浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1648-1661.DOI: 10.3969/j.issn.1004-1524.20230143
徐红霞1(), 李晓颖1, 葛航1, 朱启轩1,2, 陈俊伟1,*(
)
收稿日期:
2023-02-14
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
徐红霞(1980—),女,浙江台州人,博士,副研究员,研究方向为枇杷发育与抗逆机理。E-mail:xuhongxia@zaas.ac.cn
通讯作者:
*陈俊伟,E-mail:chenjunwei@zaas.ac.cn
基金资助:
XU Hongxia1(), LI Xiaoying1, GE Hang1, ZHU Qixuan1,2, CHEN Junwei1,*(
)
Received:
2023-02-14
Online:
2023-07-25
Published:
2023-08-17
Contact:
CHEN Junwei
摘要:
为研究枇杷(Eriobotrya japonica Lindl.‘Ninghaibai’)花发育机制,以花芽生理分化期(EjS1)、花芽形态分化期(EjS2)、花穗发育期(EjS3)、小花发育期(EjS4)和开花期(EjS5)这5个时期的当年生春梢上顶芽、花芽或花穗为试验材料进行转录组测序分析,筛选出相关性最高的代谢通路。测定花发育过程中生长素(IAA)、脱落酸(ABA)、赤霉素(GA)和玉米素核苷(ZR)等激素水平的变化,并对激素代谢与信号转导相关基因,以及花发育相关MADS-box家族基因的花发育时期特异性表达模式进行分析;同时,通过实时荧光定量PCR(qRT-PCR)对部分花发育相关基因进行验证。结果表明:不同发育时期差异表达基因在植物激素代谢和信号转导途径中显著富集;低含量IAA、GA与高含量ABA有利于枇杷花芽的形成,较高水平GA和ABA能促进枇杷开花;高水平ZR能促进枇杷花芽分化和花穗形成,并可能与花器官分化有关。植物激素代谢和信号转导途径相关基因相互作用调节激素水平变化,并与MADS-box家族基因共同调控枇杷花发育,研究结果有助于阐明内源激素在枇杷花发育进程中的作用机制。
中图分类号:
徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661.
XU Hongxia, LI Xiaoying, GE Hang, ZHU Qixuan, CHEN Junwei. Transcriptome-based analysis of the role of endogenous hormones in regulating flower development in loquat (Eriobotrya japonica Lindl.)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1648-1661.
基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5’→3’) | 反向引物 Reverse primer(5’→3’) |
---|---|---|---|
Ejactin | c255911_g1 | GGATTTGCTGGTGATGATGC | CCGTGCTCAATGGGATACTT |
SOC1 | c131331_g2 | TTGGGAAATGGTTTGGAT | CTGCTTTGCACGACACTC |
SOC1 | c123324_g2 | GGTTCATGCCATTGTCTG | TTCTCCAACTGGTGCTCT |
LEAFY | c125200_g1 | AAGGGAGCACCCGTTCAT | CGCATCTTTGGCTTGTTGA |
FT | c132831_g2 | GGACGAGTGGTAGGTGAT | TTGGTGGACAACTTGAGAAG |
AGL24 | c118626_g2 | ACCAGCTAAAGCAGAGGA | GGAGCAGGCGGTGACATT |
AP1 | c125934_g2 | GCAAATCCTTGAACGCTAT | GAATCCAGGTCTTCTCCC |
AP2 | c129345_g1 | GAGGACGGATCAGACGAAG | TCACGGAGAACCCGAATAT |
SEP | c126115_g3 | TTTCTCCTCCTTTCTTCTTTAGC | AAGTTCCTTTGCAGGTATGTTG |
TFL | c113629_g1 | ATTGGCATCCACAGGTTT | AAGTAGACGGCAGCGACA |
CAL | c128672_g1 | GAGCATGATCAGGTGCAGGT | GTGTGTGTTTGTAGCAGCGG |
FLC | c128866_g4 | CGGGCTGATGAAGAAGGC | GCGGTGGAAGGAAGAAGAAA |
SVP | c132152_g5 | GAGCAAAGGCAGAGGATA | ACAAGATGTCGGAGCAGT |
表1 荧光定量PCR中所用差异表达基因及其引物序列
Table 1 Differentially expressed genes and their primer sequences in qRT-PCR
基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer (5’→3’) | 反向引物 Reverse primer(5’→3’) |
---|---|---|---|
Ejactin | c255911_g1 | GGATTTGCTGGTGATGATGC | CCGTGCTCAATGGGATACTT |
SOC1 | c131331_g2 | TTGGGAAATGGTTTGGAT | CTGCTTTGCACGACACTC |
SOC1 | c123324_g2 | GGTTCATGCCATTGTCTG | TTCTCCAACTGGTGCTCT |
LEAFY | c125200_g1 | AAGGGAGCACCCGTTCAT | CGCATCTTTGGCTTGTTGA |
FT | c132831_g2 | GGACGAGTGGTAGGTGAT | TTGGTGGACAACTTGAGAAG |
AGL24 | c118626_g2 | ACCAGCTAAAGCAGAGGA | GGAGCAGGCGGTGACATT |
AP1 | c125934_g2 | GCAAATCCTTGAACGCTAT | GAATCCAGGTCTTCTCCC |
AP2 | c129345_g1 | GAGGACGGATCAGACGAAG | TCACGGAGAACCCGAATAT |
SEP | c126115_g3 | TTTCTCCTCCTTTCTTCTTTAGC | AAGTTCCTTTGCAGGTATGTTG |
TFL | c113629_g1 | ATTGGCATCCACAGGTTT | AAGTAGACGGCAGCGACA |
CAL | c128672_g1 | GAGCATGATCAGGTGCAGGT | GTGTGTGTTTGTAGCAGCGG |
FLC | c128866_g4 | CGGGCTGATGAAGAAGGC | GCGGTGGAAGGAAGAAGAAA |
SVP | c132152_g5 | GAGCAAAGGCAGAGGATA | ACAAGATGTCGGAGCAGT |
图1 不同发育时期枇杷花的石蜡切片图和表型EjS1,花芽生理分化期;EjS2,花芽形态分化期;EjS3,花穗发育期;EjS4,小花发育期;EjS5,开花期。下同。标尺为200 μm。
Fig.1 Paraffin section and phenotype of loquat flower at different development stages EjS1, Physiological differentiation stage; EjS2, Morphological differentiation stage; EjS3, Inflorescence emergence and expansion stage; EjS4, Single flower development stage; EjS5, Blossoming stage. The same as below. Bar=200 μm.
图2 枇杷花发育进程中激素含量变化 柱上无相同字母表示差异显著(P<0.05)。
Fig.2 Changes of phytohormone content in loquat flower development process Data on the bars marked without the same letter indicated significant differences at P<0.05.
注释数据库 Annotation database | Unigene注释数量 Number of annotated unigenes | 占比 Percentage/% |
---|---|---|
NR | 115 604 | 35.80 |
NT | 92 121 | 28.53 |
KEGG | 52 186 | 16.16 |
Swissprot | 118 766 | 36.78 |
Pfam | 118 886 | 36.82 |
GO | 120 666 | 37.37 |
KOG | 79 750 | 24.70 |
表2 Unigene在7个公共数据库的注释情况统计
Table 2 Annotation of assembled unigenes in 7 public databases
注释数据库 Annotation database | Unigene注释数量 Number of annotated unigenes | 占比 Percentage/% |
---|---|---|
NR | 115 604 | 35.80 |
NT | 92 121 | 28.53 |
KEGG | 52 186 | 16.16 |
Swissprot | 118 766 | 36.78 |
Pfam | 118 886 | 36.82 |
GO | 120 666 | 37.37 |
KOG | 79 750 | 24.70 |
图3 枇杷花发育进程中差异表达基因分析 A,不同发育进程差异表达基因聚类情况;B,EjS2 vs EjS1、EjS3 vs EjS1、EjS4 vs EjS1和EjS5 vs EjS1的差异基因上调和下调表达情况;C,EjS2 vs EjS1、EjS3 vs EjS1、EjS4 vs EjS1和EjS5 vs EjS1比较组之间差异表达基因的韦恩图。
Fig.3 Analysis of the differentially expressed genes during flower development process in loquat A, Hierarchical clustering of the differentially expressed genes in different flower development process; B, Up-and down-regulated DEGs at stages EjS2, EjS3, EjS4, and EjS5 compared with stage EjS1; C, Venn diagram showed the number of DEGs bewteen EjS2 vs EjS1, EjS3 vs EjS1, EjS4 vs EjS1, and EjS5 vs EjS1.
图4 枇杷花发育进程中差异表达基因KEGG代谢通路富集分析
Fig.4 KEGG pathway enrichment of the annotated differentially expressed genes between different developmental stage comparisons
图5 枇杷花发育进程中激素代谢和信号转导相关基因热图分析
Fig.5 Heat map analysis of genes related to hormone metabolism and signal transduction in loquat flower development process
[1] | LIU Y X, SONG H W, LIU Z L, et al. Molecular characterization of loquat EjAP1 gene in relation to flowering[J]. Plant Growth Regulation, 2013, 70(3): 287-296. |
[2] | ZHANG L, YU H, LIN S Q, et al. Molecular characterization of FT and FD homologs from Eriobotrya deflexa Nakai forma koshunensis[J]. Frontiers in Plant Science, 2016, 7: 8. |
[3] | REIG C, GIL-MUÑOZ F, VERA-SIRERA F, et al. Bud sprouting and floral induction and expression of FT in loquat [Eriobotrya japonica (Thunb.) Lindl.][J]. Planta, 2017, 246(5): 915-925. |
[4] | JIANG Y Y, PENG J R, ZHU Y M, et al. The role of EjSOC1 s in flower initiation in Eriobotrya japonica[J]. Frontiers in Plant Science, 2019, 10: 253. |
[5] | XIA Y, XUE B G, SHI M, et al. Comparative transcriptome analysis of flower bud transition and functional characterization of EjAGL17 involved in regulating floral initiation in loquat[J]. PLoS One, 2020, 15(10): e0239382. |
[6] | JIANG Y Y, PENG J R, WANG M, et al. The role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in regulating flowering in loquat (Eriobotrya japonica Lindl.)[J]. International Journal of Molecular Sciences, 2019, 21(1): 248. |
[7] | JIANG Y Y, ZHU Y M, ZHANG L, et al. EjTFL1 genes promote growth but inhibit flower bud differentiation in loquat[J]. Frontiers in Plant Science, 2020, 11: 576. |
[8] | CHEN W W, WANG P, WANG D, et al. EjFRI, FRIGIDA(FRI) ortholog from Eriobotrya japonica, delays flowering in Arabidopsis[J]. International Journal of Molecular Sciences, 2020, 21(3): 1087. |
[9] | PENG J R, LI W K, YUAN Y, et al. Removal of the main inflorescence to induce reflowering of loquat[J]. Horticultural Plant Journal, 2022, 8(1): 35-43. |
[10] | 徐红霞, 李晓颖, 陈俊伟. 枇杷花发育进程中氨基酸和碳水化合物代谢的变化[J]. 园艺学报, 2020, 47(2): 233-241. |
XU H X, LI X Y, CHEN J W. Studies on the amino acid metabolism and carbohydrate metabolism variation during flower development in Eriobotrya japonica[J]. Acta Horticulturae Sinica, 2020, 47(2): 233-241. (in Chinese with English abstract) | |
[11] | LIU K D, FENG S X, PAN Y L, et al. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.)[J]. Frontiers in Plant Science, 2016, 7: 1695. |
[12] | FAN Z Q, LI J Y, LI X L, et al. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea[J]. Scientific Reports, 2015, 5: 9729. |
[13] | WANG H X, YANG Y H, ZHANG Y Y, et al. Transcriptome analysis of flower development and mining of genes related to flowering time in tomato (Solanum lycopersicum)[J]. International Journal of Molecular Sciences, 2021, 22(15): 8128. |
[14] | 朱倩, 董美芳, 袁王俊, 等. ‘天香台阁’桂花花芽分化及其台阁形成过程的观察[J]. 园艺学报, 2012, 39(2): 315-322. |
ZHU Q, DONG M F, YUAN W J, et al. Studies on flower bud differentiation and leaflike proliferate-flower bud of Osmanthus fragrans ‘Tianxiang Taige’[J]. Acta Horticulturae Sinica, 2012, 39(2): 315-322. (in Chinese with English abstract) | |
[15] | YANG Y M, XU C N, WANG B M, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibres[J]. Plant Growth Regulation, 2001, 35:233-237. |
[16] | ZHAO J, LI G, YI G X, et al. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules[J]. Analytica Chimica Acta, 2006, 571(1): 79-85. |
[17] | TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515. |
[18] | ANDERS S, HUBER W. Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11(10): 1-12. |
[19] | XU H X, YANG Y, XIE L, et al. Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica)[J]. PLoS One, 2014, 9(1): e87575. |
[20] | 王忠. 植物生理学[M]. 2版. 北京: 中国农业出版社, 2009: 303-304. |
[21] | BLÁZQUEZ M A, FERRÁNDIZ C, MADUEÑO F, et al. How floral meristems are built[J]. Plant Molecular Biology, 2006, 60(6): 855-870. |
[22] | HEISLER M G, OHNO C, DAS P, et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem[J]. Current Biology, 2005, 15(21): 1899-1911. |
[23] | ALABADI D, BLAZQUEZ M A, CARBONELL J, et al. Instructive roles for hormones in plant development[J]. The International Journal of Developmental Biology, 2009, 53(8/9/10): 1597-1608. |
[24] | 牛辉陵, 张洪武, 边媛, 等. 枣花分化发育过程及其内源激素动态研究[J]. 园艺学报, 2015, 42(4): 655-664. |
NIU H L, ZHANG H W, BIAN Y, et al. Flower formation and endogenous hormones dynamic in Chinese jujube[J]. Acta Horticulturae Sinica, 2015, 42(4): 655-664. (in Chinese with English abstract) | |
[25] | 王玉华, 范崇辉, 沈向, 等. 大樱桃花芽分化期内源激素含量的变化[J]. 西北农业学报, 2002, 11(1): 64-67. |
WANG Y H, FAN C H, SHEN X, et al. Changes in endogenous hormones during the flower bud differentiation of sweet cherry[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2002, 11(1): 64-67. (in Chinese with English abstract) | |
[26] | ZHANG H N, WEI Y Z, SHEN J Y, et al. Transcriptomic analysis of floral initiation in Litchi(Litchi chinensis Sonn.) based on de novo RNA sequencing[J]. Plant Cell Reports, 2014, 33(10): 1723-1735. |
[27] | 曾骧. 果树生理学[M]. 北京: 中国农业大学出版社, 1992: 176-177. |
[28] | SHAN H, CHEN S M, JIANG J F, et al. Heterologous expression of the Chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana[J]. Molecular Biotechnology, 2012, 51(2): 160-173. |
[29] | 李秉真, 孙庆林, 张建华, 等. 苹果梨花芽分化期内源激素含量的变化(简报)[J]. 植物生理学通讯, 2000, 36(1): 27-29. |
LI B Z, SUN Q L, ZHANG J H, et al. Changes of endogenous hormone content during flower bud differentiation of Pingguo pear (brief report)[J]. Plant Physiology Communications, 2000, 36(1): 27-29. (in Chinese) | |
[30] | MUTASA-GÖTTGENS E, HEDDEN P. Gibberellin as a factor in floral regulatory networks[J]. Journal of Experimental Botany, 2009, 60(7): 1979-1989. |
[31] | WILKIE J D, SEDGLEY M, OLESEN T. Regulation of floral initiation in horticultural trees[J]. Journal of Experimental Botany, 2008, 59(12): 3215-3228. |
[32] | NAKAGAWA M, HONSHO C, KANZAKI S, et al. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees[J]. Scientia Horticulturae, 2012, 139: 108-117. |
[33] | 吴志祥, 周兆德, 陶忠良, 等. 妃子笑与鹅蛋荔枝花芽分化期间内源激素的变化[J]. 热带作物学报, 2005, 26(4): 42-45. |
WU Z X, ZHOU Z D, TAO Z L, et al. Changes of endogenous hormones in Feizixiao and Edan Litchi during flower bud differentiation[J]. Chinese Journal of Tropical Crops, 2005, 26(4): 42-45. (in Chinese with English abstract) | |
[34] | MCARTNEY S J, LI S H. Selective inhibition of flowering on ‘Braeburn’ apple trees with gibberellins[J]. HortScience, 1998, 33(4): 699-700. |
[35] | YAMAGUCHI N, WINTER C M, WU M F, et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis[J]. Science, 2014, 344(6184): 638-641. |
[36] | PEARCE S, HUTTLY A K, PROSSER I M, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family[J]. BMC Plant Biology, 2015, 15(1): 1-19. |
[37] | MITCHUM M G, YAMAGUCHI S, HANADA A, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development[J]. The Plant Journal, 2006, 45(5): 804-818. |
[38] | REGNAULT T, DAVIÈRE J M, HEINTZ D, et al. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development[J]. The Plant Journal, 2014, 80(3): 462-474. |
[39] | D’ALOIA M, BONHOMME D, BOUCHÉ F, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF[J]. The Plant Journal, 2011, 65(6): 972-979. |
[40] | 罗羽洧, 解卫华, 马凯. 无花果花芽分化与内源激素含量的关系[J]. 西北植物学报, 2007, 27(7): 1399-1404. |
LUO Y W, XIE W H, MA K. Correlation between endogenous hormones contents and flower bud differentiation stage of Ficus carica L[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(7): 1399-1404. (in Chinese with English abstract) | |
[41] | 曹尚银, 张俊昌, 魏立华. 苹果花芽孕育过程中内源激素的变化[J]. 果树科学, 2000, 17(4): 244-248. |
CAO S Y, ZHANG J C, WEI L H. Studies on the changes of endogenous hormones in the differentiation period of flower bud in apple trees[J]. Journal of Fruit Science, 2000, 17(4): 244-248. (in Chinese with English abstract) | |
[42] | NISHIMURA C, OHASHI Y, SATO S, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis[J]. The Plant Cell, 2004, 16(6): 1365-1377. |
[43] | 王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6): 1149-1158. |
WANG Y, MU Y X, WANG J. Research progress of floral development regulation by MADS-box gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1149-1158. (in Chinese with English abstract) | |
[44] | SHARMA N, GEUTEN K, GIRI B S, et al. The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs[J]. Physiologia Plantarum, 2020, 170(3): 373-383. |
[45] | LI Z C, JIANG D H, HE Y H. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production[J]. Nature Plants, 2018, 4(10): 836-846. |
[46] | HONG J K, PARK S R, SUH E J, et al. Effects of overexpression of Brassica rapa SHORT VEGETATIVE PHASE gene on flowering time[J]. Korean Journal of Breeding Science, 2020, 52(3): 244-251. |
[47] | TORTI S, FORNARA F. AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition[J]. Plant Signaling & Behavior, 2012, 7(10): 1251-1254. |
[48] | GOSLIN K, ZHENG B B, SERRANO-MISLATA A, et al. Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation[J]. Plant Physiology, 2017, 174(2): 1097-1109. |
[49] | PABÓN-MORA N, AMBROSE B A, LITT A. PoppyAPETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development[J]. Plant Physiology, 2012, 158(4): 1685-1704. |
[50] | THEIßEN G. Development of floral organ identity: stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4(1): 75-85. |
[51] | LIU X G, DINH T T, LI D M, et al. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy[J]. The Plant Journal: for Cell and Molecular Biology, 2014, 80(4): 629-641. |
[52] | LIU N, WU S, VAN HOUTEN J, et al. Down-regulation of auxin response factors 6 and 8 by microrna 167 leads to floral development defects and female sterility in tomato[J]. Journal of Experimental Botany, 2014, 65(9): 2507-2520. |
[53] | ACHARD P, CHENG H, DE GRAUWE L, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757): 91-94. |
[54] | PORRI A, TORTI S, ROMERA-BRANCHAT M, et al. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods[J]. Development, 2012, 139(12): 2198-2209. |
[55] | BONHOMME F, KURZ B, MELZER S, et al. Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba[J]. The Plant Journal, 2000, 24(1): 103-111. |
[1] | 王智豪, 奚昕琰, 王莉, 杨淑娜, 高志远, 殷益明, 邹辉, 贾惠娟. 浙北地区红美人杂柑成花过程及其生理生化特征[J]. 浙江农业学报, 2023, 35(7): 1571-1581. |
[2] | 罗勤川, 唐伟, 马居奎, 陈晶伟, 杨冬静, 高方园, 孙厚俊, 谢逸萍, 张成玲. 腐皮镰刀菌侵染甘薯的转录组分析[J]. 浙江农业学报, 2023, 35(5): 1097-1107. |
[3] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[4] | 陈倩倩, 陶文扬, 郑美瑜, 马子甲, 王璐, 陆胜民. 基于体外酪氨酸酶抑制活性的枇杷花醇提纯化工艺优化及活性成分初步鉴定[J]. 浙江农业学报, 2023, 35(5): 1144-1153. |
[5] | 杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614. |
[6] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
[7] | 叶梅荣, 黄守程, 王晓鹏, 刘爱荣, 崔峰, 康健. 基于Iso-Seq技术的野生马齿苋叶片转录组分析[J]. 浙江农业学报, 2023, 35(1): 67-78. |
[8] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[9] | 古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924. |
[10] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[11] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[12] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[13] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[14] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[15] | 梁倩蓉, 郑天伦, 陈小明, 朱凝瑜, 郑晓叶, 何润真, 曹飞飞, 薛辉利, 丁雪燕. 饲料中添加蝇蛆蛋白对中华鳖肝和血清免疫代谢应答的影响[J]. 浙江农业学报, 2022, 34(10): 2172-2181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||