, 24(4): 398-402.
DOI |
LIANG C G, CHEN L P, WANG Y, et al. Effects of high temperature on key enzyme activities of nitrogen metabolism and protein content during rice grain filling[J]. Chinese Journal of Rice Science, 2010, 24(4): 398-402. (in Chinese with English abstract) | |
[91] |
LIU J C, ZHAO Q, ZHOU L J, et al. Influence of environmental temperature during grain filling period on granule size distribution of rice starch and its relation to gelatinization properties[J]. Journal of Cereal Science, 2017, 76: 42-55.
DOI URL |
[92] |
KOIKE S, YAMAGUCHI T, OHMORI S, et al. Cleistogamy decreases the effect of high temperature stress at flowering in rice[J]. Plant Production Science, 2015, 18(2): 111-117.
DOI URL |
[93] |
COAST O, ELLIS R H, MURDOCH A J, et al. High night temperature induces contrasting responses for spikelet fertility, spikelet tissue temperature, flowering characteristics and grain quality in rice[J]. Functional Plant Biology, 2015, 42(2): 149-161.
DOI PMID |
[94] | 张祖建, 王晴晴, 郎有忠, 等. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报, 2014, 40(2): 273-282. |
ZHANG Z J, WANG Q Q, LANG Y Z, et al. Effects of high temperature stress at heading stage on pollination and fertilization of different types of rice variety[J]. Acta Agronomica Sinica, 2014, 40(2): 273-282. (in Chinese with English abstract) | |
[95] |
CHEN J H, CHEN S T, HE N Y, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem Ⅱ increases photosynthetic efficiency and crop yield[J]. Nature Plants, 2020, 6(5): 570-580.
DOI URL |
[96] | 郭建茂, 吴越, 杨沈斌, 等. 典型高温年不同播期季稻产量差异及其原因分析[J]. 中国农业气象, 2017, 38(2): 121-130. |
GUO J M, WU Y, YANG S B, et al. Yield differences and its causes for one season rice under different sowing dates in typical high temperature year[J]. Chinese Journal of Agrometeorology, 2017, 38(2): 121-130. (in Chinese with English abstract) | |
[97] |
王庆志, 宋晓华, 刘秋员, 等. 豫南稻区水稻播期演变及其优化途径[J]. 中国稻米, 2018, 24(5): 73-77.
DOI |
WANG Q Z, SONG X H, LIU Q Y, et al. Evolution of rice sowing date and its optimization in south Henan Province[J]. China Rice, 2018, 24(5): 73-77. (in Chinese with English abstract)
DOI |
|
[98] | 杨军, 陈小荣, 朱昌兰, 等. 氮肥和孕穗后期高温对两个早稻品种产量和生理特性的影响[J]. 中国水稻科学, 2014, 28(5): 523-533. |
YANG J, CHEN X R, ZHU C L, et al. Effects of nitrogen level and high temperature at late booting stage on yield and physiological characteristics of two early rice cultivars[J]. Chinese Journal of Rice Science, 2014, 28(5): 523-533. (in Chinese with English abstract)
DOI |
|
[99] | 缪乃耀, 唐设, 陈文珠, 等. 氮素粒肥缓解水稻灌浆期高温胁迫的生理机制研究[J]. 南京农业大学学报, 2017, 40(1): 1-10. |
MIAO N Y, TANG S, CHEN W Z, et al. Research of nitrogen granular fertilizer alleviating high temperature stress at rice grain filling stage and its physiological mechanism[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 1-10. (in Chinese with English abstract) | |
[100] | 段骅, 傅亮, 剧成欣, 等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J]. 中国水稻科学, 2013, 27(6): 591-602. |
DUAN H, FU L, JU C X, et al. Effects of application of nitrogen as panicle-promoting fertilizer on seed setting and grain quality of rice under high temperature stress[J]. Chinese Journal of Rice Science, 2013, 27(6): 591-602. (in Chinese with English abstract) | |
[101] | 赵决建. 氮磷钾施用量及比例对水稻抗高温热害能力的影响[J]. 土壤肥料, 2005(5): 13-16. |
ZHAO J J. Effect of application quantity of N, P and K on resistant capability of rice against hot disaster of high temperature[J]. Soils and Fertilizers, 2005(5): 13-16. (in Chinese with English abstract) | |
[102] |
CHIBA M, TERAO T, WATANABE H, et al. Improvement in rice grain quality by deep-flood irrigation and its underlying mechanisms[J]. Japan Agricultural Research Quarterly, 2017, 51(2): 107-116.
DOI URL |
[103] | 江晓东, 华梦飞, 胡凝, 等. 不同水源灌溉对水稻高温热害影响的微气象学分析[J]. 中国农业气象, 2019, 40(4): 260-268. |
JIANG X D, HUA M F, HU N, et al. Micrometeorological analysis of the effects of different irrigation water sources on the heat stress of rice[J]. Chinese Journal of Agrometeorology, 2019, 40(4): 260-268. (in Chinese with English abstract) | |
[104] | 郭立君, 肖小平, 程凯凯, 等. 缓解超级早稻灌浆结实期高温热害的灌水深度研究[J]. 灌溉排水学报, 2021, 40(1): 62-70. |
GUO L J, XIAO X P, CHENG K K, et al. Study on irrigation depth to alleviate high temperature and heat damage of super early rice during grain-filling period[J]. Journal of Irrigation and Drainage, 2021, 40(1): 62-70. (in Chinese with English abstract) | |
[105] | 段骅, 俞正华, 徐云姬, 等. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报, 2012, 38(1): 107-120. |
DUAN H, YU Z H, XU Y J, et al. Role of irrigation patterns in reducing harms of high temperature to rice[J]. Acta Agronomica Sinica, 2012, 38(1): 107-120. (in Chinese with English abstract)
DOI URL |
|
[106] |
杨雲雲, 陈鑫, 陈启洲, 等. 脱落酸对水稻种子萌发期耐高温胁迫的诱抗效应[J]. 华北农学报, 2021, 36(3): 185-194.
DOI |
YANG Y Y, CHEN X, CHEN Q Z, et al. Priming effects of abscisic acid on high temperature stress tolerance in rice at seed germination stage[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(3): 185-194. (in Chinese with English abstract)
DOI |
|
[107] |
REZAUL I M, FENG B H, CHEN T T, et al. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum, 2019, 165(3): 644-663.
DOI URL |
[108] |
江晓东, 华梦飞, 费日超, 等. 喷施不同化学制剂对高温胁迫水稻干物质积累与碳氮代谢的影响[J]. 中国稻米, 2019, 25(2): 4-9.
DOI |
JIANG X D, HUA M F, FEI R C, et al. Effects of spraying different chemical agents on dry matter accumulation and carbon-nitrogen metabolism of rice under heat stress condition[J]. China Rice, 2019, 25(2): 4-9. (in Chinese with English abstract)
DOI |
|
[109] | 江晓东, 姜琳琳, 华梦飞, 等. 喷施不同化学制剂对水稻叶片抗高温胁迫的效果分析[J]. 中国农业气象, 2018, 39(2): 92-99. |
JIANG X D, JIANG L L, HUA M F, et al. Analysis the effect of different chemical agents on high temperature stress in rice leaves[J]. Chinese Journal of Agrometeorology, 2018, 39(2): 92-99. (in Chinese with English abstract) | |
[110] |
符冠富, 张彩霞, 杨雪芹, 等. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学, 2015, 29(6): 637-647.
DOI |
FU G F, ZHANG C X, YANG X Q, et al. Action mechanism by which SA alleviates high temperature-induced inhibition to spikelet differentiation[J]. Chinese Journal of Rice Science, 2015, 29(6): 637-647. (in Chinese with English abstract) | |
[111] |
刘寒, 戴远兴, 吕明芳, 等. 外源水杨酸对水稻苗期生长与防卫相关基因表达的影响[J]. 浙江农业学报, 2021, 33(10): 1789-1796.
DOI |
LIU H, DAI Y X, LYU M F, et al. Effects of exogenous salicylic acid on growth and defense-related genes of rice seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1789-1796. (in Chinese with English abstract)
DOI |
|
[112] | 吴晨阳, 马国辉, 付义川, 等. 优马归甲对水稻高温下结实率降低的减轻效应[J]. 中国生态农业学报, 2011, 19(6): 1483-1485. |
WU C Y, MA G H, FU Y C, et al. Spraying Youmaguijia, a Si and K preparation, alleviated fertility losses from heat stress in rice[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1483-1485. (in Chinese with English abstract)
DOI URL |
|
[113] | 郭立君, 程凯凯, 肖小平, 等. 超级早稻结实期遭遇高温时喷施抗逆剂的缓解效果[J]. 中国农业气象, 2019, 40(9): 583-590. |
GUO L J, CHENG K K, XIAO X P, et al. Alleviating effect of anti-stress reagents spraying on super early rice on high temperature during grain-filling period[J]. Chinese Journal of Agrometeorology, 2019, 40(9): 583-590. (in Chinese with English abstract) | |
[114] |
FAHAD S, HUSSAIN S, SAUD S, et al. Exogenously applied plant growth regulators affect heat-stressed rice pollens[J]. Journal of Agronomy and Crop Science, 2016, 202(2): 139-150.
DOI URL |
[115] |
陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究[J]. 中国水稻科学, 2019, 33(5): 457-466.
DOI |
CHEN Y H, WANG Y L, ZHU D F, et al. Mechanism of exogenous brassinolide in alleviating high temperature injury at panicle initiation stage in rice[J]. Chinese Journal of Rice Science, 2019, 33(5): 457-466. (in Chinese with English abstract)
DOI |
|
[116] |
ZHANG C X, LI G Y, CHEN T T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils[J]. Rice (New York, N Y ), 2018, 11(1): 14.
DOI PMID |
[117] |
杨军, 蔡哲, 刘丹, 等. 高温下喷施水杨酸和磷酸二氢钾对中稻生理特征和产量的影响[J]. 应用生态学报, 2019, 30(12): 4202-4210.
DOI |
YANG J, CAI Z, LIU D, et al. Effects of spraying salicylic acid and potassium dihydrogen phosphate on physiological characteristics and grain yield of single-season rice under high temperature condition[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4202-4210. (in Chinese with English abstract)
DOI |
[1] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[2] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
[3] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[4] | 李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076. |
[5] | 黄东慧, 钟鹏, 王建丽, 胡云龙, 王志刚. 环境条件对Bacillus altitudinis LZP02生物膜形成的影响[J]. 浙江农业学报, 2022, 34(7): 1466-1473. |
[6] | 娄飞, 付天岭, 代良羽, 周凯, 林大松, 何腾兵. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响[J]. 浙江农业学报, 2022, 34(7): 1493-1501. |
[7] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[8] | 邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257. |
[9] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[10] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[11] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[12] | 高雪萍, 张予涵, 张梦玲, 廖文梅. 互联网信息技术使用对农业生产率的影响分析——以江西省水稻种植户为例[J]. 浙江农业学报, 2022, 34(12): 2809-2822. |
[13] | 廖平强, 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋. 不同密度异型莎草和水苋菜对水稻产量及稻米加工、外观品质的影响[J]. 浙江农业学报, 2022, 34(11): 2348-2357. |
[14] | 张金萍, 陈照明, 王强, 马军伟, 俞巧钢, 叶静, 马进川, 孙万春. 缓释肥占基肥比例对单季晚稻分蘖和氮素吸收利用的影响[J]. 浙江农业学报, 2022, 34(10): 2259-2267. |
[15] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 826
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1589
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||