浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1248-1257.DOI: 10.3969/j.issn.1004-1524.2022.06.15
邰粤鹰a(), 何腾兵a,b, 陈小然c, 张旺a, 黄啸云a, 刘鸿雁a, 高珍冉b,*(
)
收稿日期:
2021-06-25
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
高珍冉
作者简介:
*高珍冉,E-mail: zrgao@gzu.edu.cn基金资助:
TAI Yueyinga(), HE Tengbinga,b, CHEN Xiaoranc, ZHANG Wanga, HUANG Xiaoyuna, LIU Hongyana, GAO Zhenranb,*(
)
Received:
2021-06-25
Online:
2022-06-25
Published:
2022-06-30
Contact:
GAO Zhenran
摘要:
为探明叶面喷施阻控剂对常淹水镉(Cd)污染稻田水稻吸收转运Cd的影响,采用田间试验,研究CK(无喷施)、ZK1(锰和锌)、ZK2(壳聚糖硒和二氧化硅溶胶)、ZK3(水溶性硅)、ZK4(螯合铁)和ZK5(二氧化硅溶胶)6个处理对水稻吸收转运Cd的影响。结果表明,常淹水条件下,与CK相比:ZK1、ZK2、ZK4处理下,水稻产量显著(P<0.05)提高,增幅在13.08%~44.19%;ZK1~ZK5处理均能显著(P<0.05)提高灌浆期时水稻叶片的相对叶绿素含量,增幅在13.18%~24.42%;ZK1~ZK4处理均能显著(P<0.05)降低糙米中Cd的富集系数,降幅在42.31%~57.69%;ZK1~ZK5处理均能显著(P<0.05)降低Cd从叶到糙米和茎到糙米的转运系数,降幅分别在26.63%~71.28%和26.93%~65.87%;ZK1、ZK2、ZK3处理均能显著(P<0.05)降低糙米中的Cd含量,降幅分别为55.88%、20.59%、17.65%。由此可知,常淹水条件下,叶面喷施含有锰和锌成分的阻控剂,或是含有壳聚糖硒和二氧化硅溶胶成分的阻控剂不但有利于提高水稻产量,还能有效降低糙米中的Cd含量。
中图分类号:
邰粤鹰, 何腾兵, 陈小然, 张旺, 黄啸云, 刘鸿雁, 高珍冉. 叶面喷施阻控剂对常淹水稻田水稻吸收转运镉的影响[J]. 浙江农业学报, 2022, 34(6): 1248-1257.
TAI Yueying, HE Tengbing, CHEN Xiaoran, ZHANG Wang, HUANG Xiaoyun, LIU Hongyan, GAO Zhenran. Effects of foliar spraying inhibitor on uptake and translocation of cadmium in rice under flooded paddy field[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1248-1257.
处理 Treatment | 抽穗期 Heading stage | 灌浆期 Filling stage | 成熟期 Mature stage |
---|---|---|---|
CK | 87.27±1.16 d | 98.97±2.04 bc | 107.83±1.89 ab |
ZK1 | 91.70±1.05 c | 95.63±0.67 cd | 106.80±3.94 b |
ZK2 | 91.70±1.91 c | 105.60±2.19 a | 110.40±4.27 ab |
ZK3 | 88.83±1.20 d | 94.60±1.55 d | 107.13±1.86 b |
ZK4 | 97.77±1.88 a | 102.87±2.40 ab | 113.90±3.21 a |
ZK5 | 95.07±0.51 b | 104.00±3.57 a | 113.50±2.52 a |
表1 不同处理对各生育期水稻株高的影响
Table 1 Effect of different treatments on plant height at different growth stages cm
处理 Treatment | 抽穗期 Heading stage | 灌浆期 Filling stage | 成熟期 Mature stage |
---|---|---|---|
CK | 87.27±1.16 d | 98.97±2.04 bc | 107.83±1.89 ab |
ZK1 | 91.70±1.05 c | 95.63±0.67 cd | 106.80±3.94 b |
ZK2 | 91.70±1.91 c | 105.60±2.19 a | 110.40±4.27 ab |
ZK3 | 88.83±1.20 d | 94.60±1.55 d | 107.13±1.86 b |
ZK4 | 97.77±1.88 a | 102.87±2.40 ab | 113.90±3.21 a |
ZK5 | 95.07±0.51 b | 104.00±3.57 a | 113.50±2.52 a |
处理 Treatment | 产量 Yield/(kg·hm-2) | 穗粒数 Grain number per spike | 千粒重 1 000 seed weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|
CK | 7 605.0±100.4 d | 236±48 b | 21.46±0.62 b | 91.25±0.02 b |
ZK1 | 8 824.0±118.8 b | 307±32 a | 21.56±0.16 b | 93.21±0.02 b |
ZK2 | 8 599.7±120.0 c | 249±30 ab | 22.33±1.24 ab | 93.26±0.01 b |
ZK3 | 7 185.0±30.8 e | 280±32 ab | 19.25±0.51 c | 87.22±0.02 c |
ZK4 | 10 965.3±62.0 a | 243±45 ab | 23.68±1.41 a | 97.11±0.01 a |
ZK5 | 6 897.0±45.9 f | 295±31 ab | 19.12±0.88 c | 86.75±0.01 c |
表2 不同处理对水稻产量及其构成要素的影响
Table 2 Effects of different treatments on rice yield and components
处理 Treatment | 产量 Yield/(kg·hm-2) | 穗粒数 Grain number per spike | 千粒重 1 000 seed weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|
CK | 7 605.0±100.4 d | 236±48 b | 21.46±0.62 b | 91.25±0.02 b |
ZK1 | 8 824.0±118.8 b | 307±32 a | 21.56±0.16 b | 93.21±0.02 b |
ZK2 | 8 599.7±120.0 c | 249±30 ab | 22.33±1.24 ab | 93.26±0.01 b |
ZK3 | 7 185.0±30.8 e | 280±32 ab | 19.25±0.51 c | 87.22±0.02 c |
ZK4 | 10 965.3±62.0 a | 243±45 ab | 23.68±1.41 a | 97.11±0.01 a |
ZK5 | 6 897.0±45.9 f | 295±31 ab | 19.12±0.88 c | 86.75±0.01 c |
图2 不同处理对水稻根、茎、叶、稻壳和糙米Cd含量的影响 柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig. 2 Effect of different treatments on Cd content in root, stem, leaf, husk and brown rice Bars marked without the same letters indicated significant difference at P<0.05.
处理 | 根 | 茎 | 叶 | 糙米 |
---|---|---|---|---|
Treatment | Root | Stem | Leaf | Brown rice |
CK | 0.665±0.165 b | 0.067±0.017 ab | 0.030±0.003 bc | 0.026±0.008 a |
ZK1 | 0.748±0.042 b | 0.088±0.011 a | 0.045±0.004 a | 0.011±0.001 c |
ZK2 | 0.623±0.198 bc | 0.070±0.033 ab | 0.040±0.014 ab | 0.013±0.002 c |
ZK3 | 0.430±0.034 c | 0.048±0.005 b | 0.025±0.001 c | 0.013±0.002 c |
ZK4 | 0.663±0.060 b | 0.095±0.013 a | 0.033±0.004 bc | 0.015±0.002 bc |
ZK5 | 0.973±0.030 a | 0.094±0.001 a | 0.032±0.002 bc | 0.020±0.001 ab |
表3 不同处理对水稻各部分Cd富集系数的影响
Table 3 Effect of different treatments on Cd enrichment factor in different parts of rice
处理 | 根 | 茎 | 叶 | 糙米 |
---|---|---|---|---|
Treatment | Root | Stem | Leaf | Brown rice |
CK | 0.665±0.165 b | 0.067±0.017 ab | 0.030±0.003 bc | 0.026±0.008 a |
ZK1 | 0.748±0.042 b | 0.088±0.011 a | 0.045±0.004 a | 0.011±0.001 c |
ZK2 | 0.623±0.198 bc | 0.070±0.033 ab | 0.040±0.014 ab | 0.013±0.002 c |
ZK3 | 0.430±0.034 c | 0.048±0.005 b | 0.025±0.001 c | 0.013±0.002 c |
ZK4 | 0.663±0.060 b | 0.095±0.013 a | 0.033±0.004 bc | 0.015±0.002 bc |
ZK5 | 0.973±0.030 a | 0.094±0.001 a | 0.032±0.002 bc | 0.020±0.001 ab |
处理 Treatment | 根—茎 Root to stem | 根—叶 Root to leaf | 茎—叶 Stem to leaf | 叶—糙米 Leaf to brown rice | 茎—糙米 Stem to brown rice |
---|---|---|---|---|---|
CK | 0.105±0.002 bc | 0.047±0.008 b | 0.448±0.072 b | 0.860±0.222 a | 0.375±0.323 a |
ZK1 | 0.117±0.008 b | 0.061±0.003 a | 0.519±0.035 ab | 0.247±0.028 d | 0.128±0.014 e |
ZK2 | 0.110±0.016 bc | 0.064±0.004 a | 0.589±0.058 a | 0.322±0.049 cd | 0.192±0.047 cd |
ZK3 | 0.110±0.005 bc | 0.059±0.005 a | 0.537±0.049 a | 0.511±0.047 b | 0.274±0.030 b |
ZK4 | 0.143±0.008 a | 0.050±0.002 b | 0.351±0.012 c | 0.460±0.059 bc | 0.161±0.017 de |
ZK5 | 0.097±0.004 c | 0.032±0.002 c | 0.340±0.026 c | 0.631±0.022 b | 0.214±0.016 c |
表4 不同处理对水稻Cd转运系数的影响
Table 4 Effects of different treatments on Cd translocation coefficient in rice
处理 Treatment | 根—茎 Root to stem | 根—叶 Root to leaf | 茎—叶 Stem to leaf | 叶—糙米 Leaf to brown rice | 茎—糙米 Stem to brown rice |
---|---|---|---|---|---|
CK | 0.105±0.002 bc | 0.047±0.008 b | 0.448±0.072 b | 0.860±0.222 a | 0.375±0.323 a |
ZK1 | 0.117±0.008 b | 0.061±0.003 a | 0.519±0.035 ab | 0.247±0.028 d | 0.128±0.014 e |
ZK2 | 0.110±0.016 bc | 0.064±0.004 a | 0.589±0.058 a | 0.322±0.049 cd | 0.192±0.047 cd |
ZK3 | 0.110±0.005 bc | 0.059±0.005 a | 0.537±0.049 a | 0.511±0.047 b | 0.274±0.030 b |
ZK4 | 0.143±0.008 a | 0.050±0.002 b | 0.351±0.012 c | 0.460±0.059 bc | 0.161±0.017 de |
ZK5 | 0.097±0.004 c | 0.032±0.002 c | 0.340±0.026 c | 0.631±0.022 b | 0.214±0.016 c |
[1] | 李姣, 刘璐, 杨斌, 等. 镉及镉与铁、锌互作对水稻生长的影响[J]. 华北农学报, 2018, 33(1): 217-223. |
LI J, LIU L, YANG B, et al. Effects of cadmium concentration and interaction of cadmium with iron and zinc interaction on rice growth[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(1): 217-223. (in Chinese with English abstract) | |
[2] |
YUAN K, WANG C R, ZHANG C B, et al. Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland[J]. Environmental Pollution, 2020, 262: 114236.
DOI URL |
[3] | 潘九月, 屠王满措, 关美艳, 等. 水杨酸缓解农作物镉毒害的作用机制研究进展[J]. 生态学杂志, 2020, 39(12): 4216-4223. |
PAN J Y, TU W M C, GUAN M Y, et al. Research progress on mechanism of salicylic acid in alleviating cadmium toxicity in crop palnts[J]. Chinese Journal of Ecology, 2020, 39(12): 4216-4223. (in Chinese with English abstract) | |
[4] | 邓晓霞, 黎其万, 李茂萱, 等. 土壤调控剂与硅肥配施对镉污染土壤的改良效果及水稻吸收镉的影响[J]. 西南农业学报, 2018, 31(6): 1221-1226. |
DENG X X, LI Q W, LI M X, et al. Remediation effects of regulating agents and silicon application on Cd contaminated soil and Cd uptake of rice[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1221-1226. (in Chinese with English abstract) | |
[5] | 张宇鹏, 谭笑潇, 陈晓远, 等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响[J]. 生态环境学报, 2020, 29(2): 388-393. |
ZHANG Y P, TAN X X, CHEN X Y, et al. Effects of inorganic silicon foliar fertilizer and soil conditioner on plumbum and cadmium absorption in rice[J]. Ecology and Environmental Sciences, 2020, 29(2): 388-393. (in Chinese with English abstract) | |
[6] | 尹晓辉, 邹慧玲, 方雅瑜, 等. 施锰方式对水稻吸收积累镉的影响研究[J]. 环境科学与技术, 2017, 40(8): 8-12. |
YIN X H, ZOU H L, FANG Y Y, et al. Effects of manganese fertilizer on absorption and accumulation of Cd in rice[J]. Environmental Science & Technology. 2017, 40(8): 8-12. (in Chinese with English abstract)
DOI URL |
|
[7] |
HAN Y, LING Q, DONG F Q, et al. Iron and copper micronutrients influences cadmium accumulation in rice grains by altering its transport and allocation[J]. Science of the Total Environment, 2021, 777: 146118.
DOI URL |
[8] |
FENG R W, WEI C Y, TU S X, et al. A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice[J]. Biological Trace Element Research, 2013, 151(1): 113-121.
DOI URL |
[9] | 贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究[J]. 环境科学与技术, 2017, 40(6): 24-30. |
JIA Q, HU M, ZHANG Y Y, et al. Effect of silicon-calcium fertilizer on Pb and Cd absorption by rice in heavy metal polluted farmland[J]. Environmental Science & Technology, 2017, 40(6): 24-30. (in Chinese with English abstract) | |
[10] | 黄涓, 柳赛花, 纪雄辉, 等. 低镉胁迫下水稻幼苗硅-镉互作初步研究[J]. 作物研究, 2014, 28(8): 876-880. |
HUANG J, LIU S H, JI X H, et al. Preliminary study on the interaction between silicon and cadmium in rice seedlings under low cadmium stress[J]. Crop Research, 2014, 28(8): 876-880. (in Chinese with English abstract) | |
[11] | 高敏, 周俊, 刘海龙, 等. 叶面喷施硅硒联合水分管理对水稻镉吸收转运特征的影响[J]. 农业环境科学学报, 2018, 37(2): 215-222. |
[12] | GAO M, ZHOU J, LIU H L, et al. Effect of silica and selenite foliar sprays on the uptake and transport of cadmium by rice under water management[J]. Journal of Agro-Environment Science, 2018, 37(2): 215-222. (in Chinese with English abstract) |
[13] |
TIAN T, ZHOU H, GU J F, et al. Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (Oryza sativa L.)[J]. Plant and Soil, 2019, 440(1/2): 327-339.
DOI URL |
[14] | 贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J]. 农业环境科学学报, 2016, 35(12): 2260-2268. |
HE Q F, GUI J, LIU D H, et al. Research progress of soil property's changes and its impacts on soil cadmium activity in flooded paddy field[J]. Journal of Agro-Environment Science, 2016, 35(12): 2260-2268. (in Chinese with English abstract) | |
[15] |
GAO M, ZHOU J, LIU H L, et al. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice[J]. Science of the Total Environment, 2018, 631/632: 1100-1108.
DOI URL |
[16] | 何邵麟, 龙超林, 刘应忠, 等. 贵州地表土壤及沉积物中镉的地球化学与环境问题[J]. 贵州地质, 2004, 21(4): 245-250. |
HE S L, LONG C L, LIU Y Z, et al. Geochemistry and environment of the cadmium in the soil and sediments at the surface of Guizhou Province[J]. Guizhou Geology, 2004, 21(4): 245-250. (in Chinese with English abstract) | |
[17] | 田茂苑. 贵州喀斯特地区不同水稻土镉污染风险格局划分[D]. 贵州大学, 2019. |
TIAN M Y. Classification of cadmium pollution risk patterns of different paddy soils in Karst area of Guizhou[D]. Guiyang: Guizhou University, 2019. (in Chinese with English abstract) | |
[18] | 刘鸿雁, 涂宇, 顾小凤, 等. 地球化学高背景农田土壤重金属镉的累积效应及环境影响[J]. 山地农业生物学报, 2018, 37(5):1-6. |
LIU H Y, TU Y, GU X-F, et al. Accumulative effect and environmental impact of cadmium in farmland soil with high background of geochemistry[J]. Journal of Mountain Agriculture and Biology, 2018, 37(5): 1-6. (in Chinese with English abstract) | |
[19] | 赵黎明, 李明, 郑殿峰, 等. 灌溉方式与种植密度对寒地水稻产量及光合物质生产特性的影响[J]. 农业工程学报, 2015, 31(6): 159-169. |
ZHAO L M, LIMING, ZHENG D F, et al. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 159-169. (in Chinese with English abstract) | |
[20] | 姜心禄, 李旭毅, 池忠志, 等. 3种秧苗不同秧龄机插对水稻产量性状的影响[J]. 西南农业学报, 2015, 28(6): 2444-2450. |
JIANG X L, LI X Y, CHI Z Z, et al. Effects of mechanical transplanting on characteristics of rice yield with seedlings at different ages[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2444-2450. (in Chinese with English abstract) | |
[21] | 龙思斯, 宋正国, 雷鸣, 等. 不同阻控剂阻控重度Cd污染区水稻富集Cd的效果[J]. 中国稻米, 2017, 23(3): 30-34. |
LONG S S, SONG Z G, LEI M, et al. Effects of different inhibitor on reducing cadmium content of rice[J]. China Rice, 2017, 23(3): 30-34. (in Chinese with English abstract) | |
[22] | 陈喆, 张淼, 叶长城, 等. 富硅肥料和水分管理对稻米镉污染阻控效果研究[J]. 环境科学学报, 2015, 35(12): 4003-4011. |
CHEN Z, ZHANG M, YE C C, et al. Mitigation of Cd accumulation in rice (Oryza sativa L.) with Si fertilizers and irrigation managements[J]. Acta Scientiae Circumstantiae, 2015, 35(12): 4003-4011. (in Chinese with English abstract) | |
[23] | 朱海霞, 姜丽霞, 吕佳佳, 等. 淹水胁迫对寒地水稻产量构成因子的作用[J]. 自然灾害学报, 2019, 28(05): 198-206. |
ZHU H X, JIANG L X, LV J J, et al. Effects of waterlogging stress on yield components of rice in cold region[J]. Journal of Natural Disasters, 2019, 28(05): 198-206. (in Chinese with English abstract) | |
[24] |
VACULÍK M, PAVLOVIČ A, LUX A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize[J]. Ecotoxicology and Environmental Safety, 2015, 120: 66-73.
DOI URL |
[25] |
LYSENKO E A, KLAUS A A, PSHYBYTKO N L,et al. Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize.[J]. Photosynthesis Research, 2015, 125(1/2): 291-303.
DOI URL |
[26] | 王木兰, 姜玥璐. 微量元素锰对威氏海链藻生长及叶绿素荧光的影响[J]. 环境科学, 2018, 39(12): 5514-5522. |
WANG M L,JIANG Y L. Effects of manganese on the growth and chlorophyll fluorescence induction kinnetifics of Conticribra weissflogii[J]. Environmental Science. 2018, 39(12): 5514-5522. (in Chinese with English abstract) | |
[27] |
HUANG H M, ZHAO Y L, XU Z G, et al. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2019, 181: 18-25.
DOI URL |
[28] |
ZHANG J Y, WANG S F, SONG S H, et al. Transcriptomic and proteomic analyses reveal new insight into chlorophyll synthesis and chloroplast structure of maize leaves under zinc deficiency stress[J]. Journal of Proteomics, 2019, 199: 123-134.
DOI URL |
[29] |
SRIVASTAVA S, SHRIVASTAVA M. Zinc supplementation imparts tolerance to arsenite stress in Hydrilla verticillata (L.f.) Royle.[J]. International Journal of Phytoremediation, 2017, 19(4): 353-359.
DOI URL |
[30] | 曲丹阳, 张立国, 顾万荣, 等. 壳聚糖对镉胁迫下玉米幼苗根系生长及叶片光合的影响[J]. 生态学杂志, 2017, 36(5): 1300-1309. |
QU D Y, ZHANG L G, GU W R, et al. Effects of chitosan on root growth and leaf photosynthesis of maize seedlings under cadmium stress[J]. Chinese Journal of Ecology, 2017, 36(5): 1300-1309. (in Chinese with English abstract) | |
[31] |
ZHANG M, TANG S H, HUANG X, et al. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.)[J]. Environmental and Experimental Botany, 2014, 107: 39-45.
DOI URL |
[32] | 高臣, 刘俊渤, 常海波, 等. 硅对水稻叶片光合特性和超微结构的影响[J]. 吉林农业大学学报, 2011, 33(1): 1-4. |
GAO C, LIU J B, CHANG H B, et al. Effects of silicon on rice leaf photosynthesis and ultrastructure[J]. Journal of Jilin Agricultural University, 2011, 33(1): 1-4. (in Chinese with English abstract) | |
[33] | 陈懿, 邱雪柏, 梁贵林, 等. 覆盖方式对上部烟叶质量的影响[J]. 湖北农业科学, 2016, 55(19): 5141-5143, 5147. |
[34] | CHEN Y, QIU X B, LIANG G L, et al. Effects of covering method and leaf fertilizer on quality of upper tobacco leaves[J]. Hubei Agricultural Sciences, 2016, 55(19): 5141-5143, 5147. (in Chinese with English abstract) |
[35] | 高一宁, 时晓芳, 侯延杰, 等. 虹吸输铁对黄化苹果叶片光合参数及细胞器结构的影响[J]. 广西植物, 2018, 38(12): 1660-1666. |
GAO Y N, SHI X F, HOU Y J, et al. Effects of Fe fertilizer siphon transfusion on photosynthetic parameters and organelle structure of iron chlorosis in apple trees[J]. Guihaia, 2018, 38(12): 1660-1666. (in Chinese with English abstract) | |
[36] |
RAHMAN A, HOSSAIN M S, MAHMUD J A, et al. Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems.[J]. Physiology and Molecular Biology of Plants, 2016, 22(3): 291-306.
DOI URL |
[37] | ZHEN S, SHUAI H, XU C, et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice[J]. Science of The Total Environment, 2021, 770(prepublish): 145302. |
[38] |
LIU C P, LI F B, LUO C L, et al. Foliar application of two silica sols reduced cadmium accumulation in rice grains.[J]. Journal of Hazardous Materials, 2009, 161(2/3) : 1466-1472.
DOI URL |
[39] | 邹成林, 翟瑞宁, 黄开健, 等. 叶面喷施硒肥对糯玉米产量、硒含量及重金属含量的影响[J]. 西南农业学报, 2019, 32(4): 854-859. |
ZOU C L, ZHAI R N, HUANG K J, et al. Effects of foliar spraying of selenium fertilizer on yield, selenium content and heavy metals content in waxy maize[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(4): 854-859. (in Chinese with English abstract) | |
[40] |
MEDEIROS BORSAGLI F G L, MANSUR A A P, CHAGAS P, et al. O-carboxymethyl functionalization of chitosan: complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions[J]. Reactive and Functional Polymers, 2015, 97: 37-47.
DOI URL |
[41] | 赵明, 蔡葵, 孙永红, 等. 石灰和硅肥对非污染土壤Cd有效性和花生Cd含量的影响[J]. 农业环境科学学报, 2012, 31(9): 1723-1728. |
ZHAO M, CAI K, SUN Y H, et al. Effect of lime and silicon fertilizer on availability of soil cadmium and peanut cadmium contents in non-polluted soil[J]. Journal of Agro-Environment Science, 2012, 31(9): 1723-1728. (in Chinese with English abstract) | |
[42] | 彭鸥, 刘玉玲, 铁柏清, 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应[J]. 生态学杂志, 2019, 38(4): 1049-1056. |
PENG O, LIU Y L, TIE B Q, et al. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress[J]. Chinese Journal of Ecology, 2019, 38(4): 1049-1056. (in Chinese with English abstract) | |
[43] | 任红玉, 李爽, 赵慧莉, 等. 叶面喷施不同硅源制剂对水稻植株养分吸收的动态影响[J]. 吉林农业大学学报, 2017, 39(5): 596-602. |
REN H Y, LI S, ZHAO H L, et al. Dynamic effect of foliar application of different silicon compounds on rice nutrient absorption[J]. Journal of Jilin Agricultural University, 2017, 39(5): 596-602. (in Chinese with English abstract) | |
[44] |
CHEN Z, TANG Y T, ZHIU C, et al. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization[J]. Chemosphere, 2017, 175: 275-285.
DOI URL |
[45] |
LI J R, XU Y M. Immobilization remediation of Cd-polluted soil with different water condition[J]. Journal of Environmental Management, 2017, 193: 607-612.
DOI URL |
[46] | 陈楠, 张昊, 杨慧敏, 等. 土壤pH对土壤镉形态及稻米镉积累的影响[J]. 湖南农业大学学报(自然科学版), 2018, 44(2): 176-182. |
CHEN N, ZHANG H, YANG H M, et al. Effects of soil pH on soil cadmium formations and its accumulation in rice[J]. Journal of Hunan Agricultural University (Natural Sciences), 2018, 44(2): 176-182. (in Chinese with English abstract) | |
[47] | 陈江民, 杨永杰, 黄奇娜, 等. 持续淹水对水稻镉吸收的影响及其调控机理[J]. 中国农业科学, 2017, 50(17): 3300-3310. |
CHEN J M, YANG Y J, HUANG Q N, et al. Effects of continuous flooding on cadmium absorption and its regulation mechanisms in rice[J]. Scientia Agricultura Sinica, 2017, 50(17): 3300-3310. (in Chinese with English abstract) | |
[48] |
MA J, ZHANG X Q, WANG L J. Synergistic effects between [Si-hemicellulose matrix] ligands and Zn ions in inhibiting Cd ion uptake in rice (Oryza sativa) cells.[J]. Planta, 2017, 245(5): 965-976.
DOI URL |
[49] |
WANG C R, CHENG T T, LIU H T, et al. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils[J]. Journal of Environmental Sciences, 2021, 103: 336-346.
DOI URL |
[1] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[2] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[3] | 杜红, 李玉鹏, 程文, 肖荣英, 胡鹏. 丛枝菌根真菌改善镉胁迫下植物根系和土壤微环境的效应[J]. 浙江农业学报, 2022, 34(5): 1039-1048. |
[4] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
[5] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
[6] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
[7] | 朱芸, 郭彬, 林义成, 傅庆林, 刘琛, 李凝玉, 李华. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响[J]. 浙江农业学报, 2021, 33(5): 885-892. |
[8] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[9] | 厉宝仙, 王保君, 怀燕, 沈亚强, 张红梅, 程旺大. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
[10] | 刘俊, 朱德泉, 于从羊, 薛康, 张顺, 廖娟. 舀勺型孔轮式水稻精量排种器设计与试验[J]. 浙江农业学报, 2021, 33(4): 739-752. |
[11] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[12] | 刘如, 董畅茹, 张祎雯, 屈铭慧, 张伟, 洒海洋, 陈海燕, 叶文玲, 樊霆. 镉胁迫下黑曲霉TL-F2的促生特征及其对黑麦草种子萌发、幼苗生长和镉含量的影响[J]. 浙江农业学报, 2021, 33(2): 326-334. |
[13] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[14] | 董爱琴, 李建国, 杨涛, 陈院华, 徐昌旭, 万辉, 彭志平, 谢杰. 金属硫酸盐浸种对水稻种子萌发和秧苗镉吸收的影响[J]. 浙江农业学报, 2021, 33(12): 2213-2223. |
[15] | 郑雯, 贾良权, 祁亨年, 王瑞琴, 赵光武, 袁俊. 基于TDLAS技术测定水稻种子呼吸的初步研究[J]. 浙江农业学报, 2021, 33(11): 2155-2163. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 783
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 459
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||