浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1638-1647.DOI: 10.3969/j.issn.1004-1524.20221184
肖家昶1(), 雷凤芸2, 格桑3, 马俊英1, 贺茂林1, 李艳文1, 郑阳霞1,*(
)
收稿日期:
2022-08-19
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
肖家昶(1997—),男,山西阳泉人,硕士研究生,主要从事蔬菜逆境生理研究。E-mail:929144771@qq.com
通讯作者:
*郑阳霞,E-mail:754924349@qq.com
基金资助:
XIAO Jiachang1(), LEI Fengyun2, GE Sang3, MA Junying1, HE Maolin1, LI Yanwen1, ZHENG Yangxia1,*(
)
Received:
2022-08-19
Online:
2023-07-25
Published:
2023-08-17
Contact:
ZHENG Yangxia
摘要:
为提高豆瓣菜(Nasturtium officinale R. Br.)对硒的吸收能力,采用盆栽试验研究不同浓度氨基酸肥(分别稀释0、600、900、1 200和1 500倍)对硒处理(5 mg·kg-1)下豆瓣菜生长与硒吸收的影响。结果表明,外源喷施氨基酸肥可以提高豆瓣菜地下与地上部分的生物量,促进叶片中叶绿素含量和类胡萝卜素含量增加,提高超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,降低可溶性蛋白含量。主成分分析结果表明,氨基酸肥900倍稀释液对豆瓣菜的生长促进作用最优,此时地下与地上部分生物量较对照分别显著增加了73.03%和56.65%。外源喷施氨基酸肥900~1 500倍稀释液还可以提高豆瓣菜根、茎和叶的硒总积累量,但对豆瓣菜根、茎、叶和地上部分的硒含量无积极作用。相关分析发现,豆瓣菜生物量、硒总积累量与叶绿素含量、类胡萝卜素含量、POD活性、SOD活性、CAT活性、土壤pH值呈正相关。综上说明,氨基酸肥可以促进豆瓣菜的生长,提高豆瓣菜对硒总量的积累。
中图分类号:
肖家昶, 雷凤芸, 格桑, 马俊英, 贺茂林, 李艳文, 郑阳霞. 外源喷施氨基酸肥对豆瓣菜生长与硒吸收的影响[J]. 浙江农业学报, 2023, 35(7): 1638-1647.
XIAO Jiachang, LEI Fengyun, GE Sang, MA Junying, HE Maolin, LI Yanwen, ZHENG Yangxia. Effects of exogenous spraying of amino acid fertilizer on growth and selenium uptake of watercress[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1638-1647.
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 每株生物量Biomass per plant/g | ||||
---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 地上部Shoot | 根冠比Root/shoot ratio | |
0 | 0.152±0.004 d | 0.260±0.011 d | 0.545±0.010 c | 0.805±0.021 d | 0.189±0.008 b |
600 | 0.158±0.003 cd | 0.388±0.007 c | 0.577±0.017 c | 0.965±0.024 c | 0.164±0.001 c |
900 | 0.263±0.005 a | 0.453±0.013 a | 0.808±0.018 a | 1.261±0.031 a | 0.209±0.007 a |
1 200 | 0.225±0.003 b | 0.433±0.008 ab | 0.750±0.011 b | 1.183±0.020 b | 0.190±0.005 b |
1 500 | 0.165±0.004 c | 0.420±0.006 b | 0.740±0.016 b | 1.160±0.021 b | 0.142±0.005 d |
表1 氨基酸肥对豆瓣菜生物量的影响
Table 1 Effects of amino acid fertilizer on watercress biomass
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 每株生物量Biomass per plant/g | ||||
---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 地上部Shoot | 根冠比Root/shoot ratio | |
0 | 0.152±0.004 d | 0.260±0.011 d | 0.545±0.010 c | 0.805±0.021 d | 0.189±0.008 b |
600 | 0.158±0.003 cd | 0.388±0.007 c | 0.577±0.017 c | 0.965±0.024 c | 0.164±0.001 c |
900 | 0.263±0.005 a | 0.453±0.013 a | 0.808±0.018 a | 1.261±0.031 a | 0.209±0.007 a |
1 200 | 0.225±0.003 b | 0.433±0.008 ab | 0.750±0.011 b | 1.183±0.020 b | 0.190±0.005 b |
1 500 | 0.165±0.004 c | 0.420±0.006 b | 0.740±0.016 b | 1.160±0.021 b | 0.142±0.005 d |
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content | 类胡萝卜素含量 Carotenoid content |
---|---|---|---|---|
0 | 0.291±0.005 c | 0.130±0.002 b | 0.421±0.007 c | 0.044±0.005 c |
600 | 0.312±0.006 b | 0.135±0.006 ab | 0.447±0.011 bc | 0.047±0.003 c |
900 | 0.355±0.007 a | 0.148±0.002 a | 0.503±0.009 a | 0.061±0.003 a |
1 200 | 0.350±0.006 a | 0.147±0.008 a | 0.497±0.014 a | 0.057±0.004 ab |
1 500 | 0.329±0.009 b | 0.146±0.006 a | 0.475±0.015 ab | 0.050±0.001 bc |
表2 氨基酸肥对豆瓣菜光合色素含量的影响
Table 2 Effects of amino acid fertilizer on photosynthetic pigment content in watercress mg·g-1
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content | 类胡萝卜素含量 Carotenoid content |
---|---|---|---|---|
0 | 0.291±0.005 c | 0.130±0.002 b | 0.421±0.007 c | 0.044±0.005 c |
600 | 0.312±0.006 b | 0.135±0.006 ab | 0.447±0.011 bc | 0.047±0.003 c |
900 | 0.355±0.007 a | 0.148±0.002 a | 0.503±0.009 a | 0.061±0.003 a |
1 200 | 0.350±0.006 a | 0.147±0.008 a | 0.497±0.014 a | 0.057±0.004 ab |
1 500 | 0.329±0.009 b | 0.146±0.006 a | 0.475±0.015 ab | 0.050±0.001 bc |
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | POD活性 POD activity/ (U·g-1min-1) | SOD活性 SOD activity/ (U·g-1min-1) | CAT活性 CAT activity/ (U·g-1min-1) | 可溶性蛋白含量 Soluble protein content/ (mg·g-1) |
---|---|---|---|---|
0 | 1 255±7.78 d | 190.5±7.02 c | 2.003±0.070 e | 80.89±4.72 a |
600 | 1 300±9.90 c | 205.7±4.79 b | 2.270±0.062 d | 74.41±2.42 a |
900 | 1 474±2.83 a | 234.3±4.79 a | 5.348±0.072 a | 52.92±3.71 c |
1 200 | 1 459±12.73 a | 213.0±4.04 b | 5.047±0.088 b | 58.47±2.94 bc |
1 500 | 1 378±16.97 b | 207.6±2.34 b | 2.843±0.087 c | 62.30±2.38 b |
表3 氨基酸肥对豆瓣菜抗氧化酶活性与可溶性蛋白含量的影响
Table 3 Effects of amino acid fertilizer on antioxidant enzyme activity and soluble protein content in watercress
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | POD活性 POD activity/ (U·g-1min-1) | SOD活性 SOD activity/ (U·g-1min-1) | CAT活性 CAT activity/ (U·g-1min-1) | 可溶性蛋白含量 Soluble protein content/ (mg·g-1) |
---|---|---|---|---|
0 | 1 255±7.78 d | 190.5±7.02 c | 2.003±0.070 e | 80.89±4.72 a |
600 | 1 300±9.90 c | 205.7±4.79 b | 2.270±0.062 d | 74.41±2.42 a |
900 | 1 474±2.83 a | 234.3±4.79 a | 5.348±0.072 a | 52.92±3.71 c |
1 200 | 1 459±12.73 a | 213.0±4.04 b | 5.047±0.088 b | 58.47±2.94 bc |
1 500 | 1 378±16.97 b | 207.6±2.34 b | 2.843±0.087 c | 62.30±2.38 b |
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 硒含量Selenium content | |||
---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 地上部Shoot | |
0 | 4.090±0.047 a | 0.895±0.025 a | 1.376±0.036 a | 2.271±0.044 a |
600 | 3.778±0.105 b | 0.800±0.008 b | 1.286±0.029 a | 2.087±0.015 b |
900 | 3.505±0.107 c | 0.722±0.022 c | 1.032±0.040 c | 1.754±0.044 d |
1 200 | 3.173±0.068 d | 0.760±0.027 bc | 1.124±0.034 bc | 1.883±0.005 c |
1 500 | 2.913±0.060 e | 0.759±0.035 bc | 1.163±0.055 b | 1.922±0.014 c |
表4 氨基酸肥对豆瓣菜硒含量的影响
Table 4 Effects of amino acid fertilizer on selenium content in watercress mg·kg-1
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 硒含量Selenium content | |||
---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 地上部Shoot | |
0 | 4.090±0.047 a | 0.895±0.025 a | 1.376±0.036 a | 2.271±0.044 a |
600 | 3.778±0.105 b | 0.800±0.008 b | 1.286±0.029 a | 2.087±0.015 b |
900 | 3.505±0.107 c | 0.722±0.022 c | 1.032±0.040 c | 1.754±0.044 d |
1 200 | 3.173±0.068 d | 0.760±0.027 bc | 1.124±0.034 bc | 1.883±0.005 c |
1 500 | 2.913±0.060 e | 0.759±0.035 bc | 1.163±0.055 b | 1.922±0.014 c |
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 每株硒总积累量Selenium accumulation per plant | |||
---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 地上部Shoot | |
0 | 0.621±0.016 c | 0.233±0.004 b | 0.750±0.006 b | 0.983±0.002 b |
600 | 0.597±0.033 c | 0.311±0.009 a | 0.742±0.005 b | 1.053±0.014 b |
900 | 0.922±0.053 a | 0.327±0.019 a | 0.834±0.051 a | 1.161±0.070 a |
1 200 | 0.714±0.001 b | 0.329±0.018 a | 0.843±0.013 a | 1.172±0.005 a |
1 500 | 0.481±0.026 d | 0.319±0.019 a | 0.860±0.022 a | 1.179±0.004 a |
表5 氨基酸肥对豆瓣菜硒总积累量的影响
Table 5 Effects of amino acid fertilizer on selenium accumulation in watercress μg
氨基酸肥稀释倍数 Dilution ratio of amino acid fertilizer | 每株硒总积累量Selenium accumulation per plant | |||
---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 地上部Shoot | |
0 | 0.621±0.016 c | 0.233±0.004 b | 0.750±0.006 b | 0.983±0.002 b |
600 | 0.597±0.033 c | 0.311±0.009 a | 0.742±0.005 b | 1.053±0.014 b |
900 | 0.922±0.053 a | 0.327±0.019 a | 0.834±0.051 a | 1.161±0.070 a |
1 200 | 0.714±0.001 b | 0.329±0.018 a | 0.843±0.013 a | 1.172±0.005 a |
1 500 | 0.481±0.026 d | 0.319±0.019 a | 0.860±0.022 a | 1.179±0.004 a |
项目 Items | 成分Component | |
---|---|---|
F1 | F2 | |
根系生物量Root biomass | 0.913 | 0.361 |
地上部分生物量Shoot biomass | 0.968 | -0.231 |
叶绿素a含量Chlorophyll a content | 0.996 | -0.057 |
叶绿素b含量Chlorophyll b content | 0.940 | -0.332 |
总叶绿素含量Total chlorophyll content | 0.991 | -0.123 |
类胡萝卜素含量Carotenoid content | 0.980 | 0.165 |
POD活性POD activity | 0.988 | -0.050 |
SOD活性SOD activity | 0.932 | 0.216 |
CAT活性CAT activity | 0.943 | 0.203 |
可溶性蛋白含量Soluble protein content | -0.984 | 0.137 |
根系硒含量Se content in root | -0.635 | 0.770 |
地上部分硒含量Se content in shoot | -0.977 | 0.119 |
根系硒总积累量Se accumulation in root | 0.651 | 0.733 |
地上部分硒总积累量 | 0.881 | -0.474 |
Se accumulation in shoot | ||
土壤有效硒含量Soil available selenium | -0.870 | -0.415 |
土壤pH值Soil pH value | 0.757 | 0.263 |
特征值Eigenvalue | 13.18 | 2.06 |
贡献率Eontribution rate/% | 82.35 | 12.87 |
累计贡献率Eumulative contribution rate/% | 82.35 | 95.23 |
表7 各项目成分的载荷矩阵、特征值、贡献率与累计贡献率
Table 7 Load matrix, eigenvalue, contribution rate and cumulative contribution rate of each item component
项目 Items | 成分Component | |
---|---|---|
F1 | F2 | |
根系生物量Root biomass | 0.913 | 0.361 |
地上部分生物量Shoot biomass | 0.968 | -0.231 |
叶绿素a含量Chlorophyll a content | 0.996 | -0.057 |
叶绿素b含量Chlorophyll b content | 0.940 | -0.332 |
总叶绿素含量Total chlorophyll content | 0.991 | -0.123 |
类胡萝卜素含量Carotenoid content | 0.980 | 0.165 |
POD活性POD activity | 0.988 | -0.050 |
SOD活性SOD activity | 0.932 | 0.216 |
CAT活性CAT activity | 0.943 | 0.203 |
可溶性蛋白含量Soluble protein content | -0.984 | 0.137 |
根系硒含量Se content in root | -0.635 | 0.770 |
地上部分硒含量Se content in shoot | -0.977 | 0.119 |
根系硒总积累量Se accumulation in root | 0.651 | 0.733 |
地上部分硒总积累量 | 0.881 | -0.474 |
Se accumulation in shoot | ||
土壤有效硒含量Soil available selenium | -0.870 | -0.415 |
土壤pH值Soil pH value | 0.757 | 0.263 |
特征值Eigenvalue | 13.18 | 2.06 |
贡献率Eontribution rate/% | 82.35 | 12.87 |
累计贡献率Eumulative contribution rate/% | 82.35 | 95.23 |
[1] | 龚天芝, 张德健. 外源硒对核桃硒含量和果实品质的影响及生理作用机制[J]. 果树学报, 2022, 39(8): 1443-1449. |
GONG T Z, ZHANG D J. Effect of exogenous selenium application on selenium content and fruit quality as well as its physiological mechanism in walnut[J]. Journal of Fruit Science, 2022, 39(8): 1443-1449. (in Chinese with English abstract) | |
[2] | VINCETI M, FILIPPINI T, WISE L A. Environmental selenium and human health: an update[J]. Current Environmental Health Reports, 2018, 5(4): 464-485. |
[3] | ALYEMENI M N, AHANGER M A, WIJAYA L, et al. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system[J]. Protoplasma, 2018, 255(2): 459-469. |
[4] | JZWAIK W, MLECZEK M, POLITYCKA B. The effect of exogenous selenium on the growth and photosynthetic pigments content of cucumber seedlings[J]. Fresenius Environmental Bulletin, 2016, 25(1):142-152. |
[5] | SAEEDI M, SOLTANI F, BABALAR M, et al. Selenium fortification alters the growth, antioxidant characteristics and secondary metabolite profiles of cauliflower (Brassica oleracea var. botrytis) cultivars in hydroponic culture[J]. Plants, 2021, 10(8): 1537. |
[6] | 梁乐, 刘娟, 李晓梅, 等. 三种基因型樱桃番茄混种对果实品质和硒含量的影响[J]. 浙江农业学报, 2021, 33(10): 1870-1878. |
LIANG L, LIU J, LI X M, et al. Effects of intercropping with different genotypes of cherry tomato on fruit quality and selenium content[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1870-1878. (in Chinese with English abstract) | |
[7] | ARAVIND P, PRASAD M N V. Cadmium-induced toxicity reversal by zinc in Ceratophyllum demersum L. (a free floating aquatic macrophyte) together with exogenous supplements of amino-and organic acids[J]. Chemosphere, 2005, 61(11): 1720-1733. |
[8] | TALUKDER M R, ASADUZZAMAN M, TANAKA H, et al. Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics[J]. Scientia Horticulturae, 2018, 239: 93-103. |
[9] | ZHOU Z G, ZHOU J M, LI R Y, et al. Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings[J]. Plant and Soil, 2007, 292(1): 105-117. |
[10] | CERDÁN M, SÁNCHEZ-SÁNCHEZ A, OLIVER M, et al. Effect of foliar and root applications of amino acids on iron uptake by tomato plants[J]. Acta Horticulturae, 2009(830): 481-488. |
[11] | ESKANDARI S, KHOSHGOFTARMANESH A H, SHARIFNABI B. The effect of foliar-applied manganese in mineral and complex forms with amino acids on certain defense mechanisms of cucumber (Cucumis sativus L.) against powdery mildew[J]. Journal of Plant Growth Regulation, 2018, 37(2): 481-490. |
[12] | 李杰, 卢宗云, 石元亮, 等. 新型聚氨酸增效肥料对小白菜根系活性与产量的影响[J]. 中国土壤与肥料, 2019(1): 134-139. |
LI J, LU Z Y, SHI Y L, et al. Effect of new type synergist of poly amino acid fertilizer on pakchoi root activity and yield[J]. Soil and Fertilizer Sciences in China, 2019(1): 134-139. (in Chinese with English abstract) | |
[13] | 欧阳琳, 李春杰, 夏鲁卿, 等. 氨基酸肥料施用促进切花菊‘优香’养分吸收及品质优化[J]. 中国农业大学学报, 2015, 20(3): 90-99. |
OUYANG L, LI C J, XIA L Q, et al. Aminoacid fertilizer improved the nutrient uptake and the quality of cut Chrysanthemum Morifolum ‘Yuka’[J]. Journal of China Agricultural University, 2015, 20(3): 90-99. (in Chinese with English abstract) | |
[14] | KIM Y S, HAM S K, LEE J P, et al. Effects of two amino acid fertilizers on growth of creeping bentgrass and nitrogen uptake[J]. Weed & Turfgrass Science, 2014, 3(3): 246-252. |
[15] | HUANG K W, LI K Q, SUI L Y, et al. Effects of different times of grafting on physiological characteristics and selenium absorption of watercress cuttings[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(03):419-427. |
[16] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[17] | HUAN Y M, YANG L, LIU Q, et al. Effects of indole acetic acid on the growth and selenium absorption characteristics of Cyphomandra betacea seedlings[J]. Acta Physiologiae Plantarum, 2021, 43(5): 1-8. |
[18] | 李爱民, 范俊楠, 贺小敏, 等. 高效液相色谱-原子荧光光谱法测定土壤中4种有效硒形态[J]. 分析科学学报, 2021, 37(3): 403-407. |
LI A M, FAN J N, HE X M, et al. Determination of four available selenium species in soils by high performance liquid chromatography-atomic fluorescence spectrometry[J]. Journal of Analytical Science, 2021, 37(3): 403-407. (in Chinese with English abstract) | |
[19] | POORYOUSEF M, ALIZADEH K. Effect of foliar application of free amino acids on alfalfa performance under rainfed conditions[J]. Research on Crops, 2014, 15(1): 254. |
[20] | 操君喜, 彭智平, 黄继川, 等. 叶面施用氨基酸对菜心产量和品质的影响[J]. 中国农学通报, 2010, 26(4): 162-165. |
CAO J X, PENG Z P, HUANG J C, et al. Effect of foliar application of amino acid on yield and quality of flowering Chinese cabbage[J]. Chinese Agricultural Science Bulletin, 2010, 26(4): 162-165. (in Chinese with English abstract) | |
[21] | NASSAR A H, EL-TARABILY K A, SIVASITHAMPARAM K. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus[J]. Plant Growth Regulation, 2003, 40(2): 97-106. |
[22] | AMIN A A, GHARIB F A E, EL-AWADI M, et al. Physiological response of onion plants to foliar application of putrescine and glutamine[J]. Scientia Horticulturae, 2011, 129(3): 353-360. |
[23] | YARONSKAYA E, VERSHILOVSKAYA I, POERS Y, et al. Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings[J]. Planta, 2006, 224(3): 700-709. |
[24] | JO G W, KIM Y S, HAM S K, et al. Growth and quality changes of creeping bentgrass by application of keratin amino acid fertilizer[J]. Weed & Turfgrass Science, 2016, 5(4): 260-267. |
[25] | CERDÁN M, SÁNCHEZ-SÁNCHEZ A, JORDÁ J D, et al. Effect of commercial amino acids on iron nutrition of tomato plants grown under lime-induced iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(6): 859-866. |
[26] | 王孝娣, 刘凤之, 王帅, 等. 氨基酸硒和6-BA对葡萄叶片衰老和叶绿体超微结构的影响[J]. 中国果树, 2019(6): 49-53, 64, 124. |
WANG X D, LIU F Z, WANG S, et al. Effects of amino acid selenium and 6-BA on leaf senescence and chloroplast ultrastructure of grape[J]. China Fruits, 2019(6): 49-53, 64, 124. (in Chinese with English abstract) | |
[27] | 申明, 成学慧, 谢荔, 等. 氨基酸叶面肥对砂梨叶片光合作用的促进效应[J]. 南京农业大学学报, 2012, 35(2): 81-86. |
SHEN M, CHENG X H, XIE L, et al. Effects of amino-acid fertilizers on photosynthesis in leaves of pear cultivars[J]. Journal of Nanjing Agricultural University, 2012, 35(2): 81-86. (in Chinese with English abstract) | |
[28] | ANWAR A, YAN Y, LIU Y M, et al. 5-Aminolevulinic acid improves nutrient uptake and endogenous hormone accumulation, enhancing low-temperature stress tolerance in cucumbers[J]. International Journal of Molecular Sciences, 2018, 19(11): 3379. |
[29] | 杨雅兰, 王诗赞, 田旖, 等. ALA和氨基酸肥料对桃光合特性及品质的影响[J]. 分子植物育种, 2022, 20(6): 1930-1936. |
YANG Y L, WANG S Z, TIAN Y, et al. Effects of ALA and amino acid fertilizers on leaf photosynthesis and quality of peach[J]. Molecular Plant Breeding, 2022, 20(6): 1930-1936. (in Chinese with English abstract) | |
[30] | ANWAR A, WANG J, YU X C, et al. Substrate application of 5-aminolevulinic acid enhanced low-temperature and weak-light stress tolerance in cucumber (Cucumis sativus L.)[J]. Agronomy, 2020, 10(4): 472. |
[31] | WANG J W, ZHANG J, LI J, et al. Exogenous application of 5-aminolevulinic acid promotes coloration and improves the quality of tomato fruit by regulating carotenoid metabolism[J]. Frontiers in Plant Science, 2021, 12: 683868. |
[32] | WU Y E, JIN X, LIAO W B, et al. 5-aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway[J]. Frontiers in Plant Science, 2018, 9: 635. |
[33] | MENG L N, CHEN J P, GAN W C, et al. Effects of amino acid selenium foliar fertilizer on selenium content and quality of mango[J]. Agricultural Biotechnology, 2020, 9(6):92-94. |
[34] | SONG H M, XU X B, WANG H A, et al. Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings[J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1410-1416. |
[35] | WANG W, CANG L, ZHOU D M, et al. Exogenous amino acids increase antioxidant enzyme activities and tolerance of rice seedlings to cadmium stress[J]. Environmental Progress & Sustainable Energy, 2017, 36(1): 155-161. |
[36] | 许猛, 袁亮, 李伟, 等. 复合氨基酸肥料增效剂对NaCl胁迫下小白菜种子萌发和苗期生长的影响[J]. 植物营养与肥料学报, 2018, 24(4): 992-1000. |
XU M, YUAN L, LI W, et al. Effects of a fertilizer synergist containing compound amino acids on seed germination and seedling growth of pakchoi under NaCl stress[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 992-1000. (in Chinese with English abstract) | |
[37] | RAHMANTO A S, DAVIES M J. Selenium-containing amino acids as direct and indirect antioxidants[J]. IUBMB Life, 2012, 64(11): 863-871. |
[38] | KOSKAN L P, MEAH A R Y, SANDERS L J, et al. Method and composition for enhanced plant productivity comprising fertilizer and cross-linked polyamino acid: US5861356[P/OL]. (1999-01-19)[2022-08-17].https://www.freepatentsonline.com/5861356.html. |
[39] | 宋奇超, 曹凤秋, 巩元勇, 等. 高等植物氨基酸吸收与转运及生物学功能的研究进展[J]. 植物营养与肥料学报, 2012, 18(6): 1507-1517. |
SONG Q C, CAO F Q, GONG Y Y, et al. Current research progresses of amino acids uptake, transport and their biological roles in higher plants[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1507-1517. (in Chinese with English abstract) | |
[40] | 胡开博, 杨清夏, 李扬, 等. 化肥减氮配施氨基酸肥料对春玉米生产的影响[J]. 浙江农业学报, 2022, 34(4): 661-670. |
HU K B, YANG Q X, LI Y, et al. Effect of application of amino acid fertilizer on spring maize cultivation under nitrogen reduction[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 661-670. (in Chinese with English abstract) | |
[41] | HU M M, DOU Q H, CUI X M, et al. Polyaspartic acid mediates the absorption and translocation of mineral elements in tomato seedlings under combined copper and cadmium stress[J]. Journal of Integrative Agriculture, 2019, 18(5): 1130-1137. |
[42] | SAMANE E. Translocation, leaf distribution, and nutritional status of manganese in cucumber plants as affected by foliar application of exogenous amino acids[J]. Journal of Plant Growth Regulation, 2020, 39(3): 1191-1204. |
[43] | JI X J, XIONG S P, LI C M, et al. Effects of different fertilizer types on temporal and spatial changes of soil enzyme activities and microbial population[J]. Journal of Soil and Water Conservation, 2008(1):123-127. |
[1] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[2] | 吴浩, 张雪松, 王丹. 不同CO2浓度和氮水平对冬小麦光合和生长特性的影响[J]. 浙江农业学报, 2022, 34(12): 2594-2602. |
[3] | 侯立娟, 李正鹏, 林金盛, 马林, 李辉平, 曲绍轩, 姜建新, 邹秀龙, 杨华平, 李长田, 蒋宁. 不同光质LED光照对草菇菌丝生长速度、菌丝分支与生物量的影响[J]. 浙江农业学报, 2021, 33(6): 1110-1116. |
[4] | 练华山, 李欣欣, 林立金, 廖明安. 表油菜素内酯对夏黑葡萄幼苗生长的影响[J]. 浙江农业学报, 2021, 33(10): 1889-1896. |
[5] | 黄科文, 李克强, 刘继, 岁立云, 刘磊, 王铤, 郑阳霞, 林立金, 廖明安. 不同砧穗组合对豆瓣菜扦插苗生理特性及硒积累的影响[J]. 浙江农业学报, 2020, 32(3): 447-454. |
[6] | 李乐, 田敏娇, 高艳明, 李建设. 硒肥对基质培番茄生长和矿质元素积累的影响[J]. 浙江农业学报, 2020, 32(2): 253-261. |
[7] | 侯立娟, 林金盛, 刘少华, 李瑞祥, 马林, 蒋宁, 曲绍轩, 李辉平. 醋酸钠及复配4种矿物质对草菇菌丝生物量的影响[J]. 浙江农业学报, 2018, 30(2): 228-235. |
[8] | 徐晨阳, 毛晓瑜. 不同浓度酸雨对镉污染下桑树幼苗生物量和生理特性的影响[J]. 浙江农业学报, 2018, 30(12): 2112-2120. |
[9] | 张福建, 陈昱, 吴超群, 肖晨, 吴才君, 杨有新. 外源脂肪酸对辣椒生长及根际土壤环境的影响[J]. 浙江农业学报, 2017, 29(5): 760-766. |
[10] | 王洋洋, 孙伟, 李淦, 康正华, 缪剑. 基于Android平台的荒漠柽柳地上生物量无损快速估测方法[J]. 浙江农业学报, 2017, 29(11): 1920-1929. |
[11] | 徐伟慧, 吴凤芝. 西瓜根际土壤酶及微生物对小麦伴生的响应[J]. 浙江农业学报, 2016, 28(9): 1588-1594. |
[12] | 邵泱峰1,梅洪飞1,潘忠潮1,刘欢2,王超琦2. 玉米秸秆还田对土壤有机碳、微生物功能多样性及甘蓝产量的影响[J]. 浙江农业学报, 2016, 28(5): 838-. |
[13] | 高丽楠. 九寨沟湖泊水质对杉叶藻生长及叶绿素荧光特性的影响[J]. 浙江农业学报, 2016, 28(5): 857-. |
[14] | 马帅1,冯金朝1,*,公婷婷1,乌力吉2,李昱娴1,冯亚磊1,赵慧卿3. 内蒙古呼伦湖4种典型草地生长季土壤呼吸研究[J]. 浙江农业学报, 2015, 27(7): 1221-. |
[15] | 曾宴平;马家海*;陈斌斌;蔡永超;高嵩. 浙江省枸杞岛潮间带大型底栖海藻群落的研究[J]. , 2013, 25(5): 0-1102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||