浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1626-1637.DOI: 10.3969/j.issn.1004-1524.20220927
陈国户1(), 李广1, 温宏伟1, 尹倩1, 吴思文1, 王英1, 刘雪晴1, 赵龙龙1, 桂尚枝1, 唐小燕1, 汪承刚1,2,*(
)
收稿日期:
2022-06-22
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
陈国户(1983—),男,江苏新沂人,博士,副教授,研究方向为蔬菜种质资源与遗传育种。E-mail:cgh@ahau.edu.cn
通讯作者:
*汪承刚,E-mail:cgwang@ahau.edu.cn
基金资助:
CHEN Guohu1(), LI Guang1, WEN Hongwei1, YIN Qian1, WU Siwen1, WANG Ying1, LIU Xueqing1, ZHAO Longlong1, KHAN Afrasyab1, GUI Shangzhi1, TANG Xiaoyan1, WANG Chenggang1,2,*(
)
Received:
2022-06-22
Online:
2023-07-25
Published:
2023-08-17
Contact:
WANG Chenggang
摘要:
抽薹开花是十字花科蔬菜最重要的性状之一。秋冬季节低温环境,使萝卜(Raphanus sativus L.)过早完成春化,导致未熟抽薹,严重影响产量与品质。本研究采用多重序列比对及系统进化树构建等生物信息学技术,鉴定出萝卜抽薹开花相关基因272个。对萝卜NHJS1、NHJS2和2#材料不同春化阶段的转录组数据进行重分析,筛选出春化相关基因;再结合META分析技术,共确定萝卜春化响应关键基因25个。利用蛋白质-蛋白质互作网络(PPI)分析了春化响应关键基因之间潜在的互作关系。对富集在春化、冷响应、赤霉素生物合成与信号转导途径上的春化响应关键基因进行了实时荧光定量PCR(qRT-PCR)分析,结果显示,RsGA20ox1、RsAGL18、RsFLC2等基因在萝卜春化响应中发挥着重要作用。研究结果为深入解析萝卜春化分子机制奠定了基础。
中图分类号:
陈国户, 李广, 温宏伟, 尹倩, 吴思文, 王英, 刘雪晴, 赵龙龙, 桂尚枝, 唐小燕, 汪承刚. 萝卜春化响应相关基因鉴定及表达模式分析[J]. 浙江农业学报, 2023, 35(7): 1626-1637.
CHEN Guohu, LI Guang, WEN Hongwei, YIN Qian, WU Siwen, WANG Ying, LIU Xueqing, ZHAO Longlong, KHAN Afrasyab, GUI Shangzhi, TANG Xiaoyan, WANG Chenggang. Genome-wide identification and expression analysis of key genes response to vernalization in radish (Raphanus sativus)[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1626-1637.
基因名称 Gene name | 引物序列 Primer sequences (5'→3') | 退火温度 Annealing temperature/℃ |
---|---|---|
RsGI | F:GCATCTGGTGTAAGGATAGAAGTT R:AGGGATCAATCCATAGGCAG | 57.0 |
RsGA3ox2 | F:ATGGTGAGTGGACAGTGGTCTTA R:CTTTACTCTTGCTTGCCTCTGC | 58.0 |
RsKS | F:GGCTATGATGTGACTTACGATC R:TGCTTAGTCCACAGACACTGC | 58.0 |
RsPRR5 | F:GCCTCTGCTTTCACACGGT R:GCACTTTGAGGTGGTTCAGATA | 58.5 |
RsGID1B | F:ATGCAAGATCATTTCCCCGT R:AGGAGGTTGGTGGAGGTGTG | 59.0 |
RsFLC3 | F:GCCTTGCAGGATCTTCAGTCA R:AACGAGGGTGTCCACGCTTA | 55.0 |
RsTEM1 | F:ACGACCAACGCTAAAC R:TGGAACATCCTAACGCAAAC | 58.0 |
RsGA2ox1 | F:GAGTTGAGCCACTAGGGAAG R:TTCACTACTCTGTCTTTTTTCGG | 58.1 |
RsTOC1 | F:GAAGCACTAATCCAGCG R:CAGAGGACTCTCCAATCTTCAAC | 59.0 |
RsFLC2 | F:CGGCGATAACTTGGTCAAGA R:AGGGCAGTCTCAAGGTGGTC | 59.5 |
RsPRR9 | F:TGTAAGTGGTGCTCAGGCTAAC R:GATTCCACCGATCAAGTCCA | 56.0 |
RsCHE | F:GAGACGGATTCGTATGCCAA R:TAGAAGGCTCGGCTTGACG | 60.5 |
RsCDF1 | F:GATGAATTATCCGCAGAGC R:CTTCGTTTCCATACTGTTGC | 59.0 |
RsPHYA | F:CATTGAAGGGTGCTTGGATC R:CTGACCTCCAGATGGTGTAAAGT | 57.0 |
RsPHYB | F:GAGAGGGGACGAGGACAAGA R:GACTATGGACGATTGCTCTGTAGT | 56.5 |
RsGA2ox6 | F:TCCCTTCAAGTTCAGTTCGG R:GATTGAGTCGCTACGGACG | 55.0 |
actin | F:TACCGCAAAGAGCAGTTCGTCAGTG R:GAGCGATGGCTGGAACAGTACTTCAG | 57.5 |
表1 qRT-PCR引物
Table 1 Primer sequences used for qRT-PCR
基因名称 Gene name | 引物序列 Primer sequences (5'→3') | 退火温度 Annealing temperature/℃ |
---|---|---|
RsGI | F:GCATCTGGTGTAAGGATAGAAGTT R:AGGGATCAATCCATAGGCAG | 57.0 |
RsGA3ox2 | F:ATGGTGAGTGGACAGTGGTCTTA R:CTTTACTCTTGCTTGCCTCTGC | 58.0 |
RsKS | F:GGCTATGATGTGACTTACGATC R:TGCTTAGTCCACAGACACTGC | 58.0 |
RsPRR5 | F:GCCTCTGCTTTCACACGGT R:GCACTTTGAGGTGGTTCAGATA | 58.5 |
RsGID1B | F:ATGCAAGATCATTTCCCCGT R:AGGAGGTTGGTGGAGGTGTG | 59.0 |
RsFLC3 | F:GCCTTGCAGGATCTTCAGTCA R:AACGAGGGTGTCCACGCTTA | 55.0 |
RsTEM1 | F:ACGACCAACGCTAAAC R:TGGAACATCCTAACGCAAAC | 58.0 |
RsGA2ox1 | F:GAGTTGAGCCACTAGGGAAG R:TTCACTACTCTGTCTTTTTTCGG | 58.1 |
RsTOC1 | F:GAAGCACTAATCCAGCG R:CAGAGGACTCTCCAATCTTCAAC | 59.0 |
RsFLC2 | F:CGGCGATAACTTGGTCAAGA R:AGGGCAGTCTCAAGGTGGTC | 59.5 |
RsPRR9 | F:TGTAAGTGGTGCTCAGGCTAAC R:GATTCCACCGATCAAGTCCA | 56.0 |
RsCHE | F:GAGACGGATTCGTATGCCAA R:TAGAAGGCTCGGCTTGACG | 60.5 |
RsCDF1 | F:GATGAATTATCCGCAGAGC R:CTTCGTTTCCATACTGTTGC | 59.0 |
RsPHYA | F:CATTGAAGGGTGCTTGGATC R:CTGACCTCCAGATGGTGTAAAGT | 57.0 |
RsPHYB | F:GAGAGGGGACGAGGACAAGA R:GACTATGGACGATTGCTCTGTAGT | 56.5 |
RsGA2ox6 | F:TCCCTTCAAGTTCAGTTCGG R:GATTGAGTCGCTACGGACG | 55.0 |
actin | F:TACCGCAAAGAGCAGTTCGTCAGTG R:GAGCGATGGCTGGAACAGTACTTCAG | 57.5 |
图2 基于不同组织转录组数据分析萝卜开花相关基因表达情况 图中的色标表示log2(FPKM)值。
Fig.2 Tissue expression pattern of flowering related genes based on transcriptomes of radish The color scale bar of the figure represents log2 transformed FPKM values.
图4 萝卜春化响应基因鉴定及表达分析 A, 萝卜不同材料、不同春化时间转录组差异表达基因(DEG)分析。B,不同材料差异表达基因韦恩图分析。C,VRG,春化反应相关基因;FRG,开花相关基因,T-DEG,不同材料差异表达基因。D,春化相关基因表达趋势;RT,室温春化开始时;VE,春化处理早期;VL,春化处理后期。
Fig.4 Identification and expression analysis of vernalization responded genes in radish A, Differentially expressed genes (DEG) analysis by RNA-Seq data. B, Ween of DEGs between differential materials. C, VRG, Vernalization responded genes; FRG, Flowering related genes; T-DEG, DEGs between differential materials. D, Expression trend of vernalization related gene (VRG); RT, Room temperature treatment; VE, Early vernalization treatment; VL, Late vernalization treatment.
图5 META分析及春化关键基因的鉴定 A,META分析维恩图;RT,室温春化开始时;VE,春化处理早期;VL,春化处理后期。B,春化关键基因韦恩图;FRG,开花相关基因;VRG,转录组学分析获得的春化响应相关基因;M-DEG,META分析获得的差异表达基因。
Fig.5 META analysis and identification of vernalization key genes A, Venn diagram of META analysis; RT, Room temperature treatment; VE, Early vernalization treatment; VL, Late vernalization treatment. B, Venn diagram of key genes responded vernalization; FRG, Flowering related genes; VRG, Vernalization related genes found by transcriptome analysis; M-DEG, Differentially expressed genes obtained by META-analysis.
图6 春化响应关键基因功能富集分析 A,GO富集分析;B,KEGG富集分析;C,赤霉素生物合成通路。A和B中,第一圈表示富集到的GO条目和KO号,第二圈表示富集到该通路的背景基因,第三圈表示富集到该通路上下调基因数目,第四圈表示富集因子。
Fig.6 Functional enrichment analyses of key genes responded vernalization A, GO enrichment; B, KEGG enrichment; C, The pathway of gibberellin biosynthesis. In A and B, the first circle represents the enriched GO entries and KO numbers, the second circle represents the background genes enriched in this pathway, the third circle represents the number of down-regulated genes enriched in this pathway, and the fourth circle represents the enrichment factor.
图7 萝卜春化响应关键基因PPI网络(A)及春化途径(B)与赤霉素途径(C)关键基因网络 红色代表上调基因,蓝色代表下调基因。圆的大小代表连接度高低,圆圈越大表示连接度越高。
Fig.7 PPI networks of key genes responded vernalization (A), vernalization pathway (B) and gibberellin pathway (C) Red represents up-regulated protein/gene and green represents down-regulated protein/gene. The size of the circle represents the degree of connection, and the larger the circle, the more connection it is.
序号 | 萝卜基因ID Rs gene ID | 拟南芥基因ID At gene ID | 基因名称 Gene name | 注释 Annotation | GO | KEGG |
---|---|---|---|---|---|---|
1 | Rsa10019598 | AT5G62430 | RsCDF1 | CYCLING DOF FACTOR 1 | GO:0050789 | K16222 |
2 | Rsa10024990 | AT5G10140 | RsFLC1 | FLOWERING LOCUS C-like | GO:0010219 | |
3 | Rsa10036313 | AT5G10140 | RsFLC2 | FLOWERING LOCUS C-like | GO:0010219 | |
4 | Rsa10009519 | AT4G02780 | RsGA1 | ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 | GO:0009739 | K04120 |
5 | Rsa10027754 | AT3G63010 | RsGID1B | GA INSENSITIVE DWARF1B | GO:0007165 | K14493 |
6 | Rsa10036693 | AT4G25420 | RsGA20ox1 | GIBBERELLIN 20-OXIDASE 1 | GO:0009937 | K05282 |
7 | Rsa10012570 | AT1G02400 | RsGA2ox6 | GIBBERELLIN 2-OXIDASE 6 | GO:0009685 | K04125 |
8 | Rsa10003234 | AT1G80340 | RsGA3ox2 | GIBBERELLIN 3-OXIDASE 2 | GO:0009685 | K04124 |
9 | Rsa10001141 | AT1G22770 | RsGI | GIGANTEA | GO:0009648 | K12124 |
10 | Rsa10014915 | AT1G79460 | RsKS | GA REQUIRING 2/ENT-KAURENE SYNTHASE | GO:0010476 | K04121 |
11 | Rsa10018279 | AT5G24470 | RsPRR5 | PSEUDO-RESPONSE REGULATOR 5 | GO:0048571 | K12130 |
12 | Rsa10009861 | AT2G46790 | RsPRR9 | PSEUDO-RESPONSE REGULATOR 9 | GO:0048511 | K12128 |
13 | Rsa10040564 | AT1G25560 | RsTEM1 | TEMPRANILLO 1 | GO:0009908 | |
14 | Rsa10017933 | AT5G61380 | RsTOC1 | PRR1/TOC1 | GO:0009648 | K12127 |
15 | Rsa10028588 | AT1G09570 | RsPHYA | PHYTOCHROME A | GO:0009416 | K12120 |
16 | Rsa10042572 | AT2G18790 | RsPHYB | PHYTOCHROME B | K12121 | |
17 | Rsa10036371 | AT5G08330 | RsCHE | CHE | GO:0050789 | K16221 |
表2 光周期、春化、赤霉素生物合成及信号转导途径上的春化响应关键基因
Table 2 Vernalization response key genes in photoperiod, vernalization, gibberellin biosynthesis and signal transduction pathway
序号 | 萝卜基因ID Rs gene ID | 拟南芥基因ID At gene ID | 基因名称 Gene name | 注释 Annotation | GO | KEGG |
---|---|---|---|---|---|---|
1 | Rsa10019598 | AT5G62430 | RsCDF1 | CYCLING DOF FACTOR 1 | GO:0050789 | K16222 |
2 | Rsa10024990 | AT5G10140 | RsFLC1 | FLOWERING LOCUS C-like | GO:0010219 | |
3 | Rsa10036313 | AT5G10140 | RsFLC2 | FLOWERING LOCUS C-like | GO:0010219 | |
4 | Rsa10009519 | AT4G02780 | RsGA1 | ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 | GO:0009739 | K04120 |
5 | Rsa10027754 | AT3G63010 | RsGID1B | GA INSENSITIVE DWARF1B | GO:0007165 | K14493 |
6 | Rsa10036693 | AT4G25420 | RsGA20ox1 | GIBBERELLIN 20-OXIDASE 1 | GO:0009937 | K05282 |
7 | Rsa10012570 | AT1G02400 | RsGA2ox6 | GIBBERELLIN 2-OXIDASE 6 | GO:0009685 | K04125 |
8 | Rsa10003234 | AT1G80340 | RsGA3ox2 | GIBBERELLIN 3-OXIDASE 2 | GO:0009685 | K04124 |
9 | Rsa10001141 | AT1G22770 | RsGI | GIGANTEA | GO:0009648 | K12124 |
10 | Rsa10014915 | AT1G79460 | RsKS | GA REQUIRING 2/ENT-KAURENE SYNTHASE | GO:0010476 | K04121 |
11 | Rsa10018279 | AT5G24470 | RsPRR5 | PSEUDO-RESPONSE REGULATOR 5 | GO:0048571 | K12130 |
12 | Rsa10009861 | AT2G46790 | RsPRR9 | PSEUDO-RESPONSE REGULATOR 9 | GO:0048511 | K12128 |
13 | Rsa10040564 | AT1G25560 | RsTEM1 | TEMPRANILLO 1 | GO:0009908 | |
14 | Rsa10017933 | AT5G61380 | RsTOC1 | PRR1/TOC1 | GO:0009648 | K12127 |
15 | Rsa10028588 | AT1G09570 | RsPHYA | PHYTOCHROME A | GO:0009416 | K12120 |
16 | Rsa10042572 | AT2G18790 | RsPHYB | PHYTOCHROME B | K12121 | |
17 | Rsa10036371 | AT5G08330 | RsCHE | CHE | GO:0050789 | K16221 |
图8 富集在光周期、春化、赤霉素生物合成及信号转导途径上的春化关键基因的相对表达量 不同小写字母表示差异显著(P<0.05)。
Fig.8 Relative expression levels of vernalization key genes enriched in photoperiod, vernalization, gibberellin biosynthesis and signal transduction pathways Different lowercase letters indicate significant difference (P<0.05).
[1] | 张长生, 魏滔, 周玉萍, 等. FLC调控植物成花的分子机制研究新进展[J]. 植物学报, 2021, 56(6): 651-663. |
ZHANG C S, WEI T, ZHOU Y P, et al. Progress in flowering regulation mechanisms of FLC[J]. Chinese Bulletin of Botany, 2021, 56(6): 651-663. (in Chinese with English abstract) | |
[2] | 李昌满, 李朝闯, 王志敏, 等. 拟南芥和芥菜开花抑制因子AGL18花期调控机制研究进展[J]. 园艺学报, 2017, 44(9): 1717-1728. |
LI C M, LI Z C, WANG Z M, et al. Progress in mechanisms of floral inhibiting factor AGL18 in regulating flowering time of Arabidopsis and mustard[J]. Acta Horticulturae Sinica, 2017, 44(9): 1717-1728. (in Chinese with English abstract) | |
[3] | SASAKI E, FROMMLET F, NORDBORG M. The genetic architecture of the network underlying flowering time variation in Arabidopsis thaliana[J]. bioRxiv, 2017, DOI:10.1101/175430. |
[4] | FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: control of flowering in Arabidopsis[J]. Cell, 2010, 141(3): 550-550.e2. |
[5] | DONG X X, LI Y J, GUAN Y H, et al. Auxin-induced auxin response factor4 activates apetala1 and fruitfull to promote flowering in woodland strawberry[J]. Horticulture Research, 2021, 8: 115. |
[6] | ZHU P, LISTER C, DEAN C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression[J]. Nature, 2021, 599(7886): 657-661. |
[7] | FADINA O A, KHAVKIN E E. The vernalization gene FRIGIDA in cultivated Brassica species[J]. Russian Journal of Plant Physiology, 2014, 61(3): 309-317. |
[8] | ZENG X L, LV X C, LIU R, et al. Molecular basis of CONSTANS oligomerization in FLOWERING LOCUS T activation[J]. Journal of Integrative Plant Biology, 2022, 64(3): 731-740. |
[9] | QÜESTA J I, SONG J, GERALDO N, et al. Arabidopsis transcriptional repressor VAL1 triggers polycomb silencing at FLC during vernalization[J]. Science, 2016, 353(6298): 485-488. |
[10] | YUAN L B, SONG X, ZHANG L, et al. The transcriptional repressors VAL1 and VAL2 recruit PRC2 for genome-wide polycomb silencing in Arabidopsis[J]. Nucleic Acids Research, 2020, 49(1): 98-113. |
[11] | JUNG H, JO S H, JUNG W Y, et al. Gibberellin promotes bolting and flowering via the floral integrators RsFT and RsSOC1-1 under marginal vernalization in radish[J]. Plants (Basel, Switzerland), 2020, 9(5): 594. |
[12] | LIU C, WANG S F, XU W L, et al. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization[J]. PLoS One, 2017, 12(5): e0177594. |
[13] | 甘彩霞, 崔磊, 庞文星, 等. 基于萝卜高密度遗传图谱的抽薹和开花性状的QTL定位[J]. 园艺学报, 2021(7): 1273-1281. |
GAN C X, CUI L, PANG W X, et al. QTL mapping of bolting and flowering traits based on high density genetic map of radish[J]. Acta Horticulturae Sinica, 2021(7): 1273-1281. (in Chinese with English abstract) | |
[14] | JUNG W Y, PARK H J, LEE A, et al. Identification of flowering-related genes responsible for differences in bolting time between two radish inbred lines[J]. Frontiers in Plant Science, 2016, 7: 1844. |
[15] | WANG J L, QIU Y, CHENG F, et al. Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.)[J]. BMC Genomics, 2017, 18(1): 981. |
[16] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[17] | JOHNSON W E, LI C, RABINOVIC A. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics, 2006, 8(1): 118-127. |
[18] | HASIB F M Y. Esophageal squamous cell carcinoma: integrated bioinformatics analysis for differential gene expression with identification of hub genes and lncRNA[J]. Biochemistry and Biophysics Reports, 2022, 30: 101262. |
[19] | 马李广, 张贺龙, 庞小可, 等. 白菜bZIP转录因子基因家族应答春化反应关键基因表达分析[J]. 江苏农业学报, 2022, 38(3): 765-774. |
MA L G, ZHANG H L, PANG X K, et al. Genome-wide identification of bZIP transcription factor gene family in Brassica rapa and its association with vernalization[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(3): 765-774. (in Chinese with English abstract) | |
[20] | MADRID E, CHANDLER J W, COUPLAND G. Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history[J]. Journal of Experimental Botany, 2020, 72(1): 4-14. |
[21] | XU S J, DONG Q, DENG M, et al. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Molecular Plant, 2021, 14(9): 1525-1538. |
[22] | KANG H, NUGROHO A B D, PARK M, et al. Vernalization regulates flowering genes and modulates glucosinolates biosynthesis in Chinese cabbage[J]. Journal of Plant Biology, 2022, 65(2): 157-173. |
[23] | 陈曙, 赵秋芳, 陈宏良, 等. 玉米泛素结合酶基因家族分析及低氮胁迫下亚家族UBC2的表达分析[J]. 热带作物学报, 2020, 41(2): 305-314. |
CHEN S, ZHAO Q F, CHEN H L, et al. Bioinformatics analysis of ubiquitin-conjugating enzymes and expression analysis of UBC2 gene sub-family in response to low nitrogen stress in maize[J]. Chinese Journal of Tropical Crops, 2020, 41(2): 305-314. (in Chinese with English abstract) | |
[24] | WANG Q, WANG G L, SONG S Y, et al. ORANGE negatively regulates flowering time in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2022, 274: 153719. |
[25] | 刘永平, 杨静, 杨明峰. 植物开花调控途径[J]. 生物工程学报, 2015, 31(11): 1553-1566. |
LIU Y P, YANG J, YANG M F. Pathways of flowering regulation in plants[J]. Chinese Journal of Biotechnology, 2015, 31(11): 1553-1566. (in Chinese with English abstract) | |
[26] | HUNG F Y, SHIH Y H, LIN P Y, et al. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering[J]. Plant Physiology, 2022, 190(1): 532-547. |
[27] | YI G, PARK H, KIM J S, et al. Identification of three FLOWERING LOCUS C genes responsible for vernalization response in radish (Raphanus sativus L.)[J]. Horticulture, Environment, and Biotechnology, 2014, 55(6): 548-556. |
[28] | KYUNG J, JEON M, JEONG G, et al. The two clock proteins CCA1 and LHY activate VIN3 transcription during vernalization through the vernalization-responsive cis-element[J]. The Plant Cell, 2021, 34(3): 1020-1037. |
[29] | FEDORENKO O M, TOPCHIEVA L V, ZARETSKAYA M V, et al. Changes in FLC and VIN3 expression during vernalization of Arabidopsis thaliana plants from northern natural populations[J]. Russian Journal of Genetics, 2019, 55(7): 865-871. |
[30] | WANG Y D, HUANG X, HUANG X M, et al. BcSOC1 promotes bolting and stem elongation in flowering Chinese cabbage[J]. International Journal of Molecular Sciences, 2022, 23(7): 3459. |
[31] | MOON J, SUH S S, LEE H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. The Plant Journal, 2003, 35(5): 613-623. |
[32] | 张家硕, 魏华, 王雷. 生物钟调控植物生长发育的研究进展[J]. 植物生理学报, 2022, 58(1): 3-12. |
ZHANG J S, WEI H, WANG L. The molecular networks of circadian clock-regulated plant growth and development[J]. Plant Physiology Journal, 2022, 58(1): 3-12. (in Chinese with English abstract) | |
[33] | FOWLER S, LEE K, ONOUCHI H, et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains[J]. The EMBO Journal, 1999, 18(17): 4679-4688. |
[34] | 王玉博, 王悦, 刘雄, 等. 水稻光周期调控开花的研究进展[J]. 中国水稻科学, 2021, 35(3): 207-224. |
WANG Y B, WANG Y, LIU X, et al. Research progress of photoperiod regulation in rice flowering[J]. Chinese Journal of Rice Science, 2021, 35(3): 207-224. (in Chinese with English abstract) | |
[35] | JUNG W Y, LEE A, MOON J S, et al. Genome-wide identification of flowering time genes associated with vernalization and the regulatory flowering networks in Chinese cabbage[J]. Plant Biotechnology Reports, 2018, 12(5): 347-363. |
[1] | 李崇娟, 吕凤仙, 杨鼎, 张丽琴, 兰梅, 杨红丽, 徐学忠, 胡靖锋, 申时品, 吴毓飞, 和江明, 董相书. 萝卜胞质雄性不育(Ogura CMS)芥菜材料的创制[J]. 浙江农业学报, 2023, 35(5): 1058-1068. |
[2] | 张祯, 崔媛媛, 陈春霞, 冯丽丹, 赵勇, 李霁昕, 把灵珍, 孔祥锦, 张煜, 蒋玉梅. 霞多丽葡萄果实降异戊二烯香气物质积累及代谢酶活变化分析[J]. 浙江农业学报, 2023, 35(4): 931-941. |
[3] | 刘同金, 徐铭婕, 汪精磊, 刘良峰, 崔群香, 包崇来, 王长义. 萝卜ALMT基因家族的鉴定与表达[J]. 浙江农业学报, 2022, 34(4): 746-755. |
[4] | 郑文寅, 曾令楠, 程颖, 侯丞志, 曹文昕, 赵莉, 姚大年. 小麦籽粒类胡萝卜素含量的遗传分析[J]. 浙江农业学报, 2022, 34(10): 2088-2094. |
[5] | 胡天华, 魏庆镇, 汪精磊, 王五宏, 胡海娇, 严亚琴, 包崇来. 利用QTL-seq定位萝卜肉质根根形指数QTL[J]. 浙江农业学报, 2021, 33(12): 2313-2319. |
[6] | 王玉书, 王欢, 郭宇, 周明慧, 陈璐, 陈阳. 羽衣甘蓝β-胡萝卜素羟化酶基因的克隆及表达分析[J]. 浙江农业学报, 2019, 31(1): 80-85. |
[7] | 胡丽萍, 周国兴, 刘光敏, 王亚钦, 何洪巨. 组配改良剂对铅胁迫萝卜营养品质及铅积累的影响[J]. 浙江农业学报, 2018, 30(4): 592-599. |
[8] | 俞建峰, 赵江, 陈海英, 夏晓露, 崔政伟. 胡萝卜片微波干燥均匀性研究[J]. 浙江农业学报, 2018, 30(4): 656-660. |
[9] | 余昌乐, 许童羽, 王洋, 于丰华. 双子叶植物叶片类胡萝卜素含量高光谱反演估算[J]. 浙江农业学报, 2018, 30(3): 393-398. |
[10] | 郑雅燕, 杨颖, 陆胜民, 曹亚裙. 白萝卜发酵饮料菌株筛选、鉴定及品质分析[J]. 浙江农业学报, 2017, 29(3): 506-514. |
[11] | 郑青松1,李海丹2,冯坤1,韩鹰3, 庞欣3,刘云飞4. 番茄类胡萝卜素合成基因鉴定及表达分析[J]. 浙江农业学报, 2015, 27(8): 1367-. |
[12] | 胡靖锋1,杨红丽1,徐学忠1,和江明1,*,赵颖2. 芸薹属萝卜胞质不育抗根肿病种质创新研究[J]. 浙江农业学报, 2015, 27(8): 1394-. |
[13] | 郭军;祖艳侠;吴永成;郑佳秋;梅燚. 萝卜属抽薹开花相关基因FLC的预测及分析[J]. , 2014, 26(3): 0-656660. |
[14] | 曾东慧;张俊;*;陆胜民. 柑橘皮分层设备的设计与果皮全利用的研究[J]. , 2013, 25(4): 0-878. |
[15] | 杨丽娟;周胜军;毛伟海;袁艺;陈新娟;*. 萝卜叶片和肉质根硫代葡萄糖苷组分与含量分析[J]. , 2010, 22(3): 0-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||