浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1794-1804.DOI: 10.3969/j.issn.1004-1524.20240780
陈星星1,2(), 虞雯煊3, 徐健炜1,2, 张鹏1,2,*(
)
收稿日期:
2024-09-03
出版日期:
2025-08-25
发布日期:
2025-09-03
作者简介:
陈星星(1988—),男,浙江三门人,硕士,工程师,研究方向为水产品质检与营养分析。E-mail:363316091@qq.com
通讯作者:
*张鹏,E-mail:zhangpeng20011918@163.com
基金资助:
CHEN Xingxing1,2(), YU Wenxuan3, XU Jianwei1,2, ZHANG Peng1,2,*(
)
Received:
2024-09-03
Online:
2025-08-25
Published:
2025-09-03
Contact:
ZHANG Peng
摘要:
为揭示重金属在裙带菜不同部位的富集与分布特征,采用电感耦合等离子质谱法(inductively coupled plasma mass spectrometer, ICP-MS),对不同生长时期裙带菜(Undaria pinnatifida)的根、茎、叶、孢子叶部位中重金属Cr、Cu、Zn、As、Cd、Hg、Pb和Ni的含量进行分析。结果显示,随着生育进程的推进,裙带菜中重金属平均含量由高到低依次为As>Zn>Cu>Cd>Ni>Cr>Pb>Hg。Cu、Zn、As、Cd和Hg含量在叶和根中(叶中Hg除外)呈先升后降的趋势,而Cr、Pb、Ni含量整体呈持续升高趋势(根中Pb除外)。叶和根中重金属含量普遍高于茎和孢子叶。As含量在生长初期(3月)和成熟期(4月)较高,Cr、Pb、Ni含量则在衰老期(6月)较高。健康风险评估结果显示,各元素的目标危害系数(THQ)及其总和(TTHQ)均低于1.00,表明食用裙带菜对人体健康暂无显著风险。但孢子叶的重金属复合风险相对较高,消费者应在选购和食用时予以关注。
中图分类号:
陈星星, 虞雯煊, 徐健炜, 张鹏. 裙带菜不同部位重金属含量特征分析及健康风险评估[J]. 浙江农业学报, 2025, 37(8): 1794-1804.
CHEN Xingxing, YU Wenxuan, XU Jianwei, ZHANG Peng. Characterization of heavy metal contents in different parts of Undaria pinnatifida and assessment of health hazard[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1794-1804.
生长时期 Growth period | 重金属含量Contents of heavy metals | |||||||
---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | |
生长初期(3月)Early growth period (March) | 0.74 | 2.80 | 23.41 | 63.79 | 1.30 | 0.010 0 | 0.94 | 0.75 |
成熟期(4月)Mature period (April) | 1.04 | 5.04 | 26.62 | 82.20 | 2.32 | 0.009 4 | 0.68 | 1.42 |
衰老期(6月)Aging period (June) | 2.91 | 5.22 | 18.26 | 22.81 | 1.57 | 0.003 3 | 1.72 | 2.97 |
均值Average | 1.57 | 4.35 | 22.76 | 56.27 | 1.73 | 0.007 5 | 1.12 | 1.71 |
表1 不同生长时期裙带菜中重金属平均含量
Table 1 Average content of heavy metal in Undaria pinnatifida at different growth periods mg·kg-1
生长时期 Growth period | 重金属含量Contents of heavy metals | |||||||
---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | |
生长初期(3月)Early growth period (March) | 0.74 | 2.80 | 23.41 | 63.79 | 1.30 | 0.010 0 | 0.94 | 0.75 |
成熟期(4月)Mature period (April) | 1.04 | 5.04 | 26.62 | 82.20 | 2.32 | 0.009 4 | 0.68 | 1.42 |
衰老期(6月)Aging period (June) | 2.91 | 5.22 | 18.26 | 22.81 | 1.57 | 0.003 3 | 1.72 | 2.97 |
均值Average | 1.57 | 4.35 | 22.76 | 56.27 | 1.73 | 0.007 5 | 1.12 | 1.71 |
图2 不同生长时期裙带菜中不同部位重金属含量 无相同小写字母表示不同生长时期不同部位重金属含量之间差异显著(p<0.05)。
Fig.2 Contents of heavy metals in different parts of Undaria pinnatifida in different growth periods The absence of identical lowercase letters indicates significant differences (p<0.05) in the content of heavy metals in different parts in different growth periods.
生长时期 Growth period | 类别 Category | 重金属含量Contents of heavy metals | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | ||||||||||
3月March | 范围Range | 1.26~1.49 | 1.24~1.36 | 0.24~0.36 | 1.19~1.39 | 0.02~0.03 | 0.007 | 0.02~0.03 | 0.55~0.56 | ||||||||
均值Mean value | 1.34 | 1.28 | 0.28 | 1.28 | 0.02 | 0.007 | 0.03 | 0.55 | |||||||||
4月April | 范围Range | 1.15~1.32 | 1.15~1.30 | 0.21~0.36 | 1.04~1.20 | 0.03~0.04 | 0.007 | 0.02~0.03 | 0.40~0.60 | ||||||||
均值Mean value | 1.25 | 1.22 | 0.28 | 1.10 | 0.03 | 0.007 | 0.02 | 0.49 | |||||||||
6月June | 范围Range | 1.41~1.66 | 1.57~1.62 | 0.29~0.40 | 1.68~2.13 | 0.04~0.06 | 0.007 | 0.03~0.05 | 0.68~0.76 | ||||||||
均值Mean value | 1.53 | 1.60 | 0.35 | 1.97 | 0.05 | 0.007 | 0.04 | 0.72 | |||||||||
海水标准 | 一类Class 1 | ≤50.00 | ≤5.00 | ≤20.00 | ≤20.00 | ≤1.00 | ≤0.05 | ≤1.00 | ≤5.00 | ||||||||
Standard of | 二类Class 2 | ≤100.00 | ≤10.00 | ≤50.00 | ≤30.00 | ≤5.00 | ≤0.20 | ≤5.00 | ≤10.00 | ||||||||
sea water |
表2 不同采样时间海水中重金属含量
Table 2 Contents of heavy metals in seawater in different sampling time μg·L-1
生长时期 Growth period | 类别 Category | 重金属含量Contents of heavy metals | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | ||||||||||
3月March | 范围Range | 1.26~1.49 | 1.24~1.36 | 0.24~0.36 | 1.19~1.39 | 0.02~0.03 | 0.007 | 0.02~0.03 | 0.55~0.56 | ||||||||
均值Mean value | 1.34 | 1.28 | 0.28 | 1.28 | 0.02 | 0.007 | 0.03 | 0.55 | |||||||||
4月April | 范围Range | 1.15~1.32 | 1.15~1.30 | 0.21~0.36 | 1.04~1.20 | 0.03~0.04 | 0.007 | 0.02~0.03 | 0.40~0.60 | ||||||||
均值Mean value | 1.25 | 1.22 | 0.28 | 1.10 | 0.03 | 0.007 | 0.02 | 0.49 | |||||||||
6月June | 范围Range | 1.41~1.66 | 1.57~1.62 | 0.29~0.40 | 1.68~2.13 | 0.04~0.06 | 0.007 | 0.03~0.05 | 0.68~0.76 | ||||||||
均值Mean value | 1.53 | 1.60 | 0.35 | 1.97 | 0.05 | 0.007 | 0.04 | 0.72 | |||||||||
海水标准 | 一类Class 1 | ≤50.00 | ≤5.00 | ≤20.00 | ≤20.00 | ≤1.00 | ≤0.05 | ≤1.00 | ≤5.00 | ||||||||
Standard of | 二类Class 2 | ≤100.00 | ≤10.00 | ≤50.00 | ≤30.00 | ≤5.00 | ≤0.20 | ≤5.00 | ≤10.00 | ||||||||
sea water |
生长时期 Growth period | 富集系数Bioconcentration factor | |||||||
---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | |
3月March | 555 | 2 193 | 82 923 | 49 937 | 57 234 | 1 401 | 36 838 | 1 360 |
4月April | 837 | 4 149 | 96 660 | 74 844 | 67 258 | 1 344 | 32 789 | 2 902 |
6月June | 1 900 | 3 255 | 52 634 | 11 584 | 30 762 | 474 | 48 889 | 4 098 |
均值Mean value | 1 097 | 3 199 | 77 406 | 45 455 | 51 751 | 1 073 | 39 506 | 2 786 |
表3 裙带菜重金属富集系数
Table 3 Bioconcentration factor of heavy metals in Undaria pinnatifida
生长时期 Growth period | 富集系数Bioconcentration factor | |||||||
---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | |
3月March | 555 | 2 193 | 82 923 | 49 937 | 57 234 | 1 401 | 36 838 | 1 360 |
4月April | 837 | 4 149 | 96 660 | 74 844 | 67 258 | 1 344 | 32 789 | 2 902 |
6月June | 1 900 | 3 255 | 52 634 | 11 584 | 30 762 | 474 | 48 889 | 4 098 |
均值Mean value | 1 097 | 3 199 | 77 406 | 45 455 | 51 751 | 1 073 | 39 506 | 2 786 |
图3 各重金属元素的二维载荷系数图 PC1贡献率为48.867%,PC2贡献率为28.606%,PC3贡献率为11.357%。
Fig.3 Two-dimensional loading plots of the heavy metal elements The contribution rates of PC1, PC2 and PC3 were 48.867%, 28.606% and 11.357%, respectively.
生长时期-部位 Growth period-parts | PC1 | PC2 | PC3 | 综合得分 Comprehensive scores |
---|---|---|---|---|
3月-叶March-leaf | -1.340 | 1.865 | 0.593 | -0.654 |
4月-叶April-leaf | -0.840 | 2.551 | 0.203 | -0.210 |
6月-叶June-leaf | 1.904 | 1.299 | 0.232 | 1.649 |
3月-茎March-stem | -0.558 | 0.344 | -0.093 | -0.372 |
4月-茎April-stem | -0.380 | 0.517 | -0.016 | -0.205 |
6月-茎June-stem | 1.065 | 0.801 | 0.190 | 0.940 |
3月-根March-root | 0.590 | 1.259 | 0.095 | 0.648 |
4月-根April-root | 0.339 | 2.476 | -0.015 | 0.640 |
6月-根June-root | 2.380 | 1.824 | 0.959 | 2.085 |
4月-孢子叶April-sporophyll | -0.666 | 1.996 | -0.594 | -0.243 |
6月-孢子叶June-sporophyll | 2.023 | 1.755 | -0.696 | 1.768 |
贡献率Contribution rate/% | 48.867 | 28.606 | 11.357 | |
累计贡献率Cumulative contribution rate/% | 48.867 | 77.473 | 88.830 |
表4 裙带菜不同生长时期不同部位重金属富集能力的综合得分
Table 4 Comprehensive scores of heavy metal enrichment ability in different parts of Undaria pinnatifida in different growth periods
生长时期-部位 Growth period-parts | PC1 | PC2 | PC3 | 综合得分 Comprehensive scores |
---|---|---|---|---|
3月-叶March-leaf | -1.340 | 1.865 | 0.593 | -0.654 |
4月-叶April-leaf | -0.840 | 2.551 | 0.203 | -0.210 |
6月-叶June-leaf | 1.904 | 1.299 | 0.232 | 1.649 |
3月-茎March-stem | -0.558 | 0.344 | -0.093 | -0.372 |
4月-茎April-stem | -0.380 | 0.517 | -0.016 | -0.205 |
6月-茎June-stem | 1.065 | 0.801 | 0.190 | 0.940 |
3月-根March-root | 0.590 | 1.259 | 0.095 | 0.648 |
4月-根April-root | 0.339 | 2.476 | -0.015 | 0.640 |
6月-根June-root | 2.380 | 1.824 | 0.959 | 2.085 |
4月-孢子叶April-sporophyll | -0.666 | 1.996 | -0.594 | -0.243 |
6月-孢子叶June-sporophyll | 2.023 | 1.755 | -0.696 | 1.768 |
贡献率Contribution rate/% | 48.867 | 28.606 | 11.357 | |
累计贡献率Cumulative contribution rate/% | 48.867 | 77.473 | 88.830 |
生长时期 Growth period | 单一重金属目标危害系数 Target hazard quotient(THQ) | 总目标危害系数 Total target hazard quotient(TTHQ) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | ||
3月March | 0.003 3 | 0.001 0 | 0.001 1 | 0.290 0 | 0.018 0 | 0.001 3 | 0.003 2 | 0.000 5 | 0.320 0 |
4月April | 0.004 7 | 0.001 7 | 0.001 2 | 0.370 0 | 0.031 0 | 0.001 3 | 0.002 3 | 0.0009 | 0.410 0 |
6月June | 0.013 0 | 0.001 8 | 0.001 0 | 0.100 0 | 0.021 0 | 0.000 5 | 0.005 8 | 0.002 0 | 0.150 0 |
均值Mean value | 0.007 1 | 0.001 5 | 0.001 0 | 0.250 0 | 0.023 0 | 0.001 0 | 0.003 8 | 0.001 2 | 0.290 0 |
表5 不同生长时期裙带菜中重金属单一与复合健康风险评估
Table 5 THQ and TTHQ of heavy metal in Undaria pinnatifida in different growth periods
生长时期 Growth period | 单一重金属目标危害系数 Target hazard quotient(THQ) | 总目标危害系数 Total target hazard quotient(TTHQ) | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Cu | Zn | As | Cd | Hg | Pb | Ni | ||
3月March | 0.003 3 | 0.001 0 | 0.001 1 | 0.290 0 | 0.018 0 | 0.001 3 | 0.003 2 | 0.000 5 | 0.320 0 |
4月April | 0.004 7 | 0.001 7 | 0.001 2 | 0.370 0 | 0.031 0 | 0.001 3 | 0.002 3 | 0.0009 | 0.410 0 |
6月June | 0.013 0 | 0.001 8 | 0.001 0 | 0.100 0 | 0.021 0 | 0.000 5 | 0.005 8 | 0.002 0 | 0.150 0 |
均值Mean value | 0.007 1 | 0.001 5 | 0.001 0 | 0.250 0 | 0.023 0 | 0.001 0 | 0.003 8 | 0.001 2 | 0.290 0 |
[1] | 唐茹萌, 焦文雅, 桑亚新, 等. 裙带菜多糖体外和体内降血脂活性[J]. 食品科学, 2022, 43(1): 142-149. |
TANG R M, JIAO W Y, SANG Y X, et al. In vitro and in vivo hypolipidemic effect of Undaria pinnatifida polysaccharide[J]. Food Science, 2022, 43(1): 142-149. (in Chinese with English abstract) | |
[2] | ZHENG W Y, JIA J H, ZHANG C X, et al. Undaria pinnatifida fucoidan ameliorates dietary fiber deficiency-induced inflammation and lipid abnormality by modulating mucosal microbiota and protecting intestinal barrier integrity[J]. International Journal of Biological Macromolecules, 2023, 247: 125724. |
[3] | 彭春彦, 谢星, 李一华, 等. 海带、坛紫菜和裙带菜游离和结合酚抗氧化和酶抑制活性比较[J]. 食品与发酵工业, 2023, 49(4): 110-116. |
PENG C Y, XIE X, LI Y H, et al. Antioxidant and enzyme inhibition activities of free and bound phenolics of Laminaria japonica, Porphyra haitanensis, and Undaria pinnatifida[J]. Food and Fermentation Industries, 2023, 49(4): 110-116. (in Chinese with English abstract) | |
[4] | 闫程程, 刘海梅, 赵芹, 等. 裙带菜孢子叶的生物活性物质及其在食品中的应用[J]. 食品与发酵工业, 2021, 47(7): 307-315. |
YAN C C, LIU H M, ZHAO Q, et al. Bioactive substances of Undaria pinnatifida sporophyll and its application in food[J]. Food and Fermentation Industries, 2021, 47(7): 307-315. (in Chinese with English abstract) | |
[5] | ZENG J S, LUAN F, HU J W, et al. Recent research advances in polysaccharides from Undaria pinnatifida: isolation, structures, bioactivities, and applications[J]. International Journal of Biological Macromolecules, 2022, 206: 325-354. |
[6] | LEE S M, PARK S Y, KIM J Y. Comparative evaluation of the antihyperglycemic effects of three extracts of sea mustard (Undaria pinnatifida): in vitro and in vivo studies[J]. Food Research International, 2024, 190: 114623. |
[7] | 杨珺. 裙带菜孢子叶多糖的提取分离及其生物活性研究[D]. 南宁: 广西民族大学, 2022. |
YANG J. Study on extraction, isolation and bioactivity of polysaccharide from sporophyll of Undaria pinnatifida[D]. Nanning: Guangxi University for Nationalities, 2022. (in Chinese with English abstract) | |
[8] | STABILI L, ACQUAVIVA M I, CECERE E, et al. Screening of Undaria pinnatifida(Laminariales, Phaeophyceae) lipidic extract as a new potential source of antibacterial and antioxidant compounds[J]. Journal of Marine Science and Engineering, 2023, 11(11): 2072. |
[9] | 李妃, 陶建斌, 夏璐瑶, 等. 浙江洞头列岛养殖区海水和沉积物中重金属污染及潜在生态风险评价[J]. 海洋湖沼通报, 2024, 46(3): 114-120. |
LI F, TAO J B, XIA L Y, et al. Contamination and assessment of potential ecological risk of heavy metals in sea water and sediment from aquaculture areas of Dongtou islands, Zhejiang[J]. Transactions of Oceanology and Limnology, 2024, 46(3): 114-120. (in Chinese with English abstract) | |
[10] | 黄宏, 王霄, 罗予杉, 等. 大型海藻对重金属富集作用、影响因素及应用[J]. 上海海洋大学学报, 2022, 31(5): 1158-1167. |
HUANG H, WANG X, LUO Y S, et al. Enrichment, influencing factors and applications of heavy metals by macroalgae[J]. Journal of Shanghai Ocean University, 2022, 31(5): 1158-1167. (in Chinese with English abstract) | |
[11] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会.海洋监测规范第3部分:样品采集、贮存与运输: GB 17378.3—2007[S]. 北京: 中国标准出版社, 2008. |
[12] | KHAN K, ZEB M, YOUNAS M, et al. Heavy metals in five commonly consumed fish species from River Swat, Pakistan, and their implications for human health using multiple risk assessment approaches[J]. Marine Pollution Bulletin, 2023, 195: 115460. |
[13] | 高培培, 肖冰, 刘文菊, 等. 莲藕中重金属含量特征及其健康风险评价[J]. 环境化学, 2020, 39(2): 362-370. |
GAO P P, XIAO B, LIU W J, et al. Analysis and health risk assessment of heavy metal in lotus root[J]. Environmental Chemistry, 2020, 39(2): 362-370. (in Chinese with English abstract) | |
[14] | 匡伊婷, 张晓恒, 涂铭, 等. 中国城镇居民藻类食品消费行为实证研究[J]. 中国食物与营养, 2020, 26(4): 46-51. |
KUANG Y T, ZHANG X H, TU M, et al. Research on consumption behavior of algae products in China[J]. Food and Nutrition in China, 2020, 26(4): 46-51. (in Chinese with English abstract) | |
[15] | 王浩, 叶丽丽, 陈永山, 等. 广西典型铝矿区复垦地蔬菜中重金属含量特征及健康风险评价[J]. 西南农业学报, 2020, 33(11): 2655-2661. |
WANG H, YE L L, CHEN Y S, et al. Heavy metal content characteristics and health risk assessment of vegetables in reclaimed land of bauxite mine region in Guangxi[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(11): 2655-2661. (in Chinese with English abstract) | |
[16] | 杨剑洲, 王振亮, 高健翁, 等. 海南省集约化种植园中谷物、蔬菜和水果中重金属累积程度及健康风险[J]. 环境科学, 2021, 42(10): 4916-4924. |
YANG J Z, WANG Z L, GAO J W, et al. Accumulation and health risk of heavy metals in cereals, vegetables, and fruits of intensive plantations in Hainan Province[J]. Environmental Science, 2021, 42(10): 4916-4924. (in Chinese with English abstract) | |
[17] | 国家卫生健康委. 中国居民营养与慢性病状况报告: 2020年[M]. 北京: 人民卫生出版社, 2021. |
[18] | ZHANG Y H, XIE S B, WANG X T, et al. Concentrations and bioconcentration factors of leaf microelements in response to environmental gradients in drylands of China[J]. Frontiers in Plant Science, 2023, 1143442. |
[19] | 李晓东. 经济海藻裙带菜品种培育和养殖相关问题的研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2021. |
LI X D. Study on breeding and cultivation of economic seaweed Undaria pinnatifida[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2021. (in Chinese with English abstract) | |
[20] | 国家环境保护局, 国家海洋局.海水水质标准: GB 3097—1997[S]. 北京: 中国标准出版社, 2004. |
[21] | 张娟, 王明君, 郭掌珍. 朔州东部农田土壤-农作物重金属富集及健康风险评价[J]. 环境化学, 2024, 43(4): 1315-1329. |
ZHANG J, WANG M J, GUO Z Z. Evaluation of heavy metal enrichment and health risks in agricultural soils-crops in eastern Shuozhou, Shanxi Province, China[J]. Environmental Chemistry, 2024, 43(4): 1315-1329. (in Chinese with English abstract) | |
[22] | ALAM A, SINGH A. Groundwater quality assessment using SPSS based on multivariate statistics and water quality index of Gaya, Bihar (India)[J]. Environmental Monitoring and Assessment, 2023, 195(6): 687. |
[23] | 朱姚镓, 刘宇璇, 汪恒玮, 等. 羊栖菜不同部位微量元素含量测定及健康风险评价[J]. 应用海洋学学报, 2022, 41(3): 423-431. |
ZHU Y J, LIU Y X, WANG H W, et al. Concentration and health risk assessment of trace elements in different tissues of Sargassum fusiforme[J]. Journal of Applied Oceanography, 2022, 41(3): 423-431. (in Chinese with English abstract) | |
[24] | 张洋. 裙带菜孢子叶组分及其生物活性研究[J]. 广州化工, 2024, 52(1): 60-63. |
ZHANG Y. Study on components and biological activity from sporophyll of Undaria pinnatifida[J]. Guangzhou Chemical Industry, 2024, 52(1): 60-63. (in Chinese with English abstract) | |
[25] | SONG L, NIU Y Z, CHEN R, et al. A comparative analysis of the Anti-Tumor activity of sixteen polysaccharide fractions from three large brown seaweed, Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida[J]. Marine Drugs , 2024, 22(7): 316. |
[26] | SINGH A L, SINGH S, CHAUDHARI V, et al. Zinc-sulphate and Zn-EDTA enhances Zn and other nutrients and yield and quality of table-purpose peanut cultivars[J]. Communications in Soil Science and Plant Analysis, 2023, 54(13): 1806-1815. |
[27] | 冉茂霞, 吴迪, 史永富, 等. 砷在水生生物中的生物累积、转化及在其他生物体内的代谢毒理学研究进展[J]. 环境化学, 2024, 43(4): 1069-1084. |
RAN M X, WU D, SHI Y F, et al. Research progress on arsenic’s bioaccumulation and biotransformation in aquatic organisms, and its metabolism and toxicology in other organisms[J]. Environmental Chemistry, 2024, 43(4): 1069-1084. (in Chinese with English abstract) | |
[28] | 王蕊, 陈楠, 张二喜. 龙岩市不同利用类型土壤及农作物Pb、 Cd和As污染风险与贡献分析[J]. 环境科学, 2023, 44(4): 2252-2264. |
WANG R, CHEN N, ZHANG E X. Pollution risk and contribution analysis of Pb, Cd, and as in soils and crops under different land use types in Longyan City[J]. Environmental Science, 2023, 44(4): 2252-2264. (in Chinese with English abstract) | |
[29] | AL-HOMAIDAN A A, AL-GHANAYEM A A, AL-QAHTANI H S, et al. Effect of sampling time on the heavy metal concentrations of brown algae: a bioindicator study on the Arabian Gulf coast[J]. Chemosphere, 2021, 263: 127998. |
[1] | 王芸, 俞朝, 沈泓, 曹米娜, 周其耀, 胡智鹏, 金崇伟, 冯英. 硅锌叶面肥对芹菜镉积累和营养品质的影响[J]. 浙江农业学报, 2025, 37(1): 61-66. |
[2] | 朱仁超, 原樱其, 杨宇, 杨琦玥, 余爱华. 公路沿线农田重金属污染研究[J]. 浙江农业学报, 2024, 36(8): 1887-1897. |
[3] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
[4] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
[5] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
[6] | 孙玖明, 张大乐, 宋纪斌, 赵守强, 李晓彤, 李中阳, 宋伟平, 刘源. 低积累作物品种筛选技术在保障重金属污染农田安全生产中的研究进展与应用[J]. 浙江农业学报, 2024, 36(12): 2895-2908. |
[7] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
[8] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
[9] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[10] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[11] | 伍少福, 倪元君, 詹丽钏, 彭璐, 吴英杰. 不同土壤调理剂对镉汞复合污染稻田安全生产和稻米铁锌含量的影响[J]. 浙江农业学报, 2023, 35(2): 417-424. |
[12] | 王建兵, 王金涛, 颜可昕, 郭小兰, 王盾, 戴洪文. 豆瓣菜在镉铅复合污染条件下的镉铅积累特性[J]. 浙江农业学报, 2023, 35(11): 2664-2672. |
[13] | 王晨, 张敏, 王振旗, 钱晓雍, 徐昶, 倪远之, 李金文, 沈根祥. 长期施用猪粪稻田的重金属迁移规律与累积风险[J]. 浙江农业学报, 2022, 34(9): 1985-1994. |
[14] | 孙丽萍, 白琳琳, 干雅婷, 陈雪雲, 王柳, 张宜明, 何开雨, 徐霞红. 基于DNA G-四链体的农兽药残留与重金属离子快速检测研究进展[J]. 浙江农业学报, 2021, 33(9): 1770-1778. |
[15] | 熊廷浩, 黄益国, 周旋, 鲁艳红, 资涛, 胡宇倩, 宋海星. 湖南省油菜主产区土壤养分含量与重金属污染风险评价[J]. 浙江农业学报, 2021, 33(10): 1904-1912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||