浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1097-1107.DOI: 10.3969/j.issn.1004-1524.2023.05.13
罗勤川(), 唐伟, 马居奎, 陈晶伟, 杨冬静, 高方园, 孙厚俊, 谢逸萍, 张成玲(
)
收稿日期:
2022-10-08
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
罗勤川(1994—),男,四川遂宁人,硕士研究生,主要从事甘薯病虫害研究。E-mail:luoqinchuan123@163.com
通讯作者:
*张成玲,E-mail:zhchlig5291@163.com
基金资助:
LUO Qinchuan(), TANG Wei, MA Jukui, CHEN Jingwei, YANG Dongjing, GAO Fangyuan, SUN Houjun, XIE Yiping, ZHANG Chengling(
)
Received:
2022-10-08
Online:
2023-05-25
Published:
2023-06-01
摘要:
腐皮镰刀菌(Fusarium solani)是甘薯上的重要病原菌,易引起甘薯根腐病、腐烂溃疡病等。为明确F. solani在侵染甘薯时病原基因变化趋势,对腐烂溃疡病病菌侵染甘薯不同时期取样,通过Illumina Hiseq 4000高通量测序平台测定及分析序列。结果表明,共获得1 068 861 644条有效数据,F. solani侵染后6 h、24 h、3 d、5 d分别筛选出了1 056、995、737、935个显著差异表达基因,其中上调基因分别有587、679、430、551个,下调基因分别有469、316、307、384个,GO功能分析差异基因富集在分子功能和细胞组分,KEGG通路富集分析属于代谢和遗传信息过程。其中差异表达倍数2倍以上,且表达量水平前20的差异基因,有15个基因参与碳水化合物、能量、核苷酸以及氨基酸代谢;3个基因参与翻译和蛋白质加工和修饰等遗传信息处理;2个基因参与细胞自噬过程。随机筛选9个差异表达基因进行实时荧光定量PCR验证,结果表明,这9个基因的表达模式与转录组数据分析结果基本一致。本研究结果发现,F. solani在侵染甘薯过程中代谢活跃,这可能是其在侵染甘薯过程中需破除寄主防御并在寄主中定殖,需要自身和寄主提供大量的营养物质并转化为能量以及中间产物等物质所致。
中图分类号:
罗勤川, 唐伟, 马居奎, 陈晶伟, 杨冬静, 高方园, 孙厚俊, 谢逸萍, 张成玲. 腐皮镰刀菌侵染甘薯的转录组分析[J]. 浙江农业学报, 2023, 35(5): 1097-1107.
LUO Qinchuan, TANG Wei, MA Jukui, CHEN Jingwei, YANG Dongjing, GAO Fangyuan, SUN Houjun, XIE Yiping, ZHANG Chengling. Transcriptomic analysis of Fusarium solani infecting sweetpotato[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1097-1107.
样品名称 Sample name | 原始数据 Raw data/bp | 过滤后序列长 Clean data/bp | 过滤后碱基数量 The base number of clean reads/Gb | 过滤后Q20 The proportion of Q20/% | 过滤后Q30 The proportion of Q30/% | 过滤后GC The proportion of GC/% |
---|---|---|---|---|---|---|
CK-1 | 10 119 073 500 | 10 070 938 374 | 10.07 | 98.12 | 94.22 | 56.03 |
CK-2 | 8 860 847 700 | 8 820 337 043 | 8.82 | 97.60 | 92.78 | 56.02 |
CK-3 | 10 097 356 200 | 10 049 359 346 | 10.05 | 98.08 | 94.19 | 56.12 |
6 h-1 | 10 908 435 900 | 10 850 204 955 | 10.85 | 97.92 | 93.97 | 54.70 |
6 h-2 | 9 606 120 000 | 9 561 584 577 | 9.56 | 98.19 | 94.33 | 54.54 |
6 h-3 | 11 053 800 900 | 11 001 198 312 | 11.00 | 96.57 | 91.06 | 54.60 |
24 h-1 | 12 372 993 300 | 12 306 759 585 | 12.31 | 97.78 | 93.64 | 54.89 |
24 h-2 | 11 375 891 100 | 11 298 967 073 | 11.30 | 98.05 | 94.22 | 55.03 |
24 h-3 | 10 539 713 700 | 10 480 876 632 | 10.48 | 97.72 | 93.66 | 54.67 |
3 d-1 | 11 251 023 600 | 11 178 221 150 | 11.18 | 97.64 | 93.24 | 47.62 |
3 d-2 | 10 795 743 300 | 10 732 313 682 | 10.73 | 97.44 | 92.76 | 47.49 |
3 d-3 | 10 311 817 800 | 10 199 345 383 | 10.20 | 97.87 | 93.63 | 48.28 |
5 d-1 | 11 497 078 200 | 11 437 221 773 | 11.44 | 97.59 | 93.06 | 47.28 |
5 d-2 | 11 820 597 600 | 11 757 361 749 | 11.76 | 98.06 | 94.19 | 47.54 |
5 d-3 | 9 965 246 700 | 9 915 128 318 | 9.92 | 97.41 | 92.61 | 47.11 |
表1 样品测序数据及质量检验
Table 1 Sample sequencing data and quality inspection
样品名称 Sample name | 原始数据 Raw data/bp | 过滤后序列长 Clean data/bp | 过滤后碱基数量 The base number of clean reads/Gb | 过滤后Q20 The proportion of Q20/% | 过滤后Q30 The proportion of Q30/% | 过滤后GC The proportion of GC/% |
---|---|---|---|---|---|---|
CK-1 | 10 119 073 500 | 10 070 938 374 | 10.07 | 98.12 | 94.22 | 56.03 |
CK-2 | 8 860 847 700 | 8 820 337 043 | 8.82 | 97.60 | 92.78 | 56.02 |
CK-3 | 10 097 356 200 | 10 049 359 346 | 10.05 | 98.08 | 94.19 | 56.12 |
6 h-1 | 10 908 435 900 | 10 850 204 955 | 10.85 | 97.92 | 93.97 | 54.70 |
6 h-2 | 9 606 120 000 | 9 561 584 577 | 9.56 | 98.19 | 94.33 | 54.54 |
6 h-3 | 11 053 800 900 | 11 001 198 312 | 11.00 | 96.57 | 91.06 | 54.60 |
24 h-1 | 12 372 993 300 | 12 306 759 585 | 12.31 | 97.78 | 93.64 | 54.89 |
24 h-2 | 11 375 891 100 | 11 298 967 073 | 11.30 | 98.05 | 94.22 | 55.03 |
24 h-3 | 10 539 713 700 | 10 480 876 632 | 10.48 | 97.72 | 93.66 | 54.67 |
3 d-1 | 11 251 023 600 | 11 178 221 150 | 11.18 | 97.64 | 93.24 | 47.62 |
3 d-2 | 10 795 743 300 | 10 732 313 682 | 10.73 | 97.44 | 92.76 | 47.49 |
3 d-3 | 10 311 817 800 | 10 199 345 383 | 10.20 | 97.87 | 93.63 | 48.28 |
5 d-1 | 11 497 078 200 | 11 437 221 773 | 11.44 | 97.59 | 93.06 | 47.28 |
5 d-2 | 11 820 597 600 | 11 757 361 749 | 11.76 | 98.06 | 94.19 | 47.54 |
5 d-3 | 9 965 246 700 | 9 915 128 318 | 9.92 | 97.41 | 92.61 | 47.11 |
样品 Sample | 总序列 Total gene sequence/ bp | 比对到参考序列 上的序列 Aligne to reference sequence | 比对到参考序列唯 一位置上的序列 Align to the unique position of the reference sequence | 比对到参考序列多 个位置上的序列 Align to multiple positions in the reference sequence | 比对到参考序列 外显子区域 Align to the exon region of the reference sequence | 比对到参考序列 内含子区域 Align to reference sequence column containing sub regions | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | ||
CK-1 | 61 002 848 | 43 948 488 | 72.04 | 43 898 824 | 71.96 | 49 664 | 0.08 | 21 506 666 | 90.31 | 192 479 | 0.81 |
CK-2 | 52 444 612 | 37 408 991 | 71.33 | 37 364 628 | 71.25 | 44 363 | 0.08 | 18 090 239 | 90.39 | 175 130 | 0.88 |
CK-3 | 63 156 424 | 455 780 661 | 72.17 | 45 529 774 | 72.09 | 48 292 | 0.08 | 21 565 610 | 90.44 | 214 765 | 0.90 |
6 h-1 | 65 060 974 | 36 057 705 | 55.42 | 36 011 225 | 55.35 | 46 480 | 0.07 | 19 145 455 | 90.93 | 129 676 | 0.62 |
6 h-2 | 40 119 272 | 23 265 840 | 57.99 | 23 240 761 | 57.93 | 25 079 | 0.06 | 12 090 755 | 90.81 | 86 066 | 0.65 |
6 h-3 | 60 484 944 | 34 090 092 | 56.36 | 34 051 092 | 56.30 | 39 000 | 0.06 | 17 475 090 | 90.67 | 129 079 | 0.67 |
24 h-1 | 72 035 904 | 41 211 305 | 57.21 | 41 156 718 | 57.13 | 54 587 | 0.08 | 19 966 747 | 90.90 | 156 719 | 0.71 |
24 h-2 | 66 444 752 | 37 586 165 | 56.57 | 37 539 588 | 56.50 | 46 577 | 0.07 | 18 645 057 | 90.81 | 147 741 | 0.72 |
24 h-3 | 62 022 092 | 35 613 524 | 57.42 | 35 567 080 | 57.35 | 46 444 | 0.07 | 17 247 258 | 90.23 | 141 544 | 0.74 |
3 d-1 | 74 243 204 | 428 662 | 0.58 | 428 002 | 0.58 | 660 | <0.01 | 212 565 | 91.18 | 1 392 | 0.60 |
3 d-2 | 70 796 204 | 407 700 | 0.58 | 407 016 | 0.57 | 684 | <0.01 | 209 351 | 91.78 | 1 209 | 0.53 |
3 d-3 | 67 674 158 | 3 097 165 | 4.58 | 3 093 673 | 4.57 | 3 492 | 0.01 | 1 525 732 | 90.60 | 12 309 | 0.73 |
5 d-1 | 75 670 110 | 443 750 | 0.59 | 443 096 | 0.59 | 654 | <0.01 | 226 227 | 92.15 | 1 356 | 0.55 |
5 d-2 | 7 7046 624 | 1 291 467 | 1.68 | 1 289 821 | 1.67 | 1 646 | <0.01 | 626 377 | 90.68 | 4 417 | 0.64 |
5 d-3 | 65 710 952 | 292 812 | 0.45 | 292 299 | 0.44 | 513 | <0.01 | 149 896 | 91.83 | 940 | 0.58 |
表2 测序数据与参考基因比对
Table 2 Comparison on sequencing data and reference genome
样品 Sample | 总序列 Total gene sequence/ bp | 比对到参考序列 上的序列 Aligne to reference sequence | 比对到参考序列唯 一位置上的序列 Align to the unique position of the reference sequence | 比对到参考序列多 个位置上的序列 Align to multiple positions in the reference sequence | 比对到参考序列 外显子区域 Align to the exon region of the reference sequence | 比对到参考序列 内含子区域 Align to reference sequence column containing sub regions | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | 长度 Length/bp | 占比 Proportion /% | ||
CK-1 | 61 002 848 | 43 948 488 | 72.04 | 43 898 824 | 71.96 | 49 664 | 0.08 | 21 506 666 | 90.31 | 192 479 | 0.81 |
CK-2 | 52 444 612 | 37 408 991 | 71.33 | 37 364 628 | 71.25 | 44 363 | 0.08 | 18 090 239 | 90.39 | 175 130 | 0.88 |
CK-3 | 63 156 424 | 455 780 661 | 72.17 | 45 529 774 | 72.09 | 48 292 | 0.08 | 21 565 610 | 90.44 | 214 765 | 0.90 |
6 h-1 | 65 060 974 | 36 057 705 | 55.42 | 36 011 225 | 55.35 | 46 480 | 0.07 | 19 145 455 | 90.93 | 129 676 | 0.62 |
6 h-2 | 40 119 272 | 23 265 840 | 57.99 | 23 240 761 | 57.93 | 25 079 | 0.06 | 12 090 755 | 90.81 | 86 066 | 0.65 |
6 h-3 | 60 484 944 | 34 090 092 | 56.36 | 34 051 092 | 56.30 | 39 000 | 0.06 | 17 475 090 | 90.67 | 129 079 | 0.67 |
24 h-1 | 72 035 904 | 41 211 305 | 57.21 | 41 156 718 | 57.13 | 54 587 | 0.08 | 19 966 747 | 90.90 | 156 719 | 0.71 |
24 h-2 | 66 444 752 | 37 586 165 | 56.57 | 37 539 588 | 56.50 | 46 577 | 0.07 | 18 645 057 | 90.81 | 147 741 | 0.72 |
24 h-3 | 62 022 092 | 35 613 524 | 57.42 | 35 567 080 | 57.35 | 46 444 | 0.07 | 17 247 258 | 90.23 | 141 544 | 0.74 |
3 d-1 | 74 243 204 | 428 662 | 0.58 | 428 002 | 0.58 | 660 | <0.01 | 212 565 | 91.18 | 1 392 | 0.60 |
3 d-2 | 70 796 204 | 407 700 | 0.58 | 407 016 | 0.57 | 684 | <0.01 | 209 351 | 91.78 | 1 209 | 0.53 |
3 d-3 | 67 674 158 | 3 097 165 | 4.58 | 3 093 673 | 4.57 | 3 492 | 0.01 | 1 525 732 | 90.60 | 12 309 | 0.73 |
5 d-1 | 75 670 110 | 443 750 | 0.59 | 443 096 | 0.59 | 654 | <0.01 | 226 227 | 92.15 | 1 356 | 0.55 |
5 d-2 | 7 7046 624 | 1 291 467 | 1.68 | 1 289 821 | 1.67 | 1 646 | <0.01 | 626 377 | 90.68 | 4 417 | 0.64 |
5 d-3 | 65 710 952 | 292 812 | 0.45 | 292 299 | 0.44 | 513 | <0.01 | 149 896 | 91.83 | 940 | 0.58 |
图2 差异表达基因火山图 A、B、C、D分别为对照病菌与病菌侵染6 h、24 h、3 d、5 d的差异表达基因火山图。
Fig.2 Volcano diagram of DEGs A, B, C and D were the volcano maps of DEGs in comparisons: CK vs 6 h, CK vs 24 h, CK2 vs 3 d, CK vs 5 d, respectively.
图3 不同处理时间差异基因GO富集柱状图 A:a,定位;b,刺激反应;c,多有机体过程;d,信号;e,细胞成分组织或生物发生;f,生物过程正向调节;g,生物过程负向调节;h,单一生物进程;i,细胞进程;j,节律过程;k,生长;l,繁殖;m,多细胞组织过程;n,繁殖过程;o,发育过程;p,解毒;q,生物调节;r,生物进程调节;s,代谢进程;t,细胞聚集;u,运动。 B:a,结构分子活性;b,转运活性;c,分子功能调节;d,核酸结合转录因子活性;e,抗氧化活性;f,分子传感器活性;g,结合;h,信号传感器活性;i,转录因子活性、蛋白质结合;j,催化活性。C:a,细胞连接;b,大分子复合物;c,类核;d,膜部分;e,细胞;f,细胞部分;g,膜;h,超分子纤维;i,细胞器部分;j,膜封闭腔;k,细胞器。
Fig.3 GO functional classification of differentially expressed genes at different time after infection A: a, localization; b, response to stimulus; c, multi-organism process; d, signaling; e, cellular component organization or biogenesis; f, positive regulation of biological process; g, negative regulation of biological process; h, single-organism process; i,cellular process; j, rhythmic process; k, growth; l, reproduction; m, multicellular organismal process; n, reproduction process; o, develpomental process; p, detoxification; q, biological regulation; r, regulation of biological process; s, metabolicprocess; t, cell aggregation; u,locomotion. B: a, structural molecule activity; b, transporter activity; c, molecular function regulator; d, nucleic acid binding transcription factor activity; e, antioxidant activity; f, molecular transducer activity; g, binding; h, signal transducer activity; i, transcription factor activity, protein binding; j, catalytic activity.C: a, cell junction; b, macromolecular complex; c, nucleoid; d, membrane part; e, cell; f, cell part; g, membrane; h, supramolecular fiber; i, organelle part; j, membrane-enclosed lumer; k, organelle.
图4 差异表达基因的 KEGG 通路归类 A、B、C、D分别为对照病菌与病菌侵染6 h、24 h、3 d、5 d的差异表达基因的KEGG通路。
Fig.4 KEGG pathway classification of differentially expressed genes A, B, C, D were the KEGG pathway of DEGs in comparisons: CK vs 6 h after infection, CK vs 24 h after infection, CK vs 3 d after infection, CK vs 5d after infection, respectively.
序号 Number | 基因号 Gene number | 标签 Symbol | 上调/下调 Up/down | 途径或功能 Pathway or function |
---|---|---|---|---|
1 | ncbi_9673094 | pdcA | 下调Down | 糖酵解和糖异生、次生代谢物生物合成 Glycolysis and gluconeogenesis, biosynthesis of secondary metabolites |
2 | ncbi_9674521 | pma-1 | 下调Down | 氧化磷酸化Oxidative phosphorylation |
3 | ncbi_9671178 | DPS1 | 下调Down | 翻译,氨酰基-tRNA的生物合成Translation, biosynthesis of amyl-tRNA |
4 | ncbi_9677451 | SPCC 1620.06c | 下调Down | 次生代谢产物的生物合成、抗生素合成、氨基酸生物合成、磷酸戊糖途径 Biosynthesis of secondary metabolites, antibiotic synthesis, amino acid biosynthesis,pentose phosphate pathway |
5 | ncbi_9672983 | des | 上调Up | 氧化磷酸化 Oxidative phosphorylation |
6 | ncbi_9673795 | gdh-1 | 下调Down | 丙氨酸,天冬氨酸和谷氨酸代谢、精氨酸生物合成、氮代谢、牛磺酸代谢 Alanine, aspartic acid and glutamate metabolism, arginine biosynthesis, nitrogen metabolism, taurine metabolism |
7 | ncbi_9674832 | FES1 | 下调Down | 内质网中的蛋白质加工Protein processing in the endoplasmic reticulum |
8 | ncbi_9664755 | CLAH10 | 上调Up | 次生代谢产物的生物合成、抗生素合成、精氨酸和脯氨酸代谢、色氨酸代谢、缬氨酸,亮氨酸和异亮氨酸的降解等 Biosynthesis of secondary metabolites, antibiotic synthesis, metabolism of arginine and proline, metabolism of tryptophan, degradation of valine, leucine and isoleucine, etc |
9 | ncbi_9671992 | pep-4 | 上调Up | 运输和分解代谢,自噬 Transport and catabolism, autophagy |
10 | ncbi_9671150 | imqH | 下调Down | 过氧化物酶体、甘氨酸、丝氨酸和苏氨酸的代谢、赖氨酸降解 Metabolism of peroxisome, glycine, serine, threonine, lysine degradation |
11 | ncbi_9671105 | glkA | 上调Up | 次生代谢产物的生物合成、抗生素合成、碳代谢、淀粉和蔗糖代谢、氨基糖和核苷酸糖代谢、果糖和甘露糖代谢 Biosynthesis of secondary metabolites, antibiotic synthesis, carbon metabolism, starch and sucrose metabolism, amino sugars and nucleotide sugars metabolism, fructose and mannose metabolism |
12 | ncbi_9679169 | nuo40 | 上调Up | 氧化磷酸化Oxidative phosphorylation |
13 | ncbi_9664067 | SOD1 | 上调Up | 过氧化物酶体Peroxisome |
14 | ncbi_9678178 | ykt6 | 上调Up | SNARE在水泡运输中的相互作用、自噬 Interaction and autophagy of SNARE in blister transport |
15 | ncbi_9674908 | HYR1 | 上调Up | 谷胱甘肽代谢、花生四烯酸代谢Glutathione metabolism, arachidonic acid metabolism |
16 | ncbi_9664589 | Cda | 上调Up | 嘧啶代谢Pyrimidine metabolism |
17 | ncbi_9668438 | mcsA | 上调Up | 碳水化合物代谢;柠檬酸甲基合酶前体、氨基酸生物合成 Carbohydrate metabolism; Citrate methyl synthase precursor, amino acid biosynthesis |
18 | ncbi_9673059 | Acaa1b | 上调Up | α-亚麻酸代谢、缬氨酸,亮氨酸和异亮氨酸的降解、脂肪酸降解等 α-linolenic acid metabolism, degradation of valine, leucine and isoleucine, fatty acid degradation, etc |
19 | ncbi_9665574 | ACAD10 | 上调Up | 抗生素生物合成、β-丙氨酸代谢、缬氨酸,亮氨酸和异亮氨酸的降解 Antibiotic biosynthesis, β-alanine metabolism, degradation of valine, leucine and isoleucine |
20 | ncbi_9674141 | KATG2 | 上调Up | 次生代谢物生物合成、色氨酸代谢、丙氨酸代谢 Secondary metabolite biosynthesis, tryptophan metabolism, alanine metabolism |
表3 关键基因及功能描述
Table 3 The key genes and their functions description
序号 Number | 基因号 Gene number | 标签 Symbol | 上调/下调 Up/down | 途径或功能 Pathway or function |
---|---|---|---|---|
1 | ncbi_9673094 | pdcA | 下调Down | 糖酵解和糖异生、次生代谢物生物合成 Glycolysis and gluconeogenesis, biosynthesis of secondary metabolites |
2 | ncbi_9674521 | pma-1 | 下调Down | 氧化磷酸化Oxidative phosphorylation |
3 | ncbi_9671178 | DPS1 | 下调Down | 翻译,氨酰基-tRNA的生物合成Translation, biosynthesis of amyl-tRNA |
4 | ncbi_9677451 | SPCC 1620.06c | 下调Down | 次生代谢产物的生物合成、抗生素合成、氨基酸生物合成、磷酸戊糖途径 Biosynthesis of secondary metabolites, antibiotic synthesis, amino acid biosynthesis,pentose phosphate pathway |
5 | ncbi_9672983 | des | 上调Up | 氧化磷酸化 Oxidative phosphorylation |
6 | ncbi_9673795 | gdh-1 | 下调Down | 丙氨酸,天冬氨酸和谷氨酸代谢、精氨酸生物合成、氮代谢、牛磺酸代谢 Alanine, aspartic acid and glutamate metabolism, arginine biosynthesis, nitrogen metabolism, taurine metabolism |
7 | ncbi_9674832 | FES1 | 下调Down | 内质网中的蛋白质加工Protein processing in the endoplasmic reticulum |
8 | ncbi_9664755 | CLAH10 | 上调Up | 次生代谢产物的生物合成、抗生素合成、精氨酸和脯氨酸代谢、色氨酸代谢、缬氨酸,亮氨酸和异亮氨酸的降解等 Biosynthesis of secondary metabolites, antibiotic synthesis, metabolism of arginine and proline, metabolism of tryptophan, degradation of valine, leucine and isoleucine, etc |
9 | ncbi_9671992 | pep-4 | 上调Up | 运输和分解代谢,自噬 Transport and catabolism, autophagy |
10 | ncbi_9671150 | imqH | 下调Down | 过氧化物酶体、甘氨酸、丝氨酸和苏氨酸的代谢、赖氨酸降解 Metabolism of peroxisome, glycine, serine, threonine, lysine degradation |
11 | ncbi_9671105 | glkA | 上调Up | 次生代谢产物的生物合成、抗生素合成、碳代谢、淀粉和蔗糖代谢、氨基糖和核苷酸糖代谢、果糖和甘露糖代谢 Biosynthesis of secondary metabolites, antibiotic synthesis, carbon metabolism, starch and sucrose metabolism, amino sugars and nucleotide sugars metabolism, fructose and mannose metabolism |
12 | ncbi_9679169 | nuo40 | 上调Up | 氧化磷酸化Oxidative phosphorylation |
13 | ncbi_9664067 | SOD1 | 上调Up | 过氧化物酶体Peroxisome |
14 | ncbi_9678178 | ykt6 | 上调Up | SNARE在水泡运输中的相互作用、自噬 Interaction and autophagy of SNARE in blister transport |
15 | ncbi_9674908 | HYR1 | 上调Up | 谷胱甘肽代谢、花生四烯酸代谢Glutathione metabolism, arachidonic acid metabolism |
16 | ncbi_9664589 | Cda | 上调Up | 嘧啶代谢Pyrimidine metabolism |
17 | ncbi_9668438 | mcsA | 上调Up | 碳水化合物代谢;柠檬酸甲基合酶前体、氨基酸生物合成 Carbohydrate metabolism; Citrate methyl synthase precursor, amino acid biosynthesis |
18 | ncbi_9673059 | Acaa1b | 上调Up | α-亚麻酸代谢、缬氨酸,亮氨酸和异亮氨酸的降解、脂肪酸降解等 α-linolenic acid metabolism, degradation of valine, leucine and isoleucine, fatty acid degradation, etc |
19 | ncbi_9665574 | ACAD10 | 上调Up | 抗生素生物合成、β-丙氨酸代谢、缬氨酸,亮氨酸和异亮氨酸的降解 Antibiotic biosynthesis, β-alanine metabolism, degradation of valine, leucine and isoleucine |
20 | ncbi_9674141 | KATG2 | 上调Up | 次生代谢物生物合成、色氨酸代谢、丙氨酸代谢 Secondary metabolite biosynthesis, tryptophan metabolism, alanine metabolism |
图5 Fusarium侵染甘薯不同时间不同基因的表达差异趋势 Y轴(左轴)为qRT-PCR验证结果(折线表示相对表达量),Y轴(右轴)为转录组测序结果(柱状图表示FPKM值)。
Fig.5 The expression levels of DEGs in Fusarium infecting sweetpotato Y-axis (left) indicates qRT-PCR data (line graphs); Y-axis (right) indicates RNA-Seq data (bar chart). Data from qRT-PCR are means of three replicates and bars represent data from RNA-seq are means of the replicates.
[1] | 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学[M]. 中国农业出版社, 1998:19-27. |
[2] |
王欣, 李强, 曹清河, 等. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483-492.
DOI |
WANG X, LI Q, CAO Q H, et al. Current status and future prospective of sweetpotato production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3): 483-492. (in Chinese with English abstract)
DOI |
|
[3] |
HUSSEIN M A, GHERBAWY Y, EL-DAWY E G A. Characterization, pathogenicity and enzymatic profile of Fusarium solani associated with potato tubers in Upper Egypt[J]. Archives of Phytopathology and Plant Protection, 2020, 53(11/12): 495-508.
DOI URL |
[4] |
BATNINI M, HADDOUDI I, TAAMALI W, et al. Medicago truncatula in interaction with Fusarium and Rhizoctonia phytopathogenic fungi: fungal aggressiveness, plant response biodiversity and character heritability indices[J]. The Plant Pathology Journal, 2021, 37(4): 315-328.
DOI URL |
[5] |
ROSTAMI A, SADRAVI M, REZAEE R, et al. Biological control of Fusarium root rot of bean with two Trichoderma species and Pseudomonas fluorescens[J]. Plant Pathology Science, 2020, 9(2): 14-27.
DOI URL |
[6] | WANG R Y, GAO B, LI X H, et al. First report of Fusarium solani causing Fusarium root rot and stem canker on storage roots of sweet potato in China[J]. Plant Disease, 2014, 98(1): 160. |
[7] | 王容燕, 高波, 陈书龙, 等. 河北省甘薯镰孢菌腐烂与溃疡病的病原鉴定[J]. 植物保护学报, 2016, 43(2): 241-247. |
WANG R Y, GAO B, CHEN S L, et al. Identification of the pathogens causing Fusarium root rot and stem canker on sweet potato in Hebei Province[J]. Journal of Plant Protection, 2016, 43(2): 241-247. (in Chinese with English abstract) | |
[8] | 王楚彪, 卢万鸿, 林彦, 等. 转录组测序的发展和应用[J]. 桉树科技, 2018, 35(4): 20-26. |
WANG C B, LU W H, LIN Y, et al. Development and application of transcriptome sequencing[J]. Eucalypt Science & Technology, 2018, 35(4): 20-26. (in Chinese with English abstract) | |
[9] |
CHOI J, CHUNG H, LEE G W, et al. Genome-wide analysis of hypoxia-responsive genes in the rice blast fungus, Magnaporthe oryzae[J]. PLoS One, 2015, 10(8): e0134939.
DOI URL |
[10] |
JIN L R, CHEN D, LIAO S J, et al. Transcriptome analysis reveals downregulation of virulence-associated genes expression in a low virulence Verticillium dahliae strain[J]. Archives of Microbiology, 2019, 201(7): 927-941.
DOI |
[11] |
DONALDSON M E, OSTROWSKI L A, GOULET K M, et al. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression[J]. BMC Genomics, 2017, 18(1): 340.
DOI PMID |
[12] | 张大军, 邱德文, 蒋伶活. 禾谷镰刀菌基因组学研究进展[J]. 安徽农业科学, 2009, 37(17): 7892-7894. |
ZHANG D J, QIU D W, JIANG L H. Research progress on the genomics of Fusarium graminearum[J]. Journal of Anhui Agricultural Sciences, 2009, 37(17): 7892-7894. (in Chinese with English abstract) | |
[13] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
DOI PMID |
[14] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
DOI PMID |
[15] |
PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3): 290-295.
DOI PMID |
[16] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
DOI URL |
[17] | 余舜武, 刘鸿艳, 罗利军. 利用不同实时定量PCR方法分析相对基因表达差异[J]. 作物学报, 2007, 33(7): 1214-1218. |
YU S W, LIU H Y, LUO L J. Analysis of relative gene expression using different real-time quantitative PCR[J]. Acta Agronomica Sinica, 2007, 33(7): 1214-1218. (in Chinese with English abstract) | |
[18] | 纪晓贝, 梁鹏, 刘文波, 等. 橡胶树白粉菌侵染过程转录组学分析[J]. 植物保护学报, 2021, 48(6): 1479-1487. |
JI X B, LIANG P, LIU W B, et al. Transcriptome analysis of powdery mildew fungus Erysiphe quercicola during infection of rubber tree[J]. Journal of Plant Protection, 2021, 48(6): 1479-1487. (in Chinese with English abstract) | |
[19] | 黄在兴, 宋昭昭, 梅兰, 等. 基于转录组学的巨菌草内生链霉菌拮抗玉蜀黍平脐蠕孢的分子机理[J]. 福建农林大学学报(自然科学版), 2021, 50(5): 686-693. |
HUANG Z X, SONG Z Z, MEI L, et al. Molecular mechanism of antagonistic effect of endophytic Streptomyces sp. of Pennisetum giganteum z.x.lin on Bipolaris maydis based on transcriptome[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2021, 50(5): 686-693. (in Chinese with English abstract) | |
[20] | 范金霞, 黄晓梅, 张炳秀. 尖孢镰刀菌(Fusarium oxysporum)乙醛脱氢酶基因的特征分析[J]. 基因组学与应用生物学, 2014, 33(2): 260-265. |
FAN J X, HUANG X M, ZHANG B X. The characteristic analysis of aldehyde dehydrogenase genes from Fusarium oxysporum[J]. Genomics and Applied Biology, 2014, 33(2): 260-265. (in Chinese with English abstract) | |
[21] | 李敏慧, 苑曼琳, 姜子德, 等. 香蕉枯萎病菌致病机理研究进展[J]. 果树学报, 2019, 36(6): 803-811. |
LI M H, YUAN M L, JIANG Z D, et al. Research progress in pathogenic mechanism of Fusarium oxysporum f.sp. cubense[J]. Journal of Fruit Science, 2019, 36(6): 803-811. (in Chinese with English abstract) |
[1] | 谢梅琼, 王龙江, 何余容, 吕利华. 玫烟色棒束孢转录组测序及潜在致病相关基因分析[J]. 浙江农业学报, 2023, 35(9): 2169-2180. |
[2] | 徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661. |
[3] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[4] | 孟羽莎, 王寅, 赖齐贤, 刘雷, 项超, 吴永华, 郑嫣然, 顾兴国, 方豪, 苗苗, 吴列洪, 汤勇. 甘薯近缘野生种ISBP分子标记的开发及其在遗传多样性分析和品种鉴定中的应用[J]. 浙江农业学报, 2023, 35(3): 489-498. |
[5] | 杨清, 刘胜红, 黄二宾, 杜嵘宇, 王芳, 邓佳. 经羧甲基壳聚糖诱导的葡萄柚果实转录组WRKY基因分析及抗性相关基因挖掘[J]. 浙江农业学报, 2023, 35(3): 598-614. |
[6] | 李晓娟, 赵文菊, 赵孟良, 邵登魁, 马一栋, 任延靖. 基于转录组序列的芜菁SSR标记开发及应用[J]. 浙江农业学报, 2023, 35(2): 319-328. |
[7] | 贺嵘, 赵恺, 贺玉娇, 阿拉腾苏和, 王爱君, 宁静, 韩若霜, 孙贵荣, 张国盛. 基于转录组测序与定量PCR技术挖掘北沙柳株型相关候选基因[J]. 浙江农业学报, 2023, 35(10): 2332-2345. |
[8] | 叶梅荣, 黄守程, 王晓鹏, 刘爱荣, 崔峰, 康健. 基于Iso-Seq技术的野生马齿苋叶片转录组分析[J]. 浙江农业学报, 2023, 35(1): 67-78. |
[9] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[10] | 古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924. |
[11] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[12] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[13] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[14] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[15] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||