浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2348-2357.DOI: 10.3969/j.issn.1004-1524.2022.11.04
廖平强(), 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋(
)
收稿日期:
2021-03-13
出版日期:
2022-11-25
发布日期:
2022-11-29
通讯作者:
霍中洋
作者简介:
*霍中洋,E-mail: huozy69@163.com
LIAO Pingqiang(), CHEN Guoqi, LIU Guangming, JIANG Yan, ZHAO Can, WANG Weiling, HUO Zhongyang(
)
Received:
2021-03-13
Online:
2022-11-25
Published:
2022-11-29
Contact:
HUO Zhongyang
摘要:
异型莎草和水苋菜均为世界范围内水稻田危害性杂草,对水稻生产造成了严重影响。选用太湖地区常见水稻品种南粳46为材料,采用单因素试验设计,分别设计5个杂草密度,4组重复,研究不同密度异型莎草和水苋菜对水稻产量、稻米加工、外观品质及籽粒氮积累量的影响。结果表明,随着异型莎草和水苋菜密度增加,水稻的有效穗数、每穗粒数、千粒重和产量均逐渐下降,且籽粒氮积累量和稻米加工、外观品质也随之降低。当异型莎草密度为65株·m-2时,水稻产量为3.28 t·hm-2,与空白对照相比,产量损失率达57.29%,且稻米加工、外观品质均显著下降。当水苋菜密度为250株·m-2时,水稻产量为3.10 t·hm-2,与空白对照相比,产量损失率达59.16%,稻米加工和外观品质显著下降。异型莎草和水苋菜密度增加,均能使水稻产量、加工品质和外观品质显著降低。据试验结果可知,杂草主要通过影响水稻有效穗数、每穗粒数和千粒重影响水稻产量,而田间小气候、水肥竞争等可能是影响稻米加工和外观品质的重要原因。为保证水稻产量及稻米加工、外观品质,应当注意水稻田中下层杂草的防控。
中图分类号:
廖平强, 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋. 不同密度异型莎草和水苋菜对水稻产量及稻米加工、外观品质的影响[J]. 浙江农业学报, 2022, 34(11): 2348-2357.
LIAO Pingqiang, CHEN Guoqi, LIU Guangming, JIANG Yan, ZHAO Can, WANG Weiling, HUO Zhongyang. Effects of different density of Cyperus difformis and Ammannia baccifera on rice yield, processing and appearance quality[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2348-2357.
密度/(株·m-2) Density/ (plants·m-2) | 有效穗数 Number of spikes/ (×104 hm-2) | 每穗粒数 Grains per panicle | 结实率 Maturing rate/% | 千粒重 1 000-grain weight/g | 实际产量 Yield/ (t·hm-2) | 产量损失率 Yield loss/% |
---|---|---|---|---|---|---|
CK | 248.1±2.8 a | 121±5 a | 91.9±2.0 a | 27.06±0.16 a | 7.68±0.11 a | — |
5 | 231.7±3.1 b | 104±7 b | 91.5±0.5 a | 27.06±0.14 a | 5.96±0.17 b | 22.40 |
10 | 218.6±4.2 c | 99±4 b | 91.3±0.5 a | 26.96±0.09 ab | 5.24±0.11 c | 31.77 |
25 | 215.4±3.7 cd | 87±2 c | 91.6±0.8 a | 26.71±0.04 bc | 4.51±0.13 d | 41.28 |
45 | 207.3±4.2 d | 81±3 cd | 91.2±1.0 a | 26.66±0.11 c | 4.04±0.07 e | 47.83 |
65 | 180.7±3.2 e | 78±2 d | 91.1±0.6 a | 26.47±0.09 c | 3.28±0.10 f | 57.29 |
表1 不同密度异型莎草对水稻产量及产量构成因素的影响
Table 1 Effect of different densities of Cyperus difformis on grain yield and yield traits of rice
密度/(株·m-2) Density/ (plants·m-2) | 有效穗数 Number of spikes/ (×104 hm-2) | 每穗粒数 Grains per panicle | 结实率 Maturing rate/% | 千粒重 1 000-grain weight/g | 实际产量 Yield/ (t·hm-2) | 产量损失率 Yield loss/% |
---|---|---|---|---|---|---|
CK | 248.1±2.8 a | 121±5 a | 91.9±2.0 a | 27.06±0.16 a | 7.68±0.11 a | — |
5 | 231.7±3.1 b | 104±7 b | 91.5±0.5 a | 27.06±0.14 a | 5.96±0.17 b | 22.40 |
10 | 218.6±4.2 c | 99±4 b | 91.3±0.5 a | 26.96±0.09 ab | 5.24±0.11 c | 31.77 |
25 | 215.4±3.7 cd | 87±2 c | 91.6±0.8 a | 26.71±0.04 bc | 4.51±0.13 d | 41.28 |
45 | 207.3±4.2 d | 81±3 cd | 91.2±1.0 a | 26.66±0.11 c | 4.04±0.07 e | 47.83 |
65 | 180.7±3.2 e | 78±2 d | 91.1±0.6 a | 26.47±0.09 c | 3.28±0.10 f | 57.29 |
指标 Index | 产量损失率 Yield loss | 有效穗数 Number of spikes | 每穗粒数 Grains per panicle | 结实率 Maturing rate | 千粒重 1 000-grain weight | 异型莎草密度 Density of C. difformis |
---|---|---|---|---|---|---|
产量损失率Yield loss | 1.000 | |||||
有效穗数Number of spikes | -0.932** | 1.000 | ||||
每穗粒数Grains per panicle | -0.983** | 0.861** | 1.000 | |||
结实率Maturing rate | -0.364 | 0.221 | 0.35 | 1.000 | ||
千粒重1 000-grain weight | -0.837** | 0.898** | 0.780** | 0.115 | 1.000 | |
异型莎草密度Density of C. difformis | 0.641** | -0.778** | -0.562** | 0.032 | -0.884** | 1.000 |
表2 异型莎草密度与水稻产量性状的相关性
Table 2 Correlation between the density of Cyperus difformis and yield traits of rice
指标 Index | 产量损失率 Yield loss | 有效穗数 Number of spikes | 每穗粒数 Grains per panicle | 结实率 Maturing rate | 千粒重 1 000-grain weight | 异型莎草密度 Density of C. difformis |
---|---|---|---|---|---|---|
产量损失率Yield loss | 1.000 | |||||
有效穗数Number of spikes | -0.932** | 1.000 | ||||
每穗粒数Grains per panicle | -0.983** | 0.861** | 1.000 | |||
结实率Maturing rate | -0.364 | 0.221 | 0.35 | 1.000 | ||
千粒重1 000-grain weight | -0.837** | 0.898** | 0.780** | 0.115 | 1.000 | |
异型莎草密度Density of C. difformis | 0.641** | -0.778** | -0.562** | 0.032 | -0.884** | 1.000 |
密度/(株·m-2) Density/ (plants·m-2) | 有效穗数 Number of spikes/ (×104 hm-2) | 每穗粒数 Grains per panicle | 结实率 Maturing rate/% | 千粒重 1 000-grain weight/g | 实际产量 Yield/ (t·hm-2) | 产量损失率 Yield loss/% |
---|---|---|---|---|---|---|
CK | 256.1±7.8 a | 118±2 a | 91.2±2.6 a | 27.38±0.06 a | 7.59±0.13 a | — |
40 | 246.1±3.9 a | 104±4 b | 91.6±1.7 a | 27.11±0.11 ab | 6.21±0.18 b | 18.18 |
70 | 209.9±9.2 b | 100±4 b | 92.3±1.0 a | 26.73±0.08 bc | 5.16±0.04 c | 32.02 |
100 | 203.2±12.6 b | 99±3 b | 91.2±1.0 a | 26.41±0.44 cd | 4.76±0.15 d | 37.29 |
160 | 172.1±4.9 c | 92±3 c | 91.7±1.4 a | 26.32±0.09 cd | 3.77±0.10 e | 50.33 |
250 | 167.3±7.6 c | 79±3 d | 92.1±1.6 a | 26.07±0.11 d | 3.10±0.14 f | 59.16 |
表3 不同密度水苋菜对水稻产量及产量构成因素的影响
Table 3 Effect of different densities of Ammannia baccifera on grain yield and yield traits of rice
密度/(株·m-2) Density/ (plants·m-2) | 有效穗数 Number of spikes/ (×104 hm-2) | 每穗粒数 Grains per panicle | 结实率 Maturing rate/% | 千粒重 1 000-grain weight/g | 实际产量 Yield/ (t·hm-2) | 产量损失率 Yield loss/% |
---|---|---|---|---|---|---|
CK | 256.1±7.8 a | 118±2 a | 91.2±2.6 a | 27.38±0.06 a | 7.59±0.13 a | — |
40 | 246.1±3.9 a | 104±4 b | 91.6±1.7 a | 27.11±0.11 ab | 6.21±0.18 b | 18.18 |
70 | 209.9±9.2 b | 100±4 b | 92.3±1.0 a | 26.73±0.08 bc | 5.16±0.04 c | 32.02 |
100 | 203.2±12.6 b | 99±3 b | 91.2±1.0 a | 26.41±0.44 cd | 4.76±0.15 d | 37.29 |
160 | 172.1±4.9 c | 92±3 c | 91.7±1.4 a | 26.32±0.09 cd | 3.77±0.10 e | 50.33 |
250 | 167.3±7.6 c | 79±3 d | 92.1±1.6 a | 26.07±0.11 d | 3.10±0.14 f | 59.16 |
指标 Index | 产量损失率 Yield loss | 有效穗数 Number of spikes | 每穗粒数 Grains per panicle | 结实率 Maturing rate | 千粒重 1 000-grain weight | 水苋菜密度 Density of A. baccifera |
---|---|---|---|---|---|---|
产量损失率Yield loss | 1.000 | |||||
有效穗数Number of spikes | -0.971** | 1.000 | ||||
每穗粒数Grains per panicle | -0.947** | 0.867** | 1.000 | |||
结实率Maturing rate | 0.023 | -0.042 | -0.118 | 1.000 | ||
千粒重1 000-grain weight | -0.934** | 0.892** | 0.874** | -0.124 | 1.000 | |
水苋菜密度Density of A. baccifera | 0.940** | -0.919** | -0.940** | 0.013 | -0.863** | 1.000 |
表4 水苋菜密度与水稻产量性状的相关性
Table 4 Correlation between the density of Ammannia baccifera and yield traits of rice
指标 Index | 产量损失率 Yield loss | 有效穗数 Number of spikes | 每穗粒数 Grains per panicle | 结实率 Maturing rate | 千粒重 1 000-grain weight | 水苋菜密度 Density of A. baccifera |
---|---|---|---|---|---|---|
产量损失率Yield loss | 1.000 | |||||
有效穗数Number of spikes | -0.971** | 1.000 | ||||
每穗粒数Grains per panicle | -0.947** | 0.867** | 1.000 | |||
结实率Maturing rate | 0.023 | -0.042 | -0.118 | 1.000 | ||
千粒重1 000-grain weight | -0.934** | 0.892** | 0.874** | -0.124 | 1.000 | |
水苋菜密度Density of A. baccifera | 0.940** | -0.919** | -0.940** | 0.013 | -0.863** | 1.000 |
密度/(株·m-2) Density/(plants·m-2) | 糙米率 Brown rate/% | 精米率 Milled rate/% | 整精米率 Head milled rice rate/% | 垩白粒率 Chalkiness rate/% | 垩白度 Chalkiness degree |
---|---|---|---|---|---|
CK | 82.85±0.18 a | 73.50±0.28 a | 68.95±0.15 a | 29.75±1.63 d | 31.77±1.26 c |
5 | 82.83±0.88 a | 73.16±0.19 ab | 68.78±0.24 a | 33.89±1.70 cd | 33.32±1.57 bc |
10 | 82.22±0.38 ab | 73.10±0.11 ab | 68.48±0.15 ab | 36.71±0.40 c | 35.01±3.13 bc |
25 | 81.57±0.92 ab | 72.99±0.13 b | 68.06±0.10 bc | 38.00±2.77 bc | 36.77±1.59 bc |
45 | 81.23±1.16 ab | 72.85±0.20 b | 67.87±0.29 c | 42.32±2.79 ab | 38.47±2.77 ab |
65 | 80.40±1.04 b | 72.15±0.30 c | 67.60±0.48 c | 45.62±1.52 a | 40.71±2.86 a |
表5 不同密度异型莎草对稻米加工及外观品质的影响
Table 5 Effect of different densities of Cyperus difformis in processing and appearance quality of rice
密度/(株·m-2) Density/(plants·m-2) | 糙米率 Brown rate/% | 精米率 Milled rate/% | 整精米率 Head milled rice rate/% | 垩白粒率 Chalkiness rate/% | 垩白度 Chalkiness degree |
---|---|---|---|---|---|
CK | 82.85±0.18 a | 73.50±0.28 a | 68.95±0.15 a | 29.75±1.63 d | 31.77±1.26 c |
5 | 82.83±0.88 a | 73.16±0.19 ab | 68.78±0.24 a | 33.89±1.70 cd | 33.32±1.57 bc |
10 | 82.22±0.38 ab | 73.10±0.11 ab | 68.48±0.15 ab | 36.71±0.40 c | 35.01±3.13 bc |
25 | 81.57±0.92 ab | 72.99±0.13 b | 68.06±0.10 bc | 38.00±2.77 bc | 36.77±1.59 bc |
45 | 81.23±1.16 ab | 72.85±0.20 b | 67.87±0.29 c | 42.32±2.79 ab | 38.47±2.77 ab |
65 | 80.40±1.04 b | 72.15±0.30 c | 67.60±0.48 c | 45.62±1.52 a | 40.71±2.86 a |
密度/(株·m-2) Density/(plants·m-2) | 糙米率 Brown rate/% | 精米率 Milled rate/% | 整精米率 Head milled rice rate/% | 垩白粒率 Chalkiness rate/% | 垩白度 Chalkiness degree |
---|---|---|---|---|---|
CK | 82.44±0.18 a | 73.42±0.11 a | 68.92±0.12 a | 30.42±3.02 c | 31.22±1.10 c |
40 | 82.34±0.15 ab | 73.21±0.16 a | 68.88±0.14 a | 34.66±1.91 bc | 35.40±1.82 bc |
70 | 82.27±0.09 ab | 73.14±0.19 a | 68.76±0.06 ab | 35.38±1.99 bc | 37.16±1.62 ab |
100 | 82.26±0.15 ab | 73.14±0.15 a | 68.53±0.14 b | 39.32±2.16 ab | 38.66±1.8 ab |
160 | 82.06±0.07 bc | 73.13±0.13 ab | 68.22±0.08 c | 39.49±2.63 ab | 39.73±1.48 ab |
250 | 81.92±0.10 c | 72.79±0.16 b | 67.56±0.07 d | 44.95±4.54 a | 41.71±3.28 a |
表6 不同密度水苋菜对稻米加工及外观品质的影响
Table 6 Effect of different densities of Ammannia baccifera on processing and appearance quality of rice
密度/(株·m-2) Density/(plants·m-2) | 糙米率 Brown rate/% | 精米率 Milled rate/% | 整精米率 Head milled rice rate/% | 垩白粒率 Chalkiness rate/% | 垩白度 Chalkiness degree |
---|---|---|---|---|---|
CK | 82.44±0.18 a | 73.42±0.11 a | 68.92±0.12 a | 30.42±3.02 c | 31.22±1.10 c |
40 | 82.34±0.15 ab | 73.21±0.16 a | 68.88±0.14 a | 34.66±1.91 bc | 35.40±1.82 bc |
70 | 82.27±0.09 ab | 73.14±0.19 a | 68.76±0.06 ab | 35.38±1.99 bc | 37.16±1.62 ab |
100 | 82.26±0.15 ab | 73.14±0.15 a | 68.53±0.14 b | 39.32±2.16 ab | 38.66±1.8 ab |
160 | 82.06±0.07 bc | 73.13±0.13 ab | 68.22±0.08 c | 39.49±2.63 ab | 39.73±1.48 ab |
250 | 81.92±0.10 c | 72.79±0.16 b | 67.56±0.07 d | 44.95±4.54 a | 41.71±3.28 a |
密度 Density | 糙米率 Brown rate | 精米率 Milled rate | 整精米率 Head milled rice rate | 垩白粒率 Chalkiness rate | 垩白度 Chalkiness degree |
---|---|---|---|---|---|
异型莎草密度Density of C. difformis | -0.749** | -0.859** | -0.868** | 0.923** | 0.813** |
水苋菜密度Density of A. baccifera | -0.841** | -0.778** | -0.966** | 0.853** | 0.830** |
表7 异型莎草和水苋菜密度与稻米加工及外观品质的相关性
Table 7 Correlation between Cyperus difformis and Ammannia baccifera density and processing and appearance quality of rice
密度 Density | 糙米率 Brown rate | 精米率 Milled rate | 整精米率 Head milled rice rate | 垩白粒率 Chalkiness rate | 垩白度 Chalkiness degree |
---|---|---|---|---|---|
异型莎草密度Density of C. difformis | -0.749** | -0.859** | -0.868** | 0.923** | 0.813** |
水苋菜密度Density of A. baccifera | -0.841** | -0.778** | -0.966** | 0.853** | 0.830** |
杂草种类 Weed species | 密度/ (株·m-2) Density/ (plants·m-2) | 籽粒氮积累量 Seed nitrogen/ (mg·g-1) | 籽粒氮损失量 Nitrogen reduction rate/% | 总蛋白质 含量 Total protein/% | 蛋白组分含量 Protein component content/(mg·g-1) | |||
---|---|---|---|---|---|---|---|---|
清蛋白 Albumin | 球蛋白 Globulin | 醇溶蛋白 Prolamin | 谷蛋白 Glutelin | |||||
异型莎草 | 0 | 10.42±0.14 a | — | 6.20±0.08 a | 3.91±0.05 a | 3.33±0.08 a | 4.61±0.06 a | 34.36±2.22 a |
Cyperus | 5 | 10.30±0.08 ab | 1.15 | 6.13±0.05 ab | 3.82±0.04 ab | 3.22±0.05 ab | 4.53±0.03 a | 32.27±0.29 ab |
difformis | 10 | 10.09±0.12 bc | 3.17 | 6.00±0.07 bc | 3.77±0.01 bc | 3.10±0.05 bc | 4.32±0.04 b | 31.77±0.21 abc |
25 | 9.86±0.12 cd | 5.37 | 5.87±0.07 cd | 3.72±0.01 bc | 3.01±0.02 c | 4.05±0.11 c | 31.13±0.11 bc | |
45 | 9.66±0.11 de | 7.29 | 5.75±0.037 de | 3.65±0.09 c | 2.90±0.05 cd | 3.89±0.04 c | 30.65±0.18 bc | |
60 | 9.41±0.13 e | 9.69 | 5.60±0.08 e | 3.42±0.05 d | 2.76±0.11 d | 3.66±0.13 d | 29.16±0.94 c | |
水苋菜 | 0 | 10.36±0.14 a | — | 6.17±0.08 a | 3.92±0.04 a | 3.29±0.12 a | 4.57±0.23 a | 34.15±2.59 a |
Ammannia | 40 | 9.99±0.17 b | 3.57 | 5.95±0.10 b | 3.80±0.05 ab | 3.18±0.04 ab | 4.13±0.12 b | 30.97±0.49 ab |
baccifera | 70 | 9.78±0.08 bc | 5.60 | 5.82±0.05 bc | 3.75±0.05 bc | 3.12±0.06 bc | 3.99±0.04 bc | 30.19±0.31 b |
100 | 9.62±0.05 cd | 7.14 | 5.72±0.03 cd | 3.69±0.02 bc | 3.00±0.05 cd | 3.94±0.05 bcd | 29.66±0.16 bc | |
160 | 9.49±0.05 de | 8.40 | 5.65±0.03 de | 3.62±0.01 c | 2.91±0.01 d | 3.82±0.04 cd | 28.46±0.94 bc | |
250 | 9.25±0.06 e | 10.71 | 5.50±0.04 e | 3.44±0.12 d | 2.70±0.04 e | 3.65±0.07 d | 26.97±0.48 c |
表8 不同密度异型莎草和水苋菜对稻米籽粒氮积累量及蛋白组分的影响
Table 8 Effects of different densities of Cyperus difformis and Ammannia baccifera on the nitrogen content and protein fraction of rice seeds
杂草种类 Weed species | 密度/ (株·m-2) Density/ (plants·m-2) | 籽粒氮积累量 Seed nitrogen/ (mg·g-1) | 籽粒氮损失量 Nitrogen reduction rate/% | 总蛋白质 含量 Total protein/% | 蛋白组分含量 Protein component content/(mg·g-1) | |||
---|---|---|---|---|---|---|---|---|
清蛋白 Albumin | 球蛋白 Globulin | 醇溶蛋白 Prolamin | 谷蛋白 Glutelin | |||||
异型莎草 | 0 | 10.42±0.14 a | — | 6.20±0.08 a | 3.91±0.05 a | 3.33±0.08 a | 4.61±0.06 a | 34.36±2.22 a |
Cyperus | 5 | 10.30±0.08 ab | 1.15 | 6.13±0.05 ab | 3.82±0.04 ab | 3.22±0.05 ab | 4.53±0.03 a | 32.27±0.29 ab |
difformis | 10 | 10.09±0.12 bc | 3.17 | 6.00±0.07 bc | 3.77±0.01 bc | 3.10±0.05 bc | 4.32±0.04 b | 31.77±0.21 abc |
25 | 9.86±0.12 cd | 5.37 | 5.87±0.07 cd | 3.72±0.01 bc | 3.01±0.02 c | 4.05±0.11 c | 31.13±0.11 bc | |
45 | 9.66±0.11 de | 7.29 | 5.75±0.037 de | 3.65±0.09 c | 2.90±0.05 cd | 3.89±0.04 c | 30.65±0.18 bc | |
60 | 9.41±0.13 e | 9.69 | 5.60±0.08 e | 3.42±0.05 d | 2.76±0.11 d | 3.66±0.13 d | 29.16±0.94 c | |
水苋菜 | 0 | 10.36±0.14 a | — | 6.17±0.08 a | 3.92±0.04 a | 3.29±0.12 a | 4.57±0.23 a | 34.15±2.59 a |
Ammannia | 40 | 9.99±0.17 b | 3.57 | 5.95±0.10 b | 3.80±0.05 ab | 3.18±0.04 ab | 4.13±0.12 b | 30.97±0.49 ab |
baccifera | 70 | 9.78±0.08 bc | 5.60 | 5.82±0.05 bc | 3.75±0.05 bc | 3.12±0.06 bc | 3.99±0.04 bc | 30.19±0.31 b |
100 | 9.62±0.05 cd | 7.14 | 5.72±0.03 cd | 3.69±0.02 bc | 3.00±0.05 cd | 3.94±0.05 bcd | 29.66±0.16 bc | |
160 | 9.49±0.05 de | 8.40 | 5.65±0.03 de | 3.62±0.01 c | 2.91±0.01 d | 3.82±0.04 cd | 28.46±0.94 bc | |
250 | 9.25±0.06 e | 10.71 | 5.50±0.04 e | 3.44±0.12 d | 2.70±0.04 e | 3.65±0.07 d | 26.97±0.48 c |
[1] |
MAHAJAN G, KAUR G, CHAUHAN B S. Seeding rate and genotype effects on weeds and yield of dry-seeded rice[J]. Crop Protection, 2017, 96: 68-76.
DOI URL |
[2] | 林新坚, 王飞, 王长方, 等. 长期施肥对南方黄泥田冬春季杂草群落及其C、N、P化学计量的影响[J]. 中国生态农业学报, 2012, 20(5): 573-577. |
LIN X J, WANG F, WANG C F, et al. Effects of long-term fertilization on weed community characteristics and carbon, nitrogen and phosphorus stoichiometry during winter-spring season in yellow-clay paddy fields of South China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(5): 573-577. (in Chinese with English abstract)
DOI URL |
|
[3] | 朱文达, 张宏军, 涂书新, 等. 鸭舌草对水稻生长和产量性状的影响及其防治经济阈值的研究[J]. 中国生态农业学报, 2012, 20(9): 1204-1209. |
ZHU W D, ZHANG H J, TU S X, et al. Effects of Monochoria vaginalis on growth and yield properties of rice and its control economic threshold estimation in weed control[J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1204-1209. (in Chinese with English abstract)
DOI URL |
|
[4] | 李妙寿, 蔡鼎华, 元茂瑶, 等. 温州农区稻田杂草群落及其演替[J]. 浙江农业学报, 2000, 12(6): 325-330. |
LI M S, CAI D H, YUAN M Y, et al. Structure and succession of weed community in rice fields in Wenzhou, Zhejiang:[J]. Acta Agriculturae Zhejiangensis, 2000, 12(6): 325-330. (in Chinese with English abstract) | |
[5] | PRATLEY J E, BROSTER J C, MICHAEL P. Echinochloa spp. in Australian rice fields-species distribution and resistance status[J]. Crop and Pasture Science, 2008, 59(7): 639-645. |
[6] | 吴声敢, 王强, 赵学平, 等. 稻田稗草生物学特性及其综合防除[J]. 杂草科学, 2006, 24(3): 1-6. |
WU S G, WANG Q, ZHAO X P, et al. Biological characteristics and integrated control of barnyard grass in paddy field[J]. Weed Science, 2006, 24(3): 1-6. (in Chinese)
DOI URL |
|
[7] | 张自常, 李永丰, 张彬, 等. 江苏省稻田常见稗草的生物学特性[J]. 江苏农业科学, 2013, 41(12): 136-138. |
ZHANG Z C, LI Y F, ZHANG B, et al. Biological characteristics of common barnyard grass in rice fields in Jiangsu Province[J]. Jiangsu Agricultural Sciences, 2013, 41(12): 136-138. (in Chinese) | |
[8] | 胡进生, 汤洪涛, 缪松才, 等. 稻田稗草的发生危害及防除对策[J]. 杂草科学, 1990, 8(2): 32-34. |
HU J S, TANG H T, MIAO S C, et al. Occurrence and damage of barnyard grass in rice field and its control countermeasures[J]. Weed Science, 1990, 8(2): 32-34. (in Chinese) | |
[9] | 张自常, 李永丰, 张彬, 等. 稗属杂草对水稻生长发育和产量的影响[J]. 应用生态学报, 2014, 25(11): 3177-3184. |
ZHANG Z C, LI Y F, ZHANG B, et al. Influence of weeds in Echinochloa on growth and yield of rice[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3177-3184. (in Chinese with English abstract) | |
[10] |
ZHANG Z C, GU T, ZHAO B H, et al. Effects of common Echinochloa varieties on grain yield and grain quality of rice[J]. Field Crops Research, 2017, 203: 163-172.
DOI URL |
[11] |
张自常, 谷涛, 李永丰, 等. 不同氮水平下不同种稗草对水稻产量形成的影响[J]. 应用生态学报, 2016, 27(11): 3559-3568.
DOI |
ZHANG Z C, GU T, LI Y F, et al. Effects of different baynyardgrass varieties on grain yield formation of rice at different nitrogen application levels[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3559-3568. (in Chinese with English abstract)
DOI |
|
[12] | 田志慧, 陆俊尧, 袁国徽, 等. 千金子与异型莎草对直播水稻产量的影响及其生态经济阈值研究[J]. 中国生态农业学报, 2020, 28(3): 328-336. |
TIAN Z H, LU J Y, YUAN G H, et al. Effects and eco-economic thresholds of Leptochloa chinensis and Cyperus difformis on the yield of direct-seeding rice[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 328-336. (in Chinese with English abstract) | |
[13] | 陆保理, 张建新, 王云香, 等. 耳叶水苋药剂防除试验简报[J]. 上海农业科技, 2008(4): 127-128. |
LU B L, ZHANG J X, WANG Y X, et al. Brief report on the control experiment of Ammannia auriculata[J]. Shanghai Agricultural Science and Technology, 2008(4): 127-128. (in Chinese) | |
[14] | 时丹, 郑承志, 柳洪良, 等. 几种除草剂及不同处理对抗磺酰脲类除草剂杂草的防除效果[J]. 河南农业科学, 2009, 38(4): 91-93. |
SHI D, ZHENG C Z, LIU H L, et al. Control effects of several herbicides and different treatments on weeds resistant to sulfonylurea herbicides[J]. Journal of Henan Agricultural Sciences, 2009, 38(4): 91-93. (in Chinese) | |
[15] | 徐波, 王宝祥, 邢运高, 等. 遮光对水稻生长发育及稻米品质的影响[J]. 热带农业工程, 2019, 43(1): 19-20. |
XU B, WANG B X, XING Y G, et al. Effects of shading on rice growth and development and rice quality[J]. Tropical Agricultural Engineering, 2019, 43(1): 19-20. (in Chinese with English abstract) | |
[16] | 徐正浩, 余柳青. 不同株型水稻对无芒稗的生态控制研究[J]. 中国水稻科学, 2000, 14(2): 125-128. |
XU Z H, YU L Q. Ecological control of barnyardgrass by different morphological type rice[J]. Chinese Journal of Rice Science, 2000, 14(2): 125-128. (in Chinese with English abstract) | |
[17] | 王长方, 王俊, 陆永良, 等. 稻田野慈姑生物学特性及其对水稻产量影响[J]. 福建农业学报, 2011, 26(4): 601-604. |
WANG C F, WANG J, LU Y L, et al. Biological characteristics of and rice yield affected by Sagittaria trifolia Linn[J]. Fujian Journal of Agricultural Sciences, 2011, 26(4): 601-604. (in Chinese with English abstract) | |
[18] | 蒋易凡. 以稻稗和萤蔺为优势种的东北地区水稻机插秧田杂草防除技术研究[D]. 南京: 南京农业大学, 2018. |
JIANG Y F. Study on weed control technology with the advantage of echionchloa oryzioides and Scirpus juncoides in mechanized transplanting rice in northeast China[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract) | |
[19] | 徐大田, 权明顺, 李文成, 等. 三棱草发生密度与水稻产量关系[J]. 黑龙江农业科学, 2000(2): 39-40. |
XU D T, QUAN M S, LI W C, et al. Relationship between occurrence density of Pinellia ternata and rice yield[J]. Heilongjiang Agricultural Science, 2000(2): 39-40. (in Chinese) | |
[20] | 岳茂峰, 冯莉, 田兴山, 等. 不同种类杂草危害对水稻产量影响[J]. 广东农业科学, 2012, 39(13): 98-99, 109. |
YUE M F, FENG L, TIAN X S, et al. Influence on rice yield loss caused by different kinds of weeds[J]. Guangdong Agricultural Sciences, 2012, 39(13): 98-99, 109. (in Chinese with English abstract) | |
[21] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 优质稻谷 GB/T 17891—2017[S]. 北京: 中国标准出版社, 2017. |
[22] | 杨静, 罗秋香, 钱春荣, 等. 氮素对稻米蛋白质组分含量及蒸煮食味品质的影响[J]. 东北农业大学学报, 2006, 37(2): 145-150. |
YANG J, LUO Q X, QIAN C R, et al. Effect of nitrogen on the protein fractions content and cooking and eating quality of rice grain[J]. Journal of Northeast Agricultural University, 2006, 37(2): 145-150. (in Chinese with English abstract) | |
[23] | 朱文达. 稗对水稻生长和产量性状的影响及其经济阈值[J]. 植物保护学报, 2005, 32(1): 81-86. |
ZHU W D. Influence of barnyardgrass, Echinochloa crusgalli, on the growth and yield of paddy rice and its economic threshold[J]. Journal Of Plant Protection, 2005, 32(1): 81-86. (in Chinese with English abstract) | |
[24] | 王海斌, 俞振明, 何海斌, 等. 不同化感潜力水稻化感效应与产量的关系[J]. 中国生态农业学报, 2012, 20(1): 75-79. |
WANG H B, YU Z M, HE H B, et al. Relationship between allelopathic potential and grain yield of different allelopathic rice accessions[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 75-79. (in Chinese with English abstract)
DOI URL |
|
[25] | GU Y, LI H B, KONG C H. Allelopathic potential of barnyard grass on rice and soil microbes in paddy[J]. Allelopathy Journal, 2008, 21(2): 389-395. |
[26] |
XUAN T D, CHUNG I M, KHANH T D, et al. Identification of phytotoxic substances from early growth of barnyard grass (Echinochloa crusgalli) root exudates[J]. Journal of Chemical Ecology, 2006, 32(4): 895-906.
DOI URL |
[27] | 丁艳锋, 黄丕生, 凌启鸿. 水稻分蘖发生及与特定部位叶片叶鞘含氮率的关系[J]. 南京农业大学学报, 1995, 18(4): 14-18. |
DING Y F, HUANG P S, LING Q H. Relationship between emergence of tiller and nitrogen concentration of leaf blade or leaf sheath on specific node of rice[J]. Journal of Nanjing Agricultural University, 1995, 18(4): 14-18. (in Chinese with English abstract) | |
[28] |
BELDER P, SPIERTZ J H J, BOUMAN B A M, et al. Nitrogen economy and water productivity of lowland rice under water-saving irrigation[J]. Field Crops Research, 2005, 93(2/3): 169-185.
DOI URL |
[29] | 刘蕊. 耳叶水苋对苄嘧磺隆的抗药性及生物学特性研究[D]. 哈尔滨: 东北农业大学, 2012. |
LIU R. Research on resistance of Ammannia arenaria H. B. K. to bensulfuron-methyl and its biological characteristics[D]. Harbin:Northeast Agricultural University, 2012. (in Chinese with English abstract) | |
[30] |
STAUBER L G, SMITH R J Jr, TALBERT R E. Density and spatial interference of barnyardgrass (Echinochloa crus-galli) with rice (Oryza sativa)[J]. Weed Science, 1991, 39(2): 163-168.
DOI URL |
[31] | 任万军, 杨文钰, 徐精文, 等. 弱光对水稻籽粒生长及品质的影响[J]. 作物学报, 2003, 29(5): 785-790. |
REN W J, YANG W Y, XU J W, et al. Effect of low light on grains growth and quality in rice[J]. Acta Agronomica Sinica, 2003, 29(5): 785-790. (in Chinese with English abstract) | |
[32] | 赵广福, 金见国, 贾后如, 等. 水稻稻谷加工品质和外观品质栽培影响因素调查研究[J]. 现代农业科技, 2017(3): 4-5, 7. |
ZHAO G F, JIN J G, JIA H R, et al. Investigation and study on cultivation factors of Rice processing quality and appearance quality[J]. Modern Agricultural Science and Technology, 2017(3): 4-5, 7. (in Chinese) | |
[33] |
兰艳, 黄曌, 胡明明, 等. 施氮量对低谷蛋白水稻籽粒品质及蛋白质组分的影响[J]. 浙江农业学报, 2019, 31(2): 182-190.
DOI |
LAN Y, HUANG Z, HU M M, et al. Effects of nitrogen application rate on quality and protein components of low-gluten rice[J]. Acta Agriculturae Zhejiangensis, 2019, 31(2): 182-190. (in Chinese with English abstract)
DOI |
|
[34] | 叶定池, 吴春赞, 林华, 等. 灌浆结实期气温对杂交中籼丰两优1号稻米品质的影响[J]. 浙江农业学报, 2007, 19(4): 276-279. |
YE D C, WU C Z, LIN H, et al. Effects of temperature factors in the filling stage on rice qualities of Indica hybrid rice(Fengliangyou 1)[J]. Acta Agriculturae Zhejiangensis, 2007, 19(4): 276-279. (in Chinese with English abstract) | |
[35] | 余利, 刘正, 王波, 等. 行距和行向对不同密度玉米群体田间小气候和产量的影响[J]. 中国生态农业学报, 2013, 21(8): 938-942. |
YU L, LIU Z, WANG B, et al. Effects of different combinations of planting density, row spacing and row direction on field microclimatic conditions and grain yield of maize[J]. Chinese Journal of Eco-Agriculture, 2013, 21(8): 938-942. (in Chinese with English abstract)
DOI URL |
|
[36] | 龚金龙, 张洪程, 胡雅杰, 等. 灌浆结实期温度对水稻产量和品质形成的影响[J]. 生态学杂志, 2013, 32(2): 482-491. |
GONG J L, ZHANG H C, HU Y J, et al. Effects of air temperature during rice grain-filling period on the formation of rice grain yield and its quality[J]. Chinese Journal of Ecology, 2013, 32(2): 482-491. (in Chinese with English abstract) | |
[37] | 施伟, 朱国永, 孙明法, 等. 水稻籽粒灌浆的影响因子及其机制研究进展[J]. 中国农学通报, 2020, 36(8): 1-7. |
SHI W, ZHU G Y, SUN M F, et al. Influence factors and mechanism of rice grain filling: research progress[J]. Chinese Agricultural Science Bulletin, 2020, 36(8): 1-7. (in Chinese with English abstract) | |
[38] |
WEI H Y, ZHU Y, QIU S, et al. Combined effect of shading time and nitrogen level on grain filling and grain quality in Japonica super rice[J]. Journal of Integrative Agriculture, 2018, 17(11): 2405-2417.
DOI URL |
[1] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[2] | 潘俊峰, 钟旭华, 黄农荣, 刘彦卓, 田卡, 梁开明, 彭碧琳, 傅友强, 胡香玉. 不同栽培模式对华南双季晚稻产量和氮肥利用率的影响[J]. 浙江农业学报, 2019, 31(6): 857-868. |
[3] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
[4] | 兰艳, 黄曌, 胡明明, 涂云彪, 孙影影, 隋晓东, 龚静, 李天. 施氮量对低谷蛋白水稻籽粒品质及蛋白质组分的影响[J]. 浙江农业学报, 2019, 31(2): 182-190. |
[5] | 汪峰, 谌江华, 孙梅梅, 柴伟纲, 姚红燕, 戴瑶璐, 张玉屏, 朱德峰, 陈若霞. 甬优系列籼粳杂交稻株高变化对氮素利用率的影响[J]. 浙江农业学报, 2019, 31(1): 1-10. |
[6] | 郑宁;马嘉伟;王旭东;*;叶正钱;李天柱;毛琪;吴晓华. 菌渣化肥配施对水稻剑叶光合性能和产量的影响[J]. , 2013, 25(3): 0-608. |
[7] | 马嘉伟;黄其颖;程礼泽;叶正钱*;王旭东. 菌渣化肥配施对红壤养分动态变化及水稻生长的影响[J]. , 2013, 25(1): 0-151. |
[8] | 李先明;秦仲麒*;涂俊凡;杨夫臣;朱红艳;伍涛. 不同类型纸袋套袋处理对梨果实品质的影响[J]. , 2012, 24(6): 0-1003. |
[9] | 陈贤友;吴良欢;*;李金先;应金耀. 新型包膜控释尿素对水稻产量与氮肥利用率的影响[J]. , 2010, 22(6): 829-833. |
[10] | 薛智勇;孟赐福;吕晓男;吴崇书;滕淳茜. 红壤地区水稻土施硫对水稻的增产效应[J]. , 2002, 14(3): 0-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||