浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 23-32.DOI: 10.3969/j.issn.1004-1524.2023.01.03
董飞燕1,2(
), 宋婧含1,3, 张华东1,2, 吴昊天2, 李雅倩1,2, 刘孟伟2, 高春保1,2, 方正武1,*(
), 刘易科2,*(
)
收稿日期:2022-04-06
出版日期:2023-01-25
发布日期:2023-02-21
作者简介:董飞燕(1997—),女,河南驻马店人,硕士研究生,研究方向为小麦育种栽培。E-mail: 2064276160@qq.com
通讯作者:
*方正武,E-mail:fangzhengwu88@163.com;刘易科,E-mail:hbliuyk@foxmail.com
基金资助:
DONG Feiyan1,2(
), SONG Jinghan1,3, ZHANG Huadong1,2, WU Haotian2, LI Yaqian1,2, LIU Mengwei2, GAO Chunbao1,2, FANG Zhengwu1,*(
), LIU Yike2,*(
)
Received:2022-04-06
Online:2023-01-25
Published:2023-02-21
摘要:
GRAS(GIBBERELLIN-INSENSITIVE, repressor of ga1-3 and SCARECROW)基因家族作为重要的植物转录因子在调控植物生长发育、抵抗逆境胁迫的各种信号转导途径中发挥重要作用。为进一步挖掘该家族小麦抗赤霉病相关基因,从禾谷镰刀菌诱导的小麦转录组测序数据筛选出差异表达基因TaPAT1-2D(TraesCS2D02G198200.1),克隆该基因的全长序列,并对其进行生物信息学和表达模式分析,以及亚细胞定位和酵母转录激活活性研究。生物信息学分析结果表明:TaPAT1-2D序列全长1 668 bp,编码555个氨基酸,分子量约为61.34 ku;TaPAT1-2D蛋白含有典型GRAS功能结构域,在进化关系上与水稻OsCIGR2(LOC_Os07g39470.1)关系较近;TaPAT1-2D启动子区包含茉莉酸甲酯、脱落酸、生长素等植物激素响应元件与光应答元件等。实时荧光定量PCR结果显示,接种禾谷镰刀菌孢子液72 h后,TaPAT1-2D基因在4个不同赤霉病抗性小麦品种中的相对表达水平明显上调,表明该基因参与赤霉病的响应过程。农杆菌介导的烟草中瞬时表达试验结果表明,TaPAT1-2D蛋白定位于细胞核和细胞膜中。酵母转录激活活性实验表明,TaPAT1-2D蛋白具有转录自激活能力。研究结果为深入研究TaPAT1-2D基因的功能奠定了基础。
中图分类号:
董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32.
DONG Feiyan, SONG Jinghan, ZHANG Huadong, WU Haotian, LI Yaqian, LIU Mengwei, GAO Chunbao, FANG Zhengwu, LIU Yike. Clonging and expression analysis of TaPAT1-2D gene in wheat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 23-32.
| 引物名称Primer name | 序列Sequence(5'→3') |
|---|---|
| pCAMBIA2300-TaPAT1-2D-GFP-F | CTCGGTACCCGGGGATCCTCTAGAATGGCCGACACTCCAACTTCCCGG |
| pCAMBIA2300-TaPAT1-2D-GFP-R | GCCCTTGCTCACCATGGTGTCGACGTGCCATGCGGAGGAGACGACGAGG |
| qPCR-TaPAT1-2D-F | CTACAAGGCCTTGAGGTGCA |
| qPCR-TaPAT1-2D-R | TGGAGGAGGGAGATCCACTG |
| Ta2291-F | GCTCTCCAACAACATTGCCAAC |
| Ta2291-R | GCTTCTGCCTGTCACATACGC |
| pGBKT7-TaPAT1-2D-F | CATATGGCCATGGAGGCCGAATTCATGGCCGACACTCCAACTTCCCGG |
| pGBKT7-TaPAT1-2D-R | CGGCCGCTGCAGGTCGACGGATCCTCAGTGCCATGCGGAGGAGACGACGAGG |
表2 本研究涉及的引物
Table 2 Primers used in the study
| 引物名称Primer name | 序列Sequence(5'→3') |
|---|---|
| pCAMBIA2300-TaPAT1-2D-GFP-F | CTCGGTACCCGGGGATCCTCTAGAATGGCCGACACTCCAACTTCCCGG |
| pCAMBIA2300-TaPAT1-2D-GFP-R | GCCCTTGCTCACCATGGTGTCGACGTGCCATGCGGAGGAGACGACGAGG |
| qPCR-TaPAT1-2D-F | CTACAAGGCCTTGAGGTGCA |
| qPCR-TaPAT1-2D-R | TGGAGGAGGGAGATCCACTG |
| Ta2291-F | GCTCTCCAACAACATTGCCAAC |
| Ta2291-R | GCTTCTGCCTGTCACATACGC |
| pGBKT7-TaPAT1-2D-F | CATATGGCCATGGAGGCCGAATTCATGGCCGACACTCCAACTTCCCGG |
| pGBKT7-TaPAT1-2D-R | CGGCCGCTGCAGGTCGACGGATCCTCAGTGCCATGCGGAGGAGACGACGAGG |
| 名称Name | 描述Description | 网址Website |
|---|---|---|
| SMART | 功能结构域Functional domain | http://smart.embl-hei-delberg.de/ |
| GSDS | 基因结构Structure of gene | http://gsds.gao-lab.org/ |
| ProtParam | 理化性质Physical and chemical properties | https://web.expasy.org/protparam/ |
| NetPhos | 磷酸化位点Phosphorylation site | http://www.cbs.dtu.dk/services/ NetPhos/ |
| ProtScale | 亲疏水性Hydrophilicity | https://web.expasy.org/protscale/ |
| SOPMA | 二级结构Secondary structure | https://npsa-prabi.ibcp. fr/cgi-bin/secpred_sopma.pl |
| PlantCARE | 顺式元件Cis-acting element | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
| SignalP | 信号肽Signal peptide | https://services.healthtech.dtu.dk/service.php?SignalP-5.0 |
| TMHMM | 跨膜区Transmembrane area | https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 |
| Softberry | 亚细胞定位Subcellular localization | http://www.softberry.com/ |
| Ensembl | 基因组Genome | https://asia.ensembl.org/index.html |
表1 生物信息学分析工具与数据库
Table 1 Tools and databases used in bioinformatics analysis
| 名称Name | 描述Description | 网址Website |
|---|---|---|
| SMART | 功能结构域Functional domain | http://smart.embl-hei-delberg.de/ |
| GSDS | 基因结构Structure of gene | http://gsds.gao-lab.org/ |
| ProtParam | 理化性质Physical and chemical properties | https://web.expasy.org/protparam/ |
| NetPhos | 磷酸化位点Phosphorylation site | http://www.cbs.dtu.dk/services/ NetPhos/ |
| ProtScale | 亲疏水性Hydrophilicity | https://web.expasy.org/protscale/ |
| SOPMA | 二级结构Secondary structure | https://npsa-prabi.ibcp. fr/cgi-bin/secpred_sopma.pl |
| PlantCARE | 顺式元件Cis-acting element | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
| SignalP | 信号肽Signal peptide | https://services.healthtech.dtu.dk/service.php?SignalP-5.0 |
| TMHMM | 跨膜区Transmembrane area | https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 |
| Softberry | 亚细胞定位Subcellular localization | http://www.softberry.com/ |
| Ensembl | 基因组Genome | https://asia.ensembl.org/index.html |
图3 TaPAT1-2D蛋白质的生物信息学分析 A,亲水性/疏水性分析。B,磷酸化位点分析。C,二级结构预测;蓝色,α螺旋;橙色,无规则卷曲;红色,延伸链;绿色,β转角。
Fig.3 Bioinformatics analysis of TaPAT1-2D protein A, Analysis of hydrophilic and hydrophobic amino acid. B, Phosphorylation sites analysis. C, Prediction of secondary structure; Blue, Alpha helix; Orange, Random coil; Red, Extended strand; Green, β turn.
图4 TaPAT1-2D与拟南芥、水稻GRAS蛋白系统发育分析 ★,TaPAT1-2D蛋白质所在位置。
Fig.4 Phylogenetic analysis of TaPAT1-2D and GRAS proteins of Arabidopsis thaliana and Oryza sativa ★, Location of the TaPAT1-2D protein.
| 顺式作用元件名称 Name of cis-acting element | 功能 Function |
|---|---|
| TGA-element | 生长素反应元件Auxin-responsive element |
| TATA-box | 转录起始-30区核心启动子元件Core promoter element around-30 of transcription start |
| TGACG-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
| CGTCA-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
| AuxRR-core | 参与生长素反应响应的顺式作用调控元件Cis-acting regulatory element involved in auxin responsiveness |
| CCAAT-box | MYBHv1结合位点MYBHv1 binding site |
| ARE | 对厌氧诱导必需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
| CAAT-box | 启动子和增强子区的一般顺式作用元件Common cis-acting element in promoter and enhancer regions |
| ABRE | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
| Box 4 | 部分光响应保守元件Part of a conserved DNA module involved in light responsiveness |
| G-box | 参与光反应的顺式作用调节元件Cis-acting regulatory element involved in light responsiveness |
| MRE | 参与光响应的MYB结合位点MYB binding site involved in light responsiveness |
表3 TaPAT1-2D基因启动子区顺式作用元件
Table 3 Cis-acting element of TaPAT1-2D gene in the promoter regions
| 顺式作用元件名称 Name of cis-acting element | 功能 Function |
|---|---|
| TGA-element | 生长素反应元件Auxin-responsive element |
| TATA-box | 转录起始-30区核心启动子元件Core promoter element around-30 of transcription start |
| TGACG-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
| CGTCA-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
| AuxRR-core | 参与生长素反应响应的顺式作用调控元件Cis-acting regulatory element involved in auxin responsiveness |
| CCAAT-box | MYBHv1结合位点MYBHv1 binding site |
| ARE | 对厌氧诱导必需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
| CAAT-box | 启动子和增强子区的一般顺式作用元件Common cis-acting element in promoter and enhancer regions |
| ABRE | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
| Box 4 | 部分光响应保守元件Part of a conserved DNA module involved in light responsiveness |
| G-box | 参与光反应的顺式作用调节元件Cis-acting regulatory element involved in light responsiveness |
| MRE | 参与光响应的MYB结合位点MYB binding site involved in light responsiveness |
图6 TaPAT1-2D基因的qRT-PCR结果 同一品种不同处理时间数据上没有相同小写字母表示差异显著(P<0.05)。
Fig.6 qRT-PCR results of TaPAT1-2D gene The bars with different letters show the significant difference at the level of 0.05.
图7 小麦TaPAT1-2D的亚细胞定位 A,pCAMBIA2300-GFP空载体;B,pCAMBIA2300-TaPAT1-2D-GFP融合载体。
Fig.7 Subcellular localization of TaPAT1-2D in wheat A, pCAMBIA2300-GFP empty vector; B, pCAMBIA2300-TaPAT1-2D-GFP fusion vector.
图8 小麦TaPAT1-2D转录激活活性分析 10-1、10-2、10-3、10-4为酵母菌液的4个梯度稀释;pGBKT7-53+pGADT7-T为阳性对照组,pGBKT7-Lam+pGADT7-T为阴性对照组,pGBKT7-EV+pGADT7-EV为空载体组,pGBKT7-TaPAT1-2D+pGADT7-EV为试验组;SD-T-L为SD/-Trp-Leu营养缺陷培养基,SD-T-L-H-A为SD/-Trp-Leu-His-Ade营养缺陷培养基。
Fig.8 Transactivation activity of TaPAT1-2D in wheat 10-1, 10-2, 10-3 and 10-4 were four different dilution concentration of yeast solution; pGBKT7-53+pGADT7-T was positive control group; pGBKT7-Lam+pGADT7-T was negative control group; pGBKT7-EV+pGADT7-EV was empty carrier group and pGBKT7-TaPAT1-2D+pGADT7-EV was the experimental group; SD-T-L was SD/-Trp-Leu nutrient deficiency medium and SD-T-L-H-A was SD/-Trp-Leu-His-Ade nutrient deficiency medium.
| [1] | 刘易科, 佟汉文, 朱展望, 等. 小麦赤霉病抗性改良研究进展[J]. 麦类作物学报, 2016, 36(1): 51-57. |
| LIU Y K, TONG H W, ZHU Z W, et al. Review on improvement of Fusarium head blight resistance in wheat[J]. Journal of Triticeae Crops, 2016, 36(1): 51-57. (in Chinese with English abstract) | |
| [2] | 孙悦. 黄淮麦区小麦中镰刀菌的分离及其产毒控制[D]. 杨凌: 西北农林科技大学, 2018. |
| SUN Y. The separation of Fusarium from wheat in Huanghuai area and control its toxins[D]. Yangling: Northwest A & F University, 2018. (in Chinese with English abstract) | |
| [3] |
TIAN C, WAN P, SUN S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Molecular Biology, 2004, 54(4): 519-532.
DOI URL |
| [4] |
LI X Y, QIAN Q, FU Z M, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932): 618-621.
DOI URL |
| [5] | PENG J, CAROL P, RICHARDS D E, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. BMC Bioinformatics, 1997, 11(23): 3194-3205. |
| [6] |
HELARIUTTA Y, FUKAKI H, WYSOCKA-DILLER J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5): 555-567.
DOI URL |
| [7] |
CUI H, LEVESQUE M P, VERNOUX T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants[J]. Science, 2007, 316(5823): 421-425.
PMID |
| [8] |
MOROHASHI K, MINAMI M, TAKASE H, et al. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression[J]. Journal of Biological Chemistry, 2003, 278(23): 20865-20873.
DOI URL |
| [9] |
SUN T P, GUBLER F. Molecular mechanism of gibberellin signaling in plants[J]. Annual Review of Plant Biology, 2004, 55: 197-223.
DOI URL |
| [10] |
PARK J, NGUYEN K T, PARK E, et al. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis[J]. The Plant Cell, 2013, 25(3): 927-943.
DOI URL |
| [11] |
TORRES-GALEA P, HUANG L F, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Molecular Genetics and Genomics, 2006, 276(1): 13-30.
DOI URL |
| [12] |
TORRES-GALEA P, HIRTREITER B, BOLLE C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction[J]. Plant Physiology, 2013, 161(1): 291-304.
DOI URL |
| [13] |
MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14): 4011-4019.
DOI URL |
| [14] |
CHEN K M, LI H W, CHEN Y F, et al. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence[J]. Journal of Genetics and Genomics, 2015, 42(1): 21-32.
DOI URL |
| [15] |
MAYROSE M, EKENGREN S K, MELECH-BONFIL S, et al. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response[J]. Molecular Plant Pathology, 2006, 7(6): 593-604.
DOI PMID |
| [16] |
DAY R B, SHIBUYA N, MINAMI E, et al. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor[J]. Biochimica et Biophysica Acta (BBA) -Gene Structure and Expression, 2003, 1625(3): 261-268.
PMID |
| [17] | 林源. 小佛肚竹BvCIGR基因的生物学功能分析及在水稻种质创新的应用[D]. 杭州: 浙江农林大学, 2014. |
| LIN Y. Biological function analysis and application in rice germplasm innovation of BvCIGR gene[D]. Hangzhou: Zhejiang A & F University, 2014. (in Chinese with English abstract) | |
| [18] |
RAMÍREZ-GONZÁLEZ R H, BORRILL P, LANG D, et al. The transcriptional landscape of polyploid wheat[J]. Science, 2018, 361(6403): eaar6089.
DOI URL |
| [19] | 宋婧含. 小麦抗赤霉病候选基因的鉴定及相关分析[D]. 荆州: 长江大学, 2021. |
| SONG J H. Identification and correlation analysis of candidate genes for resistance to Fusarium blight in wheat[D]. Jingzhou: Yangtze University, 2021. (in Chinese with English abstract) | |
| [20] | 余宇, 王晓杰, 韩青梅, 等. 条锈菌诱导下的小麦叶片总RNA提取方法的比较及LD-PCR扩增[J]. 麦类作物学报, 2007, 27(3): 471-474. |
| YU Y, WANG X J, HAN Q M, et al. Comparison of different protocols of extracting total RNA from rust induced wheat leaves and LD-PCR amplification[J]. Journal of Triticeae Crops, 2007, 27(3): 471-474. (in Chinese with English abstract) | |
| [21] |
PAOLACCI A R, TANZARELLA O A, PORCEDDU E, et al. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat[J]. BMC Molecular Biology, 2009, 10: 11.
DOI PMID |
| [22] | 牛义岭, 姜秀明, 许向阳, 等. 植物转录因子GRAS蛋白的研究进展[J]. 基因组学与应用生物学, 2016, 35(9): 2519-2524. |
| NIU Y L, JIANG X M, XU X Y, et al. Research progress of transcription factors GRAS proteins in plant[J]. Genomics and Applied Biology, 2016, 35(9): 2519-2524. (in Chinese with English abstract) | |
| [23] | 殷龙飞, 张中保, 于荣, 等. 植物GRAS家族蛋白结构和功能的研究进展[J]. 分子植物育种, 2019, 17(19): 6323-6331. |
| YIN L F, ZHANG Z B, YU R, et al. Progress of the structural and functional analysis of GRAS gene in plants[J]. Molecular Plant Breeding, 2019, 17(19): 6323-6331. (in Chinese with English abstract) | |
| [24] |
LI G L, YEN Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat[J]. Crop Science, 2008, 48(5): 1888-1896.
DOI URL |
| [25] |
DING L, XU H, YI H, et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One, 2011, 6(4): e19008.
DOI URL |
| [26] | 马信. 小麦抗赤霉病相关基因的克隆及功能分析[D]. 泰安: 山东农业大学, 2014. |
| MA X. Cloning and function analysis of FHB resistance-related genes from wheat[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
| [27] |
XIAO J, JIN X, JIA X, et al. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat Landrace Wangshuibai[J]. BMC Genomics, 2013, 14: 197.
DOI PMID |
| [28] | TANABE S, ONODERA H, HARA N, et al. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1): 145-151. |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416. |
| [3] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [4] | 刘胜男, 朱建义, 李明, 赵浩宇, 熊涛, 汤永禄, 周小刚, 李朝苏. 稻茬免耕带旋播种小麦的田间杂草防除效果与小麦产量[J]. 浙江农业学报, 2025, 37(10): 2129-2137. |
| [5] | 杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23. |
| [6] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
| [7] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
| [8] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
| [9] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
| [10] | 唐红, 关文志, 许晓军, 牛宝龙, 楼宝, 沈小明, 顾志敏. 三角鲂foxl2基因克隆和时空表达特征及EE2对其表达的影响[J]. 浙江农业学报, 2024, 36(8): 1789-1799. |
| [11] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. |
| [12] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [13] | 李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737. |
| [14] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
| [15] | 张永彬, 李想, 满卫东, 刘明月, 樊继好, 胡皓然, 宋利杰, 刘玮佳. 融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究[J]. 浙江农业学报, 2024, 36(12): 2812-2822. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||