浙江农业学报 ›› 2025, Vol. 37 ›› Issue (7): 1407-1416.DOI: 10.3969/j.issn.1004-1524.20240746
缪百灵a(), 陈娟娟a, 李亮杰a, 楚宗丽b, 董向向a,*(
)
收稿日期:
2024-08-19
出版日期:
2025-07-25
发布日期:
2025-08-20
作者简介:
缪百灵(1994—),女,河南信阳人,硕士研究生,研究方向为植物遗传育种。E-mail:bailingm@163.com
通讯作者:
*董向向,E-mail:dong_xiangx@163.com
基金资助:
MIAO Bailinga(), CHEN Juanjuana, LI Liangjiea, CHU Zonglib, DONG Xiangxianga,*(
)
Received:
2024-08-19
Online:
2025-07-25
Published:
2025-08-20
摘要: ABCG5是参与植物生长发育的转运蛋白。为研究ABCG5基因的功能,以浙江红花油茶为材料,利用RT-PCR技术克隆浙江红花油茶CchABCG5基因的编码序列(CDS),通过生物信息学分析、亚细胞定位和拟南芥遗传转化,对该基因功能进行初步分析。结果表明,CchABCG5基因CDS长度为1 935 bp,编码644个氨基酸,有1个核苷酸结合结构域和1个跨膜结构域,是WBC型半分子转运蛋白。亚细胞定位分析显示,CchABCG5蛋白定位在细胞膜上。系统发育分析表明,CchABCG5蛋白与茶树的亲缘关系最近。CchABCG5过表达拟南芥表现出莲座叶减少和早花表型,相关开花基因表达量显著升高,种子和叶片的脂质含量升高。因此,推测CchABCG5基因在浙江红花油茶开花调控和脂质转运中发挥作用。
中图分类号:
缪百灵, 陈娟娟, 李亮杰, 楚宗丽, 董向向. 浙江红花油茶CchABCG5基因的功能[J]. 浙江农业学报, 2025, 37(7): 1407-1416.
MIAO Bailing, CHEN Juanjuan, LI Liangjie, CHU Zongli, DONG Xiangxiang. The function of CchABCG5 gene in Camellia chekiangoleosa Hu[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1407-1416.
基因Gene | 正向引物Forward primer(5’-3’) | 反向引物Reverse primer(5’-3’) | 用途Usage |
---|---|---|---|
CchABCG5 | GGTACCATGGAGACACAAGGTTGTGAGATTG | GTCGACAAGAAAAGCACCCTTAAGGCCC | 基因克隆Gene cloning |
CchABCG5 | ACAGCAATCACTGCACCAAG | TGCTTCTACACTCACCTTCATCA | 相对表达量分析 |
Relative expression analysis | |||
AtACT2 | AAGCTGGGGTTTTATGAATGG | TTGTCACACACAAGTGCATCAT | 相对表达量分析 |
Relative expression analysis | |||
AtCO | ATTCTGCAAACCCACTTGCT | CCTCCTTGGCATCCTTATCA | 相对表达量分析 |
Relative expression analysis | |||
AtFT | CTGGAACAACCTTTGGCAAT | AGCCACTCTCCCTCTGACAA | 相对表达量分析 |
Relative expression analysis | |||
AtFUL | GGAGAAGAAAACGGGTCAGC | ACTCGTTCGTAGTGGTAGGAC | 相对表达量分析 |
Relative expression analysis |
表1 引物信息
Table 1 Primer information
基因Gene | 正向引物Forward primer(5’-3’) | 反向引物Reverse primer(5’-3’) | 用途Usage |
---|---|---|---|
CchABCG5 | GGTACCATGGAGACACAAGGTTGTGAGATTG | GTCGACAAGAAAAGCACCCTTAAGGCCC | 基因克隆Gene cloning |
CchABCG5 | ACAGCAATCACTGCACCAAG | TGCTTCTACACTCACCTTCATCA | 相对表达量分析 |
Relative expression analysis | |||
AtACT2 | AAGCTGGGGTTTTATGAATGG | TTGTCACACACAAGTGCATCAT | 相对表达量分析 |
Relative expression analysis | |||
AtCO | ATTCTGCAAACCCACTTGCT | CCTCCTTGGCATCCTTATCA | 相对表达量分析 |
Relative expression analysis | |||
AtFT | CTGGAACAACCTTTGGCAAT | AGCCACTCTCCCTCTGACAA | 相对表达量分析 |
Relative expression analysis | |||
AtFUL | GGAGAAGAAAACGGGTCAGC | ACTCGTTCGTAGTGGTAGGAC | 相对表达量分析 |
Relative expression analysis |
图1 CchABCG5基因的克隆与过表达载体酶切结果 M, DL 5 000 marker;1,目的基因片段;2,pRI 101-AN-CchABCG5质粒的酶切条带。
Fig.1 Cloning of the CchABCG5 gene and restriction enzyme digestion of its overexpression vector M, DL 5 000 marker; 1, Target gene fragment; 2, Restriction enzyme digestion bands of pRI 101-AN-CchABCG5 plasmid.
图5 CchABCG5基因过表达拟南芥的卡那霉素筛选(A)与PCR鉴定(B) M, DL 5 000 marker;1~3,过表达株系;-,阴性对照;+,阳性对照。
Fig.5 Kanamycin screening (A) and PCR verification (B) of CchABCG5-overexpression Arabidopsis thaliana M, DL 5 000 marker; 1-3, Overexpression lines; -, Negative control, +, Positive control.
图6 CchABCG5蛋白在拟南芥原生质体中的亚细胞定位 GFP,绿色荧光;mCherry,细胞膜marker;Bright,明场;Merged,叠加场。
Fig.6 Subcellular localization of CchABCG5 protein in Arabidopsis thaliana protoplasts GFP, Green fluorescence; mCherry, Cell membrane marker; Bright, Bright field; Merged, Superposition field.
图7 拟南芥的表型 A,拟南芥的开花表型;B,拟南芥的抽薹时间;C,拟南芥的莲座叶数量。Col-0,野生型拟南芥;0E1~OE3,3个CchABCG5基因过表达拟南芥株系。采用Duncan新复极差法比较差异显著性,无相同小写字母表示不同株系间差异显著(P<0.05)。下同。
Fig.7 Phenotype of Arabidopsis thaliana A, The flowering phenotype of Arabidopsis thaliana; B, Bolting time of Arabidopsis thaliana; C, The number of lotus leaves of Arabidopsis thaliana. Col-0, Wild-type Arabidopsis thaliana; OE1-OE3, three CchABCG5-overexpression Arabidopsis thaliana lines. Duncan’s multiple range test was used to compare the significance of differences, the bars marked without the same lowercase letters indicated significant difference between different lines (P<0.05). The same as below.
图8 拟南芥中开花相关基因的相对表达量 采用t检验进行差异显著性分析,**表示P<0.01。
Fig.8 Relative expression levels of flowering-related genes in Arabidopsis thaliana t-test was used to analyze the statistical significance of differences, ** indicated P<0.01.
[1] | 李佳妮, 吴美珍, 李煜, 等. 浙江红花油茶实生群体性状变异及综合评价[J]. 森林与环境学报, 2024, 44(3): 274-282. |
LI J N, WU M Z, LI Y, et al. Comprehensive analysis of the phenotypic variation among seedling populations of Camellia chekiangoleosa[J]. Journal of Forest and Environment, 2024, 44(3): 274-282. (in Chinese with English abstract) | |
[2] | 周文才, 肖相元, 沈敬理, 等. 浙江红花油茶种质资源述评及育种策略[J]. 南方林业科学, 2019, 47(6): 20-24. |
ZHOU W C, XIAO X Y, SHEN J L, et al. Review on germplasm resources and breeding strategy for Camellia chekiangoleosa[J]. South China Forestry Science, 2019, 47(6): 20-24. (in Chinese with English abstract) | |
[3] | 陈阳, 杨水平, 王卫, 等. 3种油茶种仁含油率及脂肪酸组成的比较研究[J]. 西南大学学报(自然科学版), 2015, 37(10): 38-42. |
CHEN Y, YANG S P, WANG W, et al. A comparative study of seed oil content and fatty acid composition of three Camellia species[J]. Journal of Southwest University(Natural Science Edition), 2015, 37(10): 38-42. (in Chinese with English abstract) | |
[4] | 孙洁婷, 敬雪皎, 赵丹妮, 等. 植物ABCG转运蛋白功能的研究进展[J]. 科学通报, 2024, 69(14): 1866-1880. |
SUN J T, JING X J, ZHAO D N, et al. Advances in understanding the functions of plant ABCG transporters[J]. Chinese Science Bulletin, 2024, 69(14): 1866-1880. (in Chinese with English abstract) | |
[5] | DHARA A, RAICHAUDHURI A. ABCG transporter proteins with beneficial activity on plants[J]. Phytochemistry, 2021, 184: 112663. |
[6] | DEAN M, MOITRA K, ALLIKMETS R. The human ATP-binding cassette (ABC) transporter superfamily[J]. Human Mutation, 2022, 43(9): 1162-1182. |
[7] | NAWKAR G M, LEGRIS M, GOYAL A, et al. Air channels create a directional light signal to regulate hypocotyl phototropism[J]. Science, 2023, 382(6673): 935-940. |
[8] | LEE E J, KIM K Y, ZHANG J, et al. Arabidopsis seedling establishment under waterlogging requires ABCG5-mediated formation of a dense cuticle layer[J]. New Phytologist, 2021, 229(1): 156-172. |
[9] | 韩二琴, 李健春, 李英双, 等. 转运蛋白调控植物脂质运输研究进展[J]. 中国油料作物学报, 2017, 39(2): 260-268. |
HAN E Q, LI J C, LI Y S, et al. Research advance in the regulation of plant lipid trafficking by transporters[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 260-268. (in Chinese with English abstract) | |
[10] | WANG S M, ZHANG C X, CHEN R S, et al. H2S is involved in drought-mediated stomatal closure through PLDα1 in Arabidopsis[J]. Planta, 2024, 259(6): 142. |
[11] | MATSUDA S, TAKANO S, SATO M, et al. Rice stomatal closure requires guard cell plasma membrane ATP-binding cassette transporter RCN1/OsABCG5[J]. Molecular Plant, 2016, 9(3): 417-427. |
[12] | 周夕楠, 于岸洲, 王星元, 等. 番茄ABC家族G亚族(ABCGs)的全基因组鉴定和表达分析[J]. 分子植物育种, 2021, 19(24): 8005-8018. |
ZHOU X N, YU A Z, WANG X Y, et al. Genome-wide identification and expression analysis of ABC family G subfamily(ABCGs) in tomato[J]. Molecular Plant Breeding, 2021, 19(24): 8005-8018. (in Chinese with English abstract) | |
[13] | 刘彦彤, 王蓉, 汪仁. 忽地笑ABCG5转运蛋白基因(LaABCG5)的克隆和表达分析[J]. 植物资源与环境学报, 2020, 29(2): 8-15, 27. |
LIU Y T, WANG R, WANG R. Cloning and expression analysis of ABCG5 transporter gene from Lycoris aurea(LaABCG5)[J]. Journal of Plant Resources and Environment, 2020, 29(2): 8-15, 27. (in Chinese with English abstract) | |
[14] | 李彤. 大豆GmABCG5L基因铁转运的功能研究[D]. 哈尔滨: 哈尔滨师范大学, 2023. |
LI T. Functional study of soybean GmABCG5L gene involved in iron transport[D]. Harbin: Harbin Normal University, 2023. (in Chinese with English abstract) | |
[15] | SHEN T F, HUANG B, XU M, et al. The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis[J]. Horticulture Research, 2022(9): uhab083. |
[16] | 王晓玥, 陈双双, 齐香玉, 等. 绣球花铝转运蛋白HmALMT11的生物信息学及其表达特性分析[J]. 华北农学报, 2024, 39(4): 94-101. |
WANG X Y, CHEN S S, QI X Y, et al. Bioinformatics analysis and expression profiling of the aluminum transporter HmALMT11 in Hydrangea macrophylla[J]. Acta Agriculturae Boreali-Sinica, 2024, 39(4): 94-101. (in Chinese with English abstract) | |
[17] | 邓思男. 红花转录因子CtNF-YB12调控种子油脂含量的作用研究[D]. 长春: 吉林农业大学, 2022. |
DENG S N. The role of safflower transcription factor CtNF-YB12 in regulating seed oil content[D]. Changchun: Jilin Agricultural University, 2022. (in Chinese with English abstract) | |
[18] | 松布尔巴图, 陈悦, 陈宁美, 等. 盐芥EsABCG25的克隆及其表达分析[J]. 生物技术通报, 2018, 34(7): 108-118. |
SONG B, CHEN Y, CHEN N M, et al. Cloning and expression of EsABCG25 from Eutrema salsugineum[J]. Biotechnology Bulletin, 2018, 34(7): 108-118. (in Chinese with English abstract) | |
[19] | CHEN G X, KOMATSUDA T, MA J F, et al. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12354-12359. |
[20] | BANASIAK J, BORGHI L, STEC N, et al. The full-size ABCG transporter of Medicago truncatula is involved in strigolactone secretion, affecting arbuscular mycorrhiza[J]. Frontiers in Plant Science, 2020, 11: 18. |
[21] | HAO X L, LONG X H, ZHAO H Y, et al. CsABCG11.2 mediates theanine uptake to alleviate cadmium toxicity in tea plants (Camellia sinensis)[J]. Horticulture Advances, 2024, 2(1): 19. |
[22] | 张婧, 陈梦词, 马清, 等. 植物ABCG转运蛋白研究进展[J]. 草业学报, 2015, 24(7): 180-188. |
ZHANG J, CHEN M C, MA Q, et al. Review of advances in the study of plant ABCG transporters[J]. Acta Prataculturae Sinica, 2015, 24(7): 180-188. (in Chinese with English abstract) | |
[23] | 曾燕如, 黎章矩, 戴文圣. 油茶开花习性的观察研究[J]. 浙江林学院学报, 2009, 26(6): 802-809. |
ZENG Y R, LI Z J, DAI W S. Flowering habits in Camellia oleifera[J]. Journal of Zhejiang Forestry College, 2009, 26(6): 802-809. (in Chinese with English abstract) | |
[24] | YOU Y, SAWIKOWSKA A, NEUMANN M, et al. Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering[J]. Nature Communications, 2017, 8: 15120. |
[25] | 王慧洪. 拟南芥AtABCG5转运蛋白调控植物体内脂肪酸水平的功能研究[D]. 重庆: 西南大学, 2019. |
WANG H H. Functional analysis of AtABCG5 transporter regulating fatty acids levels in Arabidopsis thaliana[D]. Chongqing: Southwest University, 2019. (in Chinese with English abstract) | |
[26] | MCFARLANE H E, SHIN J J H, BIRD D A, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations[J]. The Plant Cell, 2010, 22(9): 3066-3075. |
[27] | ZHANG Q, WANG S S, XIE Q J, et al. Control of arbuscule development by a transcriptional negative feedback loop in Medicago[J]. Nature Communications, 2023, 14: 5743. |
[1] | 马园, 郝陆瑶, 张艳妮, 李倩楠, 王瑞. 厚垣普可尼亚菌原生质体的制备、再生与遗传体系构建[J]. 浙江农业学报, 2025, 37(4): 800-807. |
[2] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
[3] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
[4] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
[5] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
[6] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
[7] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[8] | 张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256. |
[9] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[10] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
[11] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[12] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[13] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
[14] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[15] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||