[1] |
ALEM H, RIGOU P, SCHNEIDER R, et al. Impact of agronomic practices on grape aroma composition: a review[J]. Journal of the Science of Food and Agriculture, 2019, 99(3): 975-985.
DOI
PMID
|
[2] |
VILANOVA M, GENISHEVA Z, BESCANSA L, et al. Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages[J]. Phytochemistry, 2012, 74: 196-205.
DOI
URL
|
[3] |
刘斌. 产地、整形方式和果穗光照条件对葡萄和葡萄酒降异戊二烯产生的影响[D]. 北京: 中国农业大学, 2015.
|
|
LIU B. Effects of region, training system and bunch light condition on norisoprenoids production in grapes and wines[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
|
[4] |
RAZUNGLES A J, BABIC I, SAPIS J C, et al. Particular behavior of epoxy xanthophylls during veraison and maturation of grape[J]. Journal of Agricultural and Food Chemistry, 1996, 44(12): 3821-3825.
DOI
URL
|
[5] |
ROBINSON A L, BOSS P K, SOLOMON P S, et al. Origins of grape and wine aroma. part 1. chemical components and viticultural impacts[J]. American Journal of Enology and Viticulture, 2014, 65(1): 1-24.
DOI
URL
|
[6] |
BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour[J]. Journal of Experimental Botany, 2010, 61(11): 2967-2977.
DOI
URL
|
[7] |
高媛. 葡萄果实降异戊二烯积累规律及调控机制研究[D]. 北京: 中国农业大学, 2016.
|
|
GAO Y. Accumulation and transcriptional regulation of norisoprenoids in wine grapes[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)
|
[8] |
孟楠, 刘斌, 潘秋红. 葡萄果实降异戊二烯类物质合成调控研究进展[J]. 园艺学报, 2015, 42(9): 1673-1682.
DOI
|
|
MENG N, LIU B, PAN Q H. Research advance on biosynthesis and regulation of norisoprenoids in grape berry[J]. Acta Horticulturae Sinica, 2015, 42(9): 1673-1682. (in Chinese with English abstract)
DOI
|
[9] |
WU Y S, ZHANG W W, SONG S R, et al. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca×V. vinifera)[J]. Food Chemistry, 2020, 309: 125778.
DOI
URL
|
[10] |
FANG Y, QIAN M C. Accumulation of C13-norisoprenoids and other aroma volatiles in glycoconjugate form during the development of pinot noir grapes[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2012: 101-115.
|
[11] |
YOUNG P R, LASHBROOKE J G, ALEXANDERSSON E, et al. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L[J]. BMC Genomics, 2012, 13: 243.
DOI
|
[12] |
LASHBROOKE J G, YOUNG P R, DOCKRALL S J, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family[J]. BMC Plant Biology, 2013, 13: 156.
DOI
|
[13] |
LENG X, WANG P P, WANG C, et al. Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development[J]. Scientific Reports, 2017, 7(1): 4216.
DOI
PMID
|
[14] |
王雅琛, 韦漪, 潘秋红. C13-降异戊二烯衍生物在葡萄和葡萄酒中积累与调控的研究进展[J]. 果树学报, 2021, 38(2): 264-277.
|
|
WANG Y C, WEI Y, PAN Q H. Advance in research on the accumulation and regulation of C13-norisoprenoid derivatives in grape berry and wine[J]. Journal of Fruit Science, 2021, 38(2): 264-277. (in Chinese with English abstract)
|
[15] |
王福荣. 酿酒分析与检测[M]. 2版. 北京: 化学工业出版社, 2012.
|
[16] |
王雨, 李霁昕, 李经纬, 等. 采后苯并噻重氮处理对‘玉金香’甜瓜单萜类香气及其代谢关键酶的影响分析[J]. 食品科学, 2019, 40(5): 214-221.
DOI
|
|
WANG Y, LI J X, LI J W, et al. Effect of postharvest BTH treatment on aroma monoterpenes and key metabolic enzymes in ‘Yujinxiang’ melon[J]. Food Science, 2019, 40(5): 214-221. (in Chinese with English abstract)
DOI
|
[17] |
CHEN K, WEN J F, MA L Y, et al. Dynamic changes in norisoprenoids and phenylalanine-derived volatiles in off-vine Vidal Blanc grape during late harvest[J]. Food Chemistry, 2019, 289: 645-656.
DOI
PMID
|
[18] |
李秀杰, 韩真, 李晨, 等. 根域限制对‘巨峰’葡萄果实可溶性糖含量及韧皮部超微结构的影响[J]. 植物生理学报, 2016, 52(10): 1546-1554.
|
|
LI X J, HAN Z, LI C, et al. Effects of root restriction on soluble sugar contents and ultrastructure of phloem tissues in ‘Kyoho’ grape berry[J]. Plant Physiology Journal, 2016, 52(10): 1546-1554. (in Chinese with English abstract)
|
[19] |
张晓霞. 葡萄设施延后栽培不同生育期控水调质机理研究[D]. 兰州: 甘肃农业大学, 2015.
|
|
ZHANG X X. The regulation mechanism of water quality on protected cultivation of delayed grape in different growth period[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese with English abstract)
|
[20] |
潘照明. 葡萄浆果的酸代谢生理[J]. 葡萄栽培与酿酒, 1991(1): 1-3.
|
|
PAN Z M. Acid metabolism physiology of grape berries[J]. Sino-Overseas Grapevine & Wine, 1991(1): 1-3. (in Chinese)
|
[21] |
田亮. 不同葡萄品种类胡萝卜素合成差异的研究[D]. 南京: 南京农业大学, 2018.
|
|
TIAN L. Study on the difference of carotenoid synthesis in different grape varieties[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract)
|
[22] |
ÁGUILA RUIZ-SOLA M, RODRÍGUEZ-CONCEPCIÓN M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway[J]. The Arabidopsis Book, 2012, 10: e0158.
DOI
URL
|
[23] |
LI F W, MELKONIAN M, ROTHFELS C J, et al. Phytochrome diversity in green plants and the origin of canonical plant phytochromes[J]. Nature Communications, 2015, 6: 7852.
DOI
|
[24] |
WISE R, KENNETH HOOBER J. The structure and function of plastids[J]. Yale Journal of Biology & Medicine, 2006, 29(4): 434.
|
[25] |
WANG J M, WU B, ZHANG N, et al. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea (Camellia sinensis) withering[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10815-10821.
DOI
URL
|
[26] |
DELUC L G, QUILICI D R, DECENDIT A, et al. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay[J]. BMC Genomics, 2009, 10: 212.
DOI
PMID
|
[27] |
MENG N, WEI Y, GAO Y, et al. Characterization of transcriptional expression and regulation of carotenoid cleavage dioxygenase 4b in grapes[J]. Frontiers in Plant Science, 2020, 11: 483.
DOI
PMID
|
[28] |
BUREAU S M, RAZUNGLES A J, BAUMES R L. The aroma of Muscat of Frontignan grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates[J]. Journal of the Science of Food and Agriculture, 2000, 80(14): 2012-2020.
DOI
URL
|
[29] |
BINDON K A, DRY P R, LOVEYS B R. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. cv. cabernet sauvignon grape berries[J]. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4493-4500.
DOI
URL
|
[30] |
ASPROUDI A, PETROZZIELLO M, CAVALLETTO S, et al. Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate[J]. Food Chemistry, 2016, 211: 947-956.
DOI
PMID
|
[31] |
XIE S, LEI Y J, WANG Y J, et al. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions[J]. Plant Growth Regulation, 2019, 87(1): 83-92.
DOI
|
[32] |
MARAIS J, HUNTER J J, HAASBROEK P D. Effect of canopy microclimate, season and region on sauvignon Blanc grape composition and wine quality[J]. South African Journal of Enology & Viticulture, 1999, 20(1):19-30.
|
[33] |
MENG N, YAN G L, ZHANG D, et al. Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae[J]. Molecular Biology Reports, 2019, 46(6): 6311-6323.
DOI
|