浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 90-102.DOI: 10.3969/j.issn.1004-1524.2023.01.10
收稿日期:
2022-03-30
出版日期:
2023-01-25
发布日期:
2023-02-21
通讯作者:
*耿广东,E-mail:genggd213@163.com
作者简介:
熊兴伟(1996—),男,侗族,贵州石阡人,硕士研究生,主要从事蔬菜生理生态与生物技术研究。E-mail:gdxxwei@163.com
基金资助:
XIONG Xingwei(), WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong(
)
Received:
2022-03-30
Online:
2023-01-25
Published:
2023-02-21
摘要:
为研究南瓜叶色黄化突变的机制,挖掘黄化相关关键基因,试验以南瓜自然黄化突变体为试材,通过高通量RNA测序(RNA-seq)对苗期子叶进行转录组分析。结果表明:从检测的26 445个表达基因中鉴定出12 687个差异表达基因(DEGs),包括6 444个上调基因,6 243个下调基因;其中2 321个DEGs是转录因子编码基因。选取14个与光合色素密切相关的DEGs进行实时荧光定量PCR(qRT-PCR)分析,发现它们的基因表达水平与转录组测序结果一致。经KEGG富集分析,发现卟啉和叶绿素(Chl)生物合成、光系统Ⅰ、光系统Ⅱ、光合作用-天线蛋白、电子传递和F型ATP酶相关基因的表达显著下调。谷氨酰-tRNA还原酶、镁离子螯合酶、叶绿素a加氧酶基因异常表达,血红素代谢相关基因表达上调抑制了Chl合成;β-胡萝卜素3-羟基酶促进了类胡萝卜素生成;另外,光合作用过程受阻也反馈抑制Chl合成,Chl合成受阻和类胡萝卜素合成受促导致南瓜叶色黄化。研究结果为南瓜黄化突变的分子机制提供了新的见解,为关键基因功能分析和南瓜育种奠定了基础。
中图分类号:
熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102.
XIONG Xingwei, WANG Yiqin, TIAN Huaizhi, ZHANG Suqin, GENG Guangdong. Molecular mechanisms of chlorophyll-reduced cotyledon based on transcriptome sequencing in pumpkin[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 90-102.
图1 南瓜黄化苗 A,MB21M黄化苗;B,MB21CK绿苗对照。
Fig.1 Chlorophyll-reduced seedlingof pumpkin A, Chlorophyll-reduced seedling MB21M; B, Control green seedling MB21CK.
差异表达基因ID ID of differential expressed genes | 正向引物 Forward primer(5'→3') | 反向引物 Reverse primer(5'→3') |
---|---|---|
CmaCh14G018600 | ATCTCCGCTCCGTTCCTCTGTC | GCTTCGGTTCCGATTTTCCATTTGG |
CmaCh11G001420 | ATCCGAGTTGAAGCACATCCAATCC | TCGCCTGAGCATTTCGTCACATAC |
CmaCh10G000130 | CTCACAGGAGTAACAGTCTGCGATG | AATATCACTGGCGAAGACGATGGC |
CmaCh03G010210 | GAAGGCTGAGGGAGTGAACAAGAAC | TCCAGGGTGTAAGTTAGGCGAGTC |
CmaCh07G007390 | GCTGGTGGAAGAGGTGATGAAGAAG | AGATGGCTGAACGCTCTCAAACAC |
CmaCh18G003280 | CGAGACTTGGACCTGCCCTTAAAG | CTGATTCTTTCGCCCTGGCTACG |
CmaCh11G018510 | TCAGTTGTCAAGCCACGAGTATTCC | GAAGCCCAATAGCACCCAGAAGAAG |
CmaCh19G009550 | GCGAAGGGAAAGGGCGTTAAGG | CAACATGGTAGCAGTGGGAAGGC |
CmaCh14G016960 | AACCCTCTTCACCCCATCTCTCTC | AAGATGCGGCAGGCTTGATGAG |
CmaCh05G007770 | GCCACTGAAGAACCCAAGCCTAAG | CCTGGTCAACTGTTACAACCGATCC |
CmaCh12G009820 | TTGGCCCCAAGAGAGGTACTAAGG | AACCGTGACAACAGATCCAACATCC |
CmaCh13G003520 | TCCTCCCTCTCCTCTCCTTCCTC | TGAACCTTCCGCCGAATGAACG |
CmaCh19G004980 | GCAGAGGCGGATGTCATCTTCAC | CACATGGCTCGACGTTCCTTGG |
CmaCh07G012230 | TTGCTAATGCTGCTGCTCTTCCG | AACGAATGGTGCTACAGTCGATACG |
18S | TCGGGATCGGAGTAATGA | TTCGCAGTTGTTCGTCTT |
表1 qRT-PCR所用特异引物
Table 1 Specific primers used for qRT-PCR
差异表达基因ID ID of differential expressed genes | 正向引物 Forward primer(5'→3') | 反向引物 Reverse primer(5'→3') |
---|---|---|
CmaCh14G018600 | ATCTCCGCTCCGTTCCTCTGTC | GCTTCGGTTCCGATTTTCCATTTGG |
CmaCh11G001420 | ATCCGAGTTGAAGCACATCCAATCC | TCGCCTGAGCATTTCGTCACATAC |
CmaCh10G000130 | CTCACAGGAGTAACAGTCTGCGATG | AATATCACTGGCGAAGACGATGGC |
CmaCh03G010210 | GAAGGCTGAGGGAGTGAACAAGAAC | TCCAGGGTGTAAGTTAGGCGAGTC |
CmaCh07G007390 | GCTGGTGGAAGAGGTGATGAAGAAG | AGATGGCTGAACGCTCTCAAACAC |
CmaCh18G003280 | CGAGACTTGGACCTGCCCTTAAAG | CTGATTCTTTCGCCCTGGCTACG |
CmaCh11G018510 | TCAGTTGTCAAGCCACGAGTATTCC | GAAGCCCAATAGCACCCAGAAGAAG |
CmaCh19G009550 | GCGAAGGGAAAGGGCGTTAAGG | CAACATGGTAGCAGTGGGAAGGC |
CmaCh14G016960 | AACCCTCTTCACCCCATCTCTCTC | AAGATGCGGCAGGCTTGATGAG |
CmaCh05G007770 | GCCACTGAAGAACCCAAGCCTAAG | CCTGGTCAACTGTTACAACCGATCC |
CmaCh12G009820 | TTGGCCCCAAGAGAGGTACTAAGG | AACCGTGACAACAGATCCAACATCC |
CmaCh13G003520 | TCCTCCCTCTCCTCTCCTTCCTC | TGAACCTTCCGCCGAATGAACG |
CmaCh19G004980 | GCAGAGGCGGATGTCATCTTCAC | CACATGGCTCGACGTTCCTTGG |
CmaCh07G012230 | TTGCTAATGCTGCTGCTCTTCCG | AACGAATGGTGCTACAGTCGATACG |
18S | TCGGGATCGGAGTAATGA | TTCGCAGTTGTTCGTCTT |
基因ID Gene ID | 基因名称 Gene name | 相对表达水平 Relative expression level | |
---|---|---|---|
RNA-seq | qRT-PCR | ||
CmaCh14G018600 | HCAR | 96.92 | 0.92 |
CmaCh11G001420 | chlP, bchP | 43.16 | 1.15 |
CmaCh10G000130 | bchM,chlM | 181.12 | 2.69 |
CmaCh03G010210 | psbO | 564.12 | 21.51 |
CmaCh07G007390 | psbO | 467.19 | 19.25 |
CmaCh18G003280 | psbQ | 471.95 | 27.78 |
CmaCh11G018510 | MYBP/petC | 200.09 | 12.41 |
CmaCh19G009550 | petC | 428.96 | 42.18 |
CmaCh14G016960 | psaD | 442.07 | 52.54 |
CmaCh05G007770 | psaE | 104.02 | 1.88 |
CmaCh12G009820 | psaE | 592.67 | 69.60 |
CmaCh13G003520 | psaO | 576.34 | 37.67 |
CmaCh19G004980 | hemA | 104.80 | 1.15 |
CmaCh07G012230 | psbE | 6.40 | 0.26 |
表2 qRT-PCR验证基因的名称与相对表达水平
Table 2 Name and relative expression level of genes verified by qRT-PCR
基因ID Gene ID | 基因名称 Gene name | 相对表达水平 Relative expression level | |
---|---|---|---|
RNA-seq | qRT-PCR | ||
CmaCh14G018600 | HCAR | 96.92 | 0.92 |
CmaCh11G001420 | chlP, bchP | 43.16 | 1.15 |
CmaCh10G000130 | bchM,chlM | 181.12 | 2.69 |
CmaCh03G010210 | psbO | 564.12 | 21.51 |
CmaCh07G007390 | psbO | 467.19 | 19.25 |
CmaCh18G003280 | psbQ | 471.95 | 27.78 |
CmaCh11G018510 | MYBP/petC | 200.09 | 12.41 |
CmaCh19G009550 | petC | 428.96 | 42.18 |
CmaCh14G016960 | psaD | 442.07 | 52.54 |
CmaCh05G007770 | psaE | 104.02 | 1.88 |
CmaCh12G009820 | psaE | 592.67 | 69.60 |
CmaCh13G003520 | psaO | 576.34 | 37.67 |
CmaCh19G004980 | hemA | 104.80 | 1.15 |
CmaCh07G012230 | psbE | 6.40 | 0.26 |
图5 差异基因GO分类 1,生物粘附;2,生物调节;3,细胞过程;4,排毒;5,发育过程;6,生长;7,免疫系统过程;8,物种间相互作用;9,定位;10,移动;11,代谢过程;12,多生物过程;13,多细胞组织过程;14,氮利用;15,繁殖;16,生殖过程;17,对刺激的反应;18,节律过程;19,信号转导;20,细胞解剖实体;21,细胞内;22,含蛋白质复合物;23,抗氧化剂活性;24,结合;25,受体活性;26,催化活性;27,分子载体活性;28,分子功能调节器;29,分子传感器活性;30,营养库活性;31,蛋白质折叠伴侣;32,蛋白质标签;33,小分子传感器活性;34,结构分子活性;35,毒素活性;36,转录调节活性;37,翻译调节活性;38,载体活性。
Fig.5 The GO terms of the DEGs 1, Biological adhesion; 2, Biological regulation; 3, Cell process; 4, Detoxification; 5, Development process; 6, Growth; 7, Immune system process; 8, Interspecies interactions between organisms; 9, Localization; 10, Locomotion; 11, Metabolic process; 12, Multi-organism process; 13, Multicellular organization process; 14, Nitrogen utilization; 15, Reproduction; 16, Reproductive process; 17, Response to stimulus; 18, Rhythmic process; 19, Signaling; 20, Cellular anatomical entity; 21, Intracellular; 22, Protein-containing complex; 23, Antioxide activity; 24, Binding; 25, Cargo receptor activity; 26, Catalytic activity; 27, Molecular carrier activity; 28, Molecular function regulator; 29, Molecular transducer activity; 30, Nutrient reservoir activity; 31, Protein folding chaperone; 32, Protein tag; 33, Small molecule sensor activity; 34, Structural molecular activity; 35, Toxin activity; 36, Transcriptional regulatory activity; 37, Translational regulatory activity; 38, Transporter activity.
图6 差异基因GO富集气泡图 1,蛋白丝氨酸/苏氨酸激酶活性;2,细胞氨基酸代谢过程;3,丝氨酸家族氨基酸代谢过程;4,磷酸转移酶活性,醇基为受体;5,α-氨基酸代谢过程;6,蛋白激酶活性;7,催化活性,作用于蛋白质;8,激酶活性;9,腺苷酸结合;10,腺苷基核糖核苷酸结合;11,ATP结合;12,碳水化合物衍生物结合;13,阴离子结合;14,嘌呤核苷酸结合;15,核苷磷酸结合;16,小分子结合;17,嘌呤核糖核苷三磷酸结合;18,嘌呤核糖核苷酸结合;19,核糖核苷酸结合;20,核苷酸结合。
Fig.6 Bubble chart of DEG GO enrichment 1, Protein serine/threonine kinase activity; 2, Cellular amino acid metabolic process; 3, Serine family amino acid metabolic process; 4, Phosphotransferase activity, alcohol group as acceptor; 5, Alpha-amino acid metabolic process; 6, Protein kinase activity; 7, Catalytic activity, acting on a protein; 8, Kinase activity; 9, Adenyl nucleotide binding; 10, Adenyl ribonucleotide binding; 11, ATP binding; 12, Carbohydrate derivative binding; 13, Anion binding; 14, Purine nucleotide binding; 15, Nucleoside phosphate binding; 16, Small molecule binding; 17, Purine ribonucleoside triphosphate binding; 18, Purine ribonucleotide binding; 19, Ribonucleotide binding; 20, Nucleotide binding.
图7 差异基因KEGG富集气泡图 1,自噬-其他;2,植物激素信号转导;3,2-氧代羧酸代谢;4,碳代谢;5,硫胺素代谢;6,苯丙氨酸,酪氨酸和色氨酸生物合成;7,精氨酸生物合成;8,磷酸戊糖途径;9,过氧物酶体;10,丁酸代谢;11,光合作用-天线蛋白;12,MAPK信号通路-植物;13,甘氨酸,丝氨酸和苏氨酸的代谢;14,硫代谢;15,吞噬体;16,卟啉和叶绿素代谢;17,内质网中的蛋白质加工;18,丙氨酸、天冬氨酸和谷氨酸代谢;19,蛋白酶体;20,氨基酸生物合成。
Fig.7 Bubble chart of DEG KEGG pathways 1, Autopophagy-other; 2, Plant hormone signal transduction; 3, 2-Oxyxy arboxylic acid metabolism; 4, Carbon metabolism; 5, Thiamine metabolism; 6, Phenylalanine, tyrosine and tryptophan biosynthesis; 7, Arginine biosynthesis; 8, Pentose phosphate pathway; 9, Peroxisome; 10, Butyrate metabolism; 11, Photosynthesis-antenna proteins; 12, MAPK signaling pathway-plant; 13, Glycine, serine and threonine metabolism; 14, Sulfur metabolism; 15, Phagosome; 16, Porphyrin and chlorophyll metabolism; 17, Protein processing in endoplasmic reticulum; 18, Alanine, aspartate, and glutamate metabolism; 19, Proteasome; 20, Biosynthesis of amino acids.
图9 卟啉与叶绿素合成途径 A,ALA合成;B,原卟啉Ⅸ和血红素合成;C,叶绿素合成。红色指示上调基因,绿色指示下调基因,下同。
Fig.9 Porphyrin and chlorophyll synthesis pathways A, ALA synthesis; B, Proporphyrin and heme synthesis; C, Chlorophyll synthesis. Red color indicated up-regulated genes, and green color showed down-regulated genes. The same as below.
[1] | 焦诗雅. 蜜本南瓜高产栽培技术探析[J]. 广东蚕业, 2022, 56(6): 57-59. |
JIAO S Y. Study on high yield cultivation techniques of honeydew Pumpkin[J]. Guangdong Sericulture, 2022, 56(6): 57-59. (in Chinese) | |
[2] | 王力源, 李文杰, 麻芸娇, 等. 白榆白化芽变突变体光合特性及转录组分析[J]. 西北林学院学报, 2020, 35(6): 10-16. |
WANG L Y, LI W J, MA Y J, et al. Photosynthetic characteristics and transcriptome analysis of albino mutant of Ulmus pumila[J]. Journal of Northwest Forestry University, 2020, 35(6): 10-16. (in Chinese with English abstract) | |
[3] |
HUANG S, SUN L, HU X, et al. Associations of canopy leaf traits with SNP markers in durum wheat (Triticum turgidum L. durum(Desf.))[J]. PLoS One, 2018, 13(10): e0206226.
DOI URL |
[4] | CHEN X, YANG X, XIE J, et al. Biochemical and comparative transcriptome analyses reveal key genes involved in major metabolic regulation related to colored leaf formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during development[J]. Biomolecules, 2020, 10(4): e549. |
[5] |
SANDHU D, ATKINSON T, NOLL A, et al. Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function[J]. Plant Science, 2016, 252: 76-87.
DOI PMID |
[6] |
NAGATA N, TANAKA R, SATOH S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species[J]. The Plant Cell, 2005, 17(1): 233-240.
DOI URL |
[7] |
ADHIKARI N D, FROEHLICH J E, STRAND D D, et al. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-chelatase and promote chlorophyll biosynthesis in Arabidopsis[J]. The Plant Cell, 2011, 23(4): 1449-1467.
DOI URL |
[8] |
LIU X X, ZHANG J G, XUE L, et al. Transcriptome-wide effect of Salix SmSPR1 in etiolated seedling of Arabidopsis[J]. Journal of Forestry Research, 2021, 32(3): 975-985.
DOI URL |
[9] | GAO T M, WEI S L, CHEN J, et al. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl-1 with yellow-green leaf color[J]. Genes & Genomics, 2020, 42(1): 25-39. |
[10] | KHAN A, JALIL S, CAO H, et al. The purple leaf (pl6) mutation regulates leaf color by altering the anthocyanin and chlorophyll contents in rice[J]. Plants (Basel, Switzerland), 2020, 9(11): e1477. |
[11] | WANG Y, LIU S, TIAN X, et al. Influence of light intensity on chloroplast development and pigment accumulation in the wild-type and etiolated mutant plants of Anthurium and ‘Sonate’[J]. Plant Signaling & Behavior, 2018, 13(8): e1482174. |
[12] |
GAO M L, HU L L, LI Y H, et al. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit[J]. Theoretical and Applied Genetics, 2016, 129(10): 1961-1973.
DOI PMID |
[13] |
ZHOU P L, KHAN R, LI Q Y, et al. Transcriptomic analyses of chilling stress responsiveness in leaves of tobacco (Nicotiana tabacum) seedlings[J]. Plant Molecular Biology Reporter, 2020, 38(1): 1-13.
DOI URL |
[14] |
LIN D, GONG X, JIANG Q, et al. The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth[J]. Rice (New York, N Y ), 2015, 8: 17.
DOI PMID |
[15] |
LI N, JIA J, XIA C, et al. Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat[J]. Breeding Science, 2013, 63(2): 169-175.
DOI PMID |
[16] |
MA C Y, CAO J X, LI J K, et al. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis[J]. Scientific Reports, 2016, 6(1): 33369.
DOI URL |
[17] | 马华升, 姚艳玲, 忻雅, 等. 大花惠兰组培苗中叶色突变体的获得与DNA鉴定[J]. 浙江农业学报, 2008, 20(3): 149-153. |
MA H S, YAO Y L, XIN Y, et al. Gain and DNA identification of leaf color mutant derived from tissue culture of Cymbidium hyhridum[J]. Acta Agriculturae Zhejiangensis, 2008, 20(3): 149-153. (in Chinese with English abstract) | |
[18] | QIN D, XU C. Study strategies for long non-coding RNAs and their roles in regulating gene expression[J]. Cellular & Molecular Biology Letters, 2015, 20(2): 323-349. |
[19] |
LYU Y Z, DONG X Y, HUANG L B, et al. De novo assembly of Koelreuteria transcriptome and analysis of major gene related to leaf etiolation[J]. South African Journal of Botany, 2017, 113: 355-361.
DOI URL |
[20] | JIANG Y, WANG Q, SHEN Q Q, et al. Transcriptome analysis reveals genes associated with leaf color mutants in Cymbidium longibracteatum[J]. Tree Genetics & Genomes, 2020, 16(3): 1-10. |
[21] |
WU Y Q, LI X, WANG T L, et al. Ginkgo biloba microRNA profiling reveals new insight into leaf color mutation[J]. Scientia Horticulturae, 2020, 265: 109189.
DOI URL |
[22] | 汪端华, 杨建国, 李倩, 等. 南瓜银叶突变体48a的表型特征及其遗传学分析[J]. 中国瓜菜, 2020, 33(4): 12-16. |
WANG D H, YANG J G, LI Q, et al. Phenotypic characteristics and genetic analysis of pumpkin (Cucurbita moschata Duch.) silver leaf mutant 48a[J]. China Cucurbits and Vegetables, 2020, 33(4): 12-16. (in Chinese with English abstract) | |
[23] |
FU M Y, CHENG S Y, XU F, et al. Advance in mechanism of plant leaf colour mutation[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49(2): 12071.
DOI URL |
[24] |
RAMZI A B, HYEON J E, KIM S W, et al. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway[J]. Enzyme and Microbial Technology, 2015, 81: 1-7.
DOI URL |
[25] | KATO K, TANAKA R, SANO S, et al. Identification of a gene essential for protoporphyrinogen Ⅸ oxidase activity in the cyanobacterium Synechocystis sp. PCC6803[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(38): 16649-16654. |
[26] |
WANG Z, HONG X, HU K, et al. Impaired magnesium protoporphyrin Ⅸ methyltransferase (ChlM) impedes chlorophyll synthesis and plant growth in rice[J]. Frontiers in Plant Science, 2017, 8: 1694.
DOI URL |
[27] | 张智韦. 乙烯利对低温胁迫下日本结缕草叶绿素代谢通路的影响[D]. 北京: 北京林业大学, 2020. |
ZHANG Z W. Effects of ethephon on chlorophyll metabolic pathway of Zoysia japonica under low temperature stress[D]. Beijing: Beijing Forestry University, 2020. (in Chinese with English abstract) | |
[28] |
LI Y Y, HAN M, WANG R H, et al. Comparative transcriptome analysis identifies genes associated with chlorophyll levels and reveals photosynthesis in green flesh of radish taproot[J]. PLoS One, 2021, 16(5): e0252031.
DOI URL |
[29] |
LIN Y P, LEE T Y, TANAKA A, et al. Analysis of an Arabidopsis heat-sensitive mutant reveals that chlorophyll synthase is involved in reutilization of chlorophyllide during chlorophyll turnover[J]. The Plant Journal, 2014, 80(1): 14-26.
DOI URL |
[30] | ZHAO X, JIA T, HU X. HCAR is a limitation factor for chlorophyll cycle and chlorophyll b degradation in chlorophyll-b-overproducing plants[J]. Biomolecules, 2020, 10(12): e1639. |
[31] |
KROL M, SPANGFORT M D, HUNER N, et al. Chlorophyll a/b-binding proteins, pigment conversions, and early light-induced proteins in a chlorophyll b-less barley mutant[J]. Plant Physiology, 1995, 107(3): 873-883.
DOI PMID |
[32] |
ZHANG Q, SHAN C H, NING M, et al. Transcriptome profiling of gold queen Hami melons under cold stress[J]. Russian Journal of Plant Physiology, 2020, 67(5): 888-897.
DOI URL |
[33] |
ZHANG H J, CHEN J F, ZHANG F, et al. Transcriptome analysis of callus from melon[J]. Gene, 2019, 684: 131-138.
DOI PMID |
[34] | 朱美玉. 番茄黄叶突变体LA3734的光合特性及差异表达基因分析[D]. 沈阳: 沈阳农业大学, 2020. |
ZHU M Y. Analysis of photosynthetic characteristics and differentially expressed genes of a tomato yellow leaf mutant LA3734[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract) | |
[35] | 吴砚农, 郑伟尉, 陆伟杰, 等. 十字花科植物黄化突变特性及其分子机制研究进展[J]. 浙江农林大学学报, 2021, 38(2): 412-419. |
WU Y N, ZHENG W W, LU W J, et al. Research progress on the characteristics and molecular mechanism of yellowing mutation in Brassicaceae[J]. Journal of Zhejiang A & F University, 2021, 38(2): 412-419. (in Chinese with English abstract) | |
[36] |
OCHSENKÜHN T, TILLACK C, STEPP H, et al. Low frequency of colorectal dysplasia in patients with long-standing inflammatory bowel disease colitis: detection by fluorescence endoscopy[J]. Endoscopy, 2006, 38(5): 477-482.
PMID |
[37] |
SAKURABA Y, PARK S Y, PAEK N C. The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation[J]. Molecules and Cells, 2015, 38(5): 390-395.
DOI PMID |
[38] | 王亚琴. 水稻黄绿叶突变体ygl13的鉴定和候选基因分析[D]. 重庆: 西南大学, 2016. |
WANG Y Q. Characterization and candidate gene analysis of yellow-green leaf mutant ygl13 in rice (Oryza sativa)[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract) | |
[39] |
ANDERSON S A, SINGHAL R, FERNANDEZ D E. Membrane-specific targeting of tail-anchored proteins SECE1 and SECE2 within chloroplasts[J]. Frontiers in Plant Science, 2019, 10: 1401.
DOI PMID |
[40] |
BASHIR H, QURESHI M I, IBRAHIM M M, et al. Chloroplast and photosystems: impact of cadmium and iron deficiency[J]. Photosynthetica, 2015, 53(3): 321-335.
DOI URL |
[41] |
ALLEN J F, DE PAULA W B M, PUTHIYAVEETIL S, et al. A structural phylogenetic map for chloroplast photosynthesis[J]. Trends in Plant Science, 2011, 16(12): 645-655.
DOI PMID |
[42] |
SHI K, GU J, GUO H, et al. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta[J]. PLoS One, 2017, 12(5): e0177992.
DOI URL |
[43] |
ALBERTSSON P Å. A quantitative model of the domain structure of the photosynthetic membrane[J]. Trends in Plant Science, 2001, 6(8): 349-354.
PMID |
[44] |
CHU P, YAN G X, YANG Q, et al. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency[J]. Journal of Proteomics, 2015, 113: 244-259.
DOI URL |
[45] |
JANSSON S. A guide to the Lhc genes and their relatives in Arabidopsis[J]. Trends in Plant Science, 1999, 4(6): 236-240.
DOI URL |
[1] | 叶梅荣, 黄守程, 王晓鹏, 刘爱荣, 崔峰, 康健. 基于Iso-Seq技术的野生马齿苋叶片转录组分析[J]. 浙江农业学报, 2023, 35(1): 67-78. |
[2] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[3] | 古咸彬, 陆玲鸿, 宋根华, 肖金平, 张慧琴. 褪黑素预处理对桃耐涝性的调控效应[J]. 浙江农业学报, 2022, 34(9): 1911-1924. |
[4] | 丁东霞, 李能慧, 李静, 唐超男, 王成, 牛天航, 杨滟, 杨海涛, 颉建明. 外源褪黑素对低温弱光胁迫下辣椒叶绿素荧光和抗氧化系统的影响[J]. 浙江农业学报, 2022, 34(9): 1935-1944. |
[5] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[6] | 董袁袁, 徐恒, 张华, 张恒, 王伏林, 顾娜娜, 朱英. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113. |
[7] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[8] | 张志国, 丛琳, 张世杰, 李荣光, 邹维娜, 迟法安, 张宝, 姜玉萍. 根区温度对萱草生长发育及其开花的影响[J]. 浙江农业学报, 2022, 34(5): 1005-1014. |
[9] | 余艳玲, 罗洪林, 罗辉, 冯鹏霏, 潘传燕, 宋漫玲, 肖蕊, 张永德. 卵形鲳鲹生肌调节因子基因家族的鉴定及在胚胎中的表达[J]. 浙江农业学报, 2022, 34(4): 695-705. |
[10] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
[11] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[12] | 王乾昆, 张小辉, 庞有志, 祁艳霞, 雷莹, 白俊艳, 户运奇, 赵毅威, 苑志文, 王涛. 基于RNA-seq技术挖掘鹌鹑羽色自别雌雄相关基因[J]. 浙江农业学报, 2022, 34(3): 498-506. |
[13] | 兰国湘, 金思琪, 李星润, 刘喜雨, 李国美, 董新星. 高原雨点鸽与詹森鸽胸肌转录组差异表达基因筛选与功能分析[J]. 浙江农业学报, 2022, 34(3): 507-516. |
[14] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[15] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||