浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 922-930.DOI: 10.3969/j.issn.1004-1524.2023.04.19
鲁帅1(
), 罗晓刚2, 刘全伟2, 张屹3, 孟洋昊1, 李洁1, 张景来1,*(
)
收稿日期:2022-05-17
出版日期:2023-04-25
发布日期:2023-05-05
作者简介:鲁帅(1992—),男,山东济南人,博士研究生,研究方向为农业环境、自然资源管理。E-mail: ls2020@ruc.edu.cn
通讯作者:
*张景来,E-mail:zhangjl@ruc.edu.cn
LU Shuai1(
), LUO Xiaogang2, LIU Quanwei2, ZHANG Yi3, MENG Yanghao1, LI Jie1, ZHANG Jinglai1,*(
)
Received:2022-05-17
Online:2023-04-25
Published:2023-05-05
摘要:
为探究有机无机复混肥对小麦生长、土壤养分和重金属含量的影响,以河北冬小麦为试验对象开展田间试验。试验共设置6个处理组,分别为CK(不施肥)、FP(常规施肥)、SJ40(600 kg·hm-2 有机无机复混肥+225 kg·hm-2尿素追肥)、SJ60(900 kg·hm-2有机无机复混肥+225 kg·hm-2尿素追肥)、SJ80(1200kg·hm-2有机无机复混肥+225 kg·hm-2尿素追肥)和SJ40+30(600 kg·hm-2有机无机复混肥+450 kg·hm-2有机无机复混肥追肥)。结果表明:随着有机无机复混肥用量的增加,小麦产量逐渐提高,最高达到9.26 t·hm-2,与对照组相比,土壤中无机氮、有效磷、速效钾和有机质含量都有所提高。此外,有机无机复混肥的使用还显著降低小麦籽粒Cd和Pb的含量,最大降幅分别为28.8%和30.3%。综上,有机无机复混肥的合理使用能够提高小麦产量、改善土壤性质、降低小麦中重金属含量,在农业生产中具有极大的应用前景。
中图分类号:
鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930.
LU Shuai, LUO Xiaogang, LIU Quanwei, ZHANG Yi, MENG Yanghao, LI Jie, ZHANG Jinglai. Effect of organic-inorganic compound fertilizer on wheat growth, nutrients and heavy metal content of soil and wheat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 922-930.
图1 不同施肥处理对小麦产量的影响 CK表示不施肥对照组;FP表示习惯施肥处理组,即底施小麦专用肥600 kg·hm-2,追施尿素225 kg·hm-2;SJ40表示底施有机无机复混肥600 kg·hm-2,追施尿素225 kg·hm-2;SJ60表示底施有机无机复混肥900 kg·hm-2,追施尿素225 kg·hm-2;SJ80表示底施有机无机复混肥1 200 kg·hm-2,追施尿素225 kg·hm-2;SJ 40+30表示底施有机无机复混肥600 kg·hm-2,追施有机无机复混肥450 kg·hm-2。柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Effects of different fertilizer treatments on wheat yield CK denotes the no fertilizer control group; FP denotes the regular fertilizer group, 600 kg·hm-2 fertilizer for wheat as the base and 225 kg·hm-2 urea as the topdressing; SJ40 denotes the group that 600 kg·hm-2 organic-inorganic compound fertilizer as the base and 225 kg·hm-2 urea as the topdressing; SJ60 denotes the group that 900 kg·hm-2 organic-inorganic compound fertilizer as the base and 225 kg·hm-2 urea as the topdressing; SJ 80 denotes the group that 1 200 kg·hm-2 organic-inorganic compound fertilizer as the base and 225 kg·hm-2 urea as the topdressing; SJ40+30 denotes the group that 600 kg·hm-2 organic-inorganic compound fertilizer as the base and 450 kg·hm-2 organic-inorganic compound fertilizer as the topdressing. Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
| 处理 Treatment | pH值 pH value | 无机氮 Inorganic nitrogen/ (mg·kg-1) | 有效磷 Effective phosphorus/ (mg·kg-1) | 速效钾 Fast-acting potassium/ (mg·kg-1) | 有机质 Organic content/ (g·kg-1) |
|---|---|---|---|---|---|
| CK | 8.01±0.07 a | 16.2±2.2 b | 19.3±0.5 a | 92.0±5.6 a | 18.3±0.8 c |
| FP | 7.98±0.09 a | 35.2±5.0 a | 23.7±1.9 a | 101.0±3.6 a | 19.6±1.0 bc |
| SJ40 | 7.98±0.08 a | 31.5±2.4 a | 20.3±3.8 a | 102.7±7.5 a | 20.3±1.0 bc |
| SJ60 | 7.94±0.13 a | 33.3±9.1 a | 20.9±4.2 a | 102.7±5.0 a | 20.7±1.0 ab |
| SJ80 | 7.98±0.10 a | 38.3±9.5 a | 23.8±3.1 a | 108.7±2.3 a | 22.0±1.0 a |
| SJ40+30 | 7.95±0.04 a | 18.1±3.4 b | 20.1±2.4 a | 105.7±6.0 a | 22.1±1.2 a |
表1 不同施肥处理对土壤pH及养分含量的影响
Table 1 Effect of different fertilization treatments on soil pH and nutrient content
| 处理 Treatment | pH值 pH value | 无机氮 Inorganic nitrogen/ (mg·kg-1) | 有效磷 Effective phosphorus/ (mg·kg-1) | 速效钾 Fast-acting potassium/ (mg·kg-1) | 有机质 Organic content/ (g·kg-1) |
|---|---|---|---|---|---|
| CK | 8.01±0.07 a | 16.2±2.2 b | 19.3±0.5 a | 92.0±5.6 a | 18.3±0.8 c |
| FP | 7.98±0.09 a | 35.2±5.0 a | 23.7±1.9 a | 101.0±3.6 a | 19.6±1.0 bc |
| SJ40 | 7.98±0.08 a | 31.5±2.4 a | 20.3±3.8 a | 102.7±7.5 a | 20.3±1.0 bc |
| SJ60 | 7.94±0.13 a | 33.3±9.1 a | 20.9±4.2 a | 102.7±5.0 a | 20.7±1.0 ab |
| SJ80 | 7.98±0.10 a | 38.3±9.5 a | 23.8±3.1 a | 108.7±2.3 a | 22.0±1.0 a |
| SJ40+30 | 7.95±0.04 a | 18.1±3.4 b | 20.1±2.4 a | 105.7±6.0 a | 22.1±1.2 a |
| [1] | 王祖力, 肖海峰. 化肥施用对粮食产量增长的作用分析[J]. 农业经济问题, 2008, 29(8): 65-68. |
| WANG Z L, XIAO H F. Analysis of the effect of chemical fertilizer application on grain yield growth[J]. Issues in Agricultural Economy, 2008, 29(8): 65-68. (in Chinese) | |
| [2] | 蔡荣, 陈佩. 中国小麦生产的化肥要素配置扭曲及削减潜力测算[J]. 农林经济管理学报, 2020, 19(6): 663-670. |
| CAI R, CHEN P. Fertilizer factor allocation distortion and its potential reduction in wheat production in China[J]. Journal of Agro-Forestry Economics and Management, 2020, 19(6): 663-670. (in Chinese with English abstract) | |
| [3] | 吕亚敏, 吴玉红, 李洪达, 等. 减肥措施对稻田田面水氮、磷动态变化特征的影响[J]. 生态与农村环境学报, 2018, 34(4): 349-355. |
| LV Y M, WU Y H, LI H D, et al. Effects of dynamic changes of nitrogen and phosphorus concentrations in surface water of paddy field under different fertilizer rate[J]. Journal of Ecology and Rural Environment, 2018, 34(4): 349-355. (in Chinese with English abstract) | |
| [4] |
ZHANG F Y, JIN Q Y, PENG H Z, et al. Soil acidification in moso bamboo (Phyllostachys edulis) forests and changes of soil metal ions (Cu, Pb) concentration[J]. Archives of Agronomy and Soil Science, 2021, 67(13): 1799-1808.
DOI URL |
| [5] |
PAL M, YADAV S, KAPLEY A, et al. Impact of cyanobacterial bloom on microbiomes of freshwater lakes[J]. Journal of Biosciences, 2021, 46(4): 96.
DOI |
| [6] |
黄尚书, 孙永明, 江新凤, 等. 有机肥全量替代化肥对茶叶产量和品质、土壤养分及氮素利用的影响[J]. 华北农学报, 2021, 36(4): 163-171.
DOI |
| HUANG S S, SUN Y M, JIANG X F, et al. Effects of total replacement of chemical fertilizer with organic fertilizer on yield and quality of tea, soil nutrients and nitrogen utilization[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(4): 163-171. (in Chinese with English abstract) | |
| [7] | 杜小凤, 顾大路, 杨文飞, 等. 不同播种方式和肥料运筹对稻茬小麦生长发育及产量的影响[J]. 江苏农业科学, 2021, 49(23): 66-71. |
| DU X F, GU D L, YANG W F, et al. Effects of different sowing methods and fertilizer management on growth and yield of wheat after rice[J]. Jiangsu Agricultural Sciences, 2021, 49(23): 66-71. (in Chinese) | |
| [8] | 吴科生, 车宗贤, 张久东, 等. 有机无机复混肥在河西灌区小麦生产中的应用效果[J]. 甘肃农业科技, 2020(6): 9-11. |
| WU K S, CHE Z X, ZHANG J D, et al. Application effect of organic and inorganic compound fertilizer in wheat production in Hexi irrigated area[J]. Gansu Agricultural Science and Technology, 2020(6): 9-11. (in Chinese) | |
| [9] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [10] |
黄明, 吴金芝, 李友军, 等. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J]. 中国农业科学, 2021, 54(24): 5206-5219.
DOI |
|
HUANG M, WU J Z, LI Y J, et al. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland[J]. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219. (in Chinese with English abstract)
DOI |
|
| [11] | 张奇, 张振华, 刘丽珠, 等. 增施有机肥对黄泛冲积区贫瘠土壤养分和玉米产量的影响[J]. 江苏农业科学, 2019, 47(17): 271-276. |
| ZHANG Q, ZHANG Z H, LIU L Z, et al. Effect of adding organic fertilizer on nutrient and corn yield of barren soil in Yellow River alluvial area[J]. Jiangsu Agricultural Sciences, 2019, 47(17): 271-276. (in Chinese) | |
| [12] | 贺丽群, 张庆金, 吴培栋, 等. 有机肥与生物炭互作对城市底土肥力及生菜生长的影响[J]. 南方农业学报, 2019, 50(8): 1701-1708. |
| HE L Q, ZHANG Q J, WU P D, et al. Effects of compost and biochar interaction on urban subsoil fertility and plant growth of lettuce[J]. Journal of Southern Agriculture, 2019, 50(8): 1701-1708. (in Chinese with English abstract) | |
| [13] | 胡国智, 闫淼, 熊韬, 等. 适宜有机肥氮替代化肥氮比例提高甜瓜养分吸收、产量和品质[J]. 植物营养与肥料学报, 2022, 28(2): 260-268. |
| HU G Z, YAN M, XIONG T, et al. Optimum chemical fertilizer N substitution with organic manure N improves nutrient uptake, yield, and quality of muskmelon in Xinjiang[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 260-268. (in Chinese with English abstract) | |
| [14] | 毛伟, 曾洪玉, 李文西, 等. 不同土壤肥力下有机氮部分替代化学氮对小麦产量构成及土壤养分的影响[J]. 江苏农业学报, 2020, 36(5): 1189-1196. |
| MAO W, ZENG H Y, LI W X, et al. Effects of organic nitrogen replacing chemical nitrogen on wheat yield camponents and soil nutrients under different soil fertility[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1189-1196. (in Chinese with English abstract) | |
| [15] | 龙素霞, 李芳芳, 石书亚, 等. 氮磷钾配施对小麦植株养分吸收利用和产量的影响[J]. 作物杂志, 2018(6): 96-102. |
| LONG S X, LI F F, SHI S Y, et al. Effects of coordinately application of N, P, and K on nutrient contents in plants and soils and wheat yield[J]. Crops, 2018(6): 96-102. (in Chinese with English abstract) | |
| [16] | 郑网宇, 陈功磊, 吴迪, 等. 不同肥力水平土壤小麦的氮磷钾肥料效应及养分吸收利用研究: 以太湖流域丹阳市为例[J]. 江苏农业科学, 2019, 47(23): 96-101. |
| ZHENG W Y, CHEN G L, WU D, et al. Study on fertilization effect and nutrient absorption in wheat on soils with different fertility levels: taking Danyang City of Tai Lake Basin as an example[J]. Jiangsu Agricultural Sciences, 2019, 47(23): 96-101. (in Chinese) | |
| [17] | 何秀静. 西南地区三种胁迫条件下玉米转录组分析及胁迫响应基因功能研究[D]. 雅安: 四川农业大学, 2018. |
| HE X J. Transcriptome analyses of maize (Zea mays L.) under three different stresses in southwest China and functional characterization of the candidate genes[D]. Ya’an: Sichuan Agricultural University, 2018. (in Chinese with English abstract) | |
| [18] | 杨淑华, 王台, 钱前, 等. 2015年中国植物科学若干领域重要研究进展[J]. 植物学报, 2016, 51(4): 416-472. |
| YANG S H, WANG T, QIAN Q, et al. Research advances on plant science in China in 2015[J]. Chinese Bulletin of Botany, 2016, 51(4): 416-472. (in Chinese with English abstract) | |
| [19] | 米国华, 陈范骏, 张福锁. 作物养分高效的生理基础与遗传改良[M]. 北京: 中国农业大学出版社, 2012. |
| [20] | 付延磊. 施钾对小麦抗蚜性和叶片胼胝质沉积的影响[D]. 郑州: 河南农业大学, 2017. |
| FU Y L. Effect of potassium application on aphid resistance and leaf callose deposition of wheat[D]. Zhengzhou: Henan Agricultural University, 2017. (in Chinese with English abstract) | |
| [21] | 高飞, 汪志鹏, 赵贺, 等. 低地力条件下有机肥部分替代化肥对作物产量和土壤性状的影响[J]. 江苏农业学报, 2020, 36(1): 83-91. |
| GAO F, WANG Z P, ZHAO H, et al. Effects of partial substitution for chemical fertilizer by organic monure on crop yield and soil properties under low soil fertility[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 83-91. (in Chinese with English abstract) | |
| [22] | 姬钢, 徐明岗, 文石林, 等. 不同植被类型下红壤pH和交换性酸的剖面特征[J]. 应用生态学报, 2015, 26(9): 2639-2645. |
| JI G, XU M G, WEN S L, et al. Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2639-2645. (in Chinese with English abstract) | |
| [23] | 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展[J]. 土壤学报, 2019, 56(3): 528-540. |
| WANG J K, XU Y D, DING F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review[J]. Acta Pedologica Sinica, 2019, 56(3): 528-540. (in Chinese with English abstract) | |
| [24] | TANG H M, LI C, XIAO X P, et al. Effects of long-term fertiliser regime on soil organic carbon and its labile fractions under double cropping rice system of Southern China[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2020, 70(5): 409-418. |
| [25] |
SONG W F, SHU A P, LIU J A, et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32(4): 637-648.
DOI URL |
| [26] | TONG S M, YANG L S, GONG H Q, et al. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China[J]. Ecotoxicology and Environmental Safety, 2022, 241: 113733. |
| [27] |
LIN Q, XU X, BAO Q B, et al. Influence of water-dispersible colloids from organic manure on the mechanism of metal transport in historically contaminated soils: coupling colloid fractionation with high-energy synchrotron analysis[J]. Journal of Soils and Sediments, 2016, 16(2): 349-359.
DOI URL |
| [28] |
ZHANG J R, LI H Z, ZHOU Y Z, et al. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: a case study in the Pearl River Delta, South China[J]. Environmental Pollution, 2018, 235: 710-719.
DOI PMID |
| [29] | 鲁洪娟, 周德林, 叶文玲, 等. 生物有机肥在土壤改良和重金属污染修复中的研究进展[J]. 环境污染与防治, 2019, 41(11): 1378-1383. |
| LU H J, ZHOU D L, YE W L, et al. Advances in application of bio-organic fertilizer in soil improvement and remediation of heavy metals pollution[J]. Environmental Pollution & Control, 2019, 41(11): 1378-1383. (in Chinese with English abstract) | |
| [30] |
ZHONG X, CHEN Z W, LI Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020, 400: 123289.
DOI URL |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 陈星星, 虞雯煊, 徐健炜, 张鹏. 裙带菜不同部位重金属含量特征分析及健康风险评估[J]. 浙江农业学报, 2025, 37(8): 1794-1804. |
| [3] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [4] | 王丽, 陈立明, 王鹏飞, 张彬, 穆霄鹏. 有机肥配施菌肥对欧李果实品质和土壤性质的影响[J]. 浙江农业学报, 2025, 37(4): 820-830. |
| [5] | 韦新航, 周铨, 李亚妮, 陈卫良, 毛碧增. 生物有机肥对温郁金根际微生物群落结构的影响[J]. 浙江农业学报, 2025, 37(4): 892-900. |
| [6] | 刘胜男, 朱建义, 李明, 赵浩宇, 熊涛, 汤永禄, 周小刚, 李朝苏. 稻茬免耕带旋播种小麦的田间杂草防除效果与小麦产量[J]. 浙江农业学报, 2025, 37(10): 2129-2137. |
| [7] | 杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23. |
| [8] | 王芸, 俞朝, 沈泓, 曹米娜, 周其耀, 胡智鹏, 金崇伟, 冯英. 硅锌叶面肥对芹菜镉积累和营养品质的影响[J]. 浙江农业学报, 2025, 37(1): 61-66. |
| [9] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
| [10] | 朱仁超, 原樱其, 杨宇, 杨琦玥, 余爱华. 公路沿线农田重金属污染研究[J]. 浙江农业学报, 2024, 36(8): 1887-1897. |
| [11] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
| [12] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
| [13] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [14] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
| [15] | 李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||