浙江农业学报 ›› 2024, Vol. 36 ›› Issue (12): 2895-2908.DOI: 10.3969/j.issn.1004-1524.20231370
• 综述 • 上一篇
孙玖明1,2(), 张大乐2, 宋纪斌1, 赵守强1, 李晓彤1, 李中阳1, 宋伟平3, 刘源1,*(
)
收稿日期:
2023-12-05
出版日期:
2024-12-25
发布日期:
2024-12-27
作者简介:
孙玖明(1999—),男,山东齐河人,硕士研究生,主要从事分子作物遗传育种研究。E-mail:sunjiuming8933@163.com
通讯作者:
*刘源,E-mail:liuyuanfiri88@163.com
基金资助:
SUN Jiuming1,2(), ZHANG Dale2, SONG Jibin1, ZHAO Shouqiang1, LI Xiaotong1, LI Zhongyang1, SONG Weiping3, LIU Yuan1,*(
)
Received:
2023-12-05
Online:
2024-12-25
Published:
2024-12-27
摘要:
低积累作物品种在重金属污染农田中的种植是农业安全生产的热点话题。在我国耕地面积有限的情况下,筛选低积累作物品种并在中轻度重金属污染农田上进行种植是保持连续生产能力的重要措施。重金属低积累品种的筛选技术主要有传统筛选技术、分子遗传学技术,以及基于大数据和人工智能的技术等。传统的品种筛选方法虽然简单易行,但对于重金属低积累能力的评估较为主观,可靠性欠佳;分子遗传学技术在品种筛选应用中已取得了一定的进展,但仍需要进一步完善和优化;大数据和人工智能技术的结合为品种筛选提供了强大的工具,可以快速、准确地分析和挖掘大规模的基因组和表型数据,从而预测和选择具有重金属低积累相关基因的品种。在总结低积累作物品种筛选技术研究进展和应用现状的基础上,针对目前筛选技术不完善且还存在挑战和限制等现状,探讨了其可行性、可持续性,以及未来的研究方向和发展趋势,以期为推动低积累作物品种的大规模应用提供参考。
中图分类号:
孙玖明, 张大乐, 宋纪斌, 赵守强, 李晓彤, 李中阳, 宋伟平, 刘源. 低积累作物品种筛选技术在保障重金属污染农田安全生产中的研究进展与应用[J]. 浙江农业学报, 2024, 36(12): 2895-2908.
SUN Jiuming, ZHANG Dale, SONG Jibin, ZHAO Shouqiang, LI Xiaotong, LI Zhongyang, SONG Weiping, LIU Yuan. Research progress and application of low accumulation crop variety screening technology in ensuring safe production on heavy metal contaminated farmland[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2895-2908.
作物 Species | 筛选方法 Screening methods | 品种数量 Varieties count | 重金属及其浓度 Heavy metals and concentrations | 污染类型 Pollution type | 低积累品种 Low accumulating varieties | 参考文献 References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
玉米 Maize (Zea mays) | 田间试验 Field experiment | 5 | Hg(0.061~0.250 mg·kg-1)、As(7.341~ 11.59 mg·kg-1)、Pb(18.71~26.90 mg· kg-1)、Cu(17.63~35.10 mg·kg-1) | 自然污染 Natural pollution | 川单418 Chuandan418 | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb(200 mg·L-1)、Zn(300 mg·L-1)、 Cd(15 mg·L-1) | 人为添加 Artificial addition | 西单7号、新石玉8号 Xidan No. 7,Xinshiyu No. 8 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(4.57±0.65)mg·kg-1]、As[(31.53± 1.15)mg·kg-1]、Pb[(41.91±1.15)mg· kg-1]、Cr[(135.93±9.87)mg·kg-1] | 自然污染 Natural pollution | QJN1、HNY21 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(1.85±0.05)mg·kg-1]、 As[(118.71±1.68)mg·kg-1]、 Pb[(12.88±1.40)mg·kg-1] | 自然污染 Natural pollution | Yayu69(Cd、Pb)、Jinyi418(As、Cd)、 Shengnongyu10(Pb) | [ | |||||||||||
田间试验 Field experiment | 19 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Yudan19、Zhengda999、Xianyu508 | [ | |||||||||||
田间试验 Field experiment | 20 | Cd(1.3 mg·kg-1) | 自然污染 Natural pollution | 五谷3861、会玉336、诚信5号 Wugu3861, Huiyu336, Chengxin No. 5 | [ | |||||||||||
田间试验 Field experiment | 22 | Cd(0.96 mg·kg-1)、 Pb(600.05 mg·kg-1) | 自然污染 Natural pollution | 先玉335、大丰30 Xianyu335, Dafeng30 | [ | |||||||||||
田间试验 Field experiment | 14 | As(25 mg·kg-1)、Cr(250 mg·kg-1)、 Cu(100 mg·kg-1)、Zn(300 mg·kg-1) | 自然污染 Natural pollution | 彩甜糯3号 Caitiannuo No. 3 | [ | |||||||||||
田间试验 Field experiment | 9 | Cd(0.36 mg·kg-1)、Pb(0.36 mg·kg-1) | 自然污染 Natural pollution | 秀青74-9、冀农1号、先玉335、肃玉1号、 伟科702 Xiuqing74-9, Jinong No. 1, Xianyu335, Suyu No. 1, Weike702 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(0.48 mg·kg-1)、 Cr(54.99 mg·kg-1)、 Pb(90.70 mg·kg-1) | 自然污染 Natural pollution | 金甜顺666 Jintianshun666 | [ | |||||||||||
小麦Wheat (Triticum aestivum) | 水培试验 Hydroponic experiment | 13 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | 中麦629、92R137 Zhongmai629, 92R137 | [ | ||||||||||
水培试验 Hydroponic experiment | 8 | Cd(0、30、60、90 μmol·L-1) | 人为添加 Artificial addition | 豫农25、豫麦25 Yunong25, Yumai25 | [ | |||||||||||
田间试验 Field experiment | 20 | Pb(173 mg·kg-1) | 自然污染 Natural pollution | 花培8号、周麦20 Huapei No. 8, Zhoumai20 | [ | |||||||||||
田间试验 Field experiment | 150 | Cr(26 mg·kg-1) | 人为添加 Artificial addition | Kohsar-95、Meiraj-08、Millet-011、 C-217、NARC-011 | [ | |||||||||||
水培试验 Hydroponic experiment | 30 | Cd(1 mg·L-1)、Pb(15 mg·L-1) | 人为添加 Artificial addition | LF-13、LF-16、LF-21、LF-13、LF-23、 LF-26、LF-27 | [ | |||||||||||
田间试验 Field experiment | 72 | Cd[(0.322±0.020)mg·kg-1、 (0.421±0.026)mg·kg-1、 (0.215±0.058)mg·kg-1] | 自然污染 Natural pollution | Taishan-24、Tanmai-98、Jimai-22 | [ | |||||||||||
田间试验 Field experiment | 8 | Cd[(1.12±0.24)mg·kg-1] | 自然污染 Natural pollution | Puxing5 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(1.69~2.35 mg·kg-1)、 Pb(142.63~210.23 mg·kg-1) | 自然污染 Natural pollution | AY 58 | [ | |||||||||||
田间试验 Field experiment | 18 | Cd(19.57 mg·kg-1) | 自然污染 Natural pollution | 西农979、郑麦129 Xinong979, Zhengmai129 | [ | |||||||||||
水稻Rice (Oryza sativa) | 盆栽试验 Pot experiment | 20 | Pb(25.5 mg·kg-1)、Cd(3.8 mg·kg-1) | 人为添加 Artificial addition | Y11(Pb)、Y16(Cd) | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb、Cd | 自然污染 Natural pollution | 沈稻529号 Shendao No. 529 | [ | |||||||||||
盆栽试验 Pot experiment | 49 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Milyang 23 | [ | |||||||||||
田间试验 Field experiment | 138 | Cr(4.61~6.45 mg·kg-1) Pb(28.28~48.84 mg·kg-1) Cd(1.09~5.21 mg·kg-1) | 自然污染 Natural pollution | Xiushui 113(Cr)、Xiushui 09(Cr)、 Mingzhu 1(Cr)、Jia 02-5(Pb)、Jia C1(Pb)、 Dan K15(Pb)、Chunjiang 026(Cd)、 Chunjiang 11(Cd)、Hu 97-98(Cd) | [ | |||||||||||
田间试验 Field experiment | 26 | Cd(1.55 mg·kg-1) | 自然污染 Natural pollution | Huajingxian 74 | [ | |||||||||||
田间试验 Field experiment | 51 | As(12~154 mg·kg-1) Cd(2.09~12.38 mg·kg-1) | 自然污染 Natural pollution | HY638、HY86、TY816(As), DL203、GNZ(Cd) | [ | |||||||||||
田间试验 Field experiment | 12 | Cd(8.90 μmol·L-1) | 自然污染 Natural pollution | ZD14 | [ | |||||||||||
田间试验 Field experiment | 32 | Cd(1.0 mg·kg-1)、Pb(500 mg·kg-1) | 自然污染 Natural pollution | Wufengyou 2168、Tianyou 196、 Guinongzhan | [ | |||||||||||
田间试验 Field experiment | 17 | Cd(0.54~0.36 mg·kg-1) | 自然污染 Natural pollution | Gangyou 22、Jinyou 527、Fuyou 838 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd(0.63 mg·kg-1)、 As(11.1 mg·kg-1) | 自然污染 Natural pollution | 广泰优粤禾丝苗 Guangtaiyouyuehesimiao | [ | |||||||||||
油菜 Oilseed rape (Brassica | 田间试验 Field experiment | 28 | Cd[(0.78±0.15)mg·kg-1]、 Pb[(330±5)mg·kg-1] | 自然污染 Natural pollution | Zheyou51(Cd),Zhongshuang11、 Zheyou51(Pb) | [ | ||||||||||
campestris) | 水培试验 Hydroponic experiment | 2 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | ZD622 | [ | ||||||||||
水培试验 Hydroponic experiment | 4 | Cr(400μmol·L-1) | 人为添加 Artificial addition | ZS758 | [ | |||||||||||
番茄 Tomato (Solanum lycopersicum) | 盆栽试验 Pot experiment | 29 | Cd(2.28 mg·kg-1) | 人为添加 Artificial addition | 台湾黄圣女、黄金一点红、台湾珍珠、 新402、元明黄娇子、台湾红圣女 Taiwanhuangshengnyu, Huangjinyidianhong, Taiwanzhenzhu, Xin402, Yuanminghuang- jiaozi, Taiwanhongshengnyu | [ | ||||||||||
马铃薯Potato (Solanum tuberosum) | 盆栽试验 Pot experiment | 6 | Cd(1.246 mg·kg-1) | 人为添加 Artificial addition | 威芋7号(WY 7) Weiyu No. 7 (WY7) | [ | ||||||||||
花生Peanut (Arachis hypogaea) | 盆栽试验 Pot experiment | 9 | Cd(1、5、10 mg·L-1) | 人为添加 Artificial addition | 潍花八号 Weihua No. 8 | [ |
表1 基于传统筛选方法得到的低积累作物品种汇总
Table 1 Summary of low accumulation crop varieties acquired by traditional screening methods
作物 Species | 筛选方法 Screening methods | 品种数量 Varieties count | 重金属及其浓度 Heavy metals and concentrations | 污染类型 Pollution type | 低积累品种 Low accumulating varieties | 参考文献 References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
玉米 Maize (Zea mays) | 田间试验 Field experiment | 5 | Hg(0.061~0.250 mg·kg-1)、As(7.341~ 11.59 mg·kg-1)、Pb(18.71~26.90 mg· kg-1)、Cu(17.63~35.10 mg·kg-1) | 自然污染 Natural pollution | 川单418 Chuandan418 | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb(200 mg·L-1)、Zn(300 mg·L-1)、 Cd(15 mg·L-1) | 人为添加 Artificial addition | 西单7号、新石玉8号 Xidan No. 7,Xinshiyu No. 8 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(4.57±0.65)mg·kg-1]、As[(31.53± 1.15)mg·kg-1]、Pb[(41.91±1.15)mg· kg-1]、Cr[(135.93±9.87)mg·kg-1] | 自然污染 Natural pollution | QJN1、HNY21 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd[(1.85±0.05)mg·kg-1]、 As[(118.71±1.68)mg·kg-1]、 Pb[(12.88±1.40)mg·kg-1] | 自然污染 Natural pollution | Yayu69(Cd、Pb)、Jinyi418(As、Cd)、 Shengnongyu10(Pb) | [ | |||||||||||
田间试验 Field experiment | 19 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Yudan19、Zhengda999、Xianyu508 | [ | |||||||||||
田间试验 Field experiment | 20 | Cd(1.3 mg·kg-1) | 自然污染 Natural pollution | 五谷3861、会玉336、诚信5号 Wugu3861, Huiyu336, Chengxin No. 5 | [ | |||||||||||
田间试验 Field experiment | 22 | Cd(0.96 mg·kg-1)、 Pb(600.05 mg·kg-1) | 自然污染 Natural pollution | 先玉335、大丰30 Xianyu335, Dafeng30 | [ | |||||||||||
田间试验 Field experiment | 14 | As(25 mg·kg-1)、Cr(250 mg·kg-1)、 Cu(100 mg·kg-1)、Zn(300 mg·kg-1) | 自然污染 Natural pollution | 彩甜糯3号 Caitiannuo No. 3 | [ | |||||||||||
田间试验 Field experiment | 9 | Cd(0.36 mg·kg-1)、Pb(0.36 mg·kg-1) | 自然污染 Natural pollution | 秀青74-9、冀农1号、先玉335、肃玉1号、 伟科702 Xiuqing74-9, Jinong No. 1, Xianyu335, Suyu No. 1, Weike702 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(0.48 mg·kg-1)、 Cr(54.99 mg·kg-1)、 Pb(90.70 mg·kg-1) | 自然污染 Natural pollution | 金甜顺666 Jintianshun666 | [ | |||||||||||
小麦Wheat (Triticum aestivum) | 水培试验 Hydroponic experiment | 13 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | 中麦629、92R137 Zhongmai629, 92R137 | [ | ||||||||||
水培试验 Hydroponic experiment | 8 | Cd(0、30、60、90 μmol·L-1) | 人为添加 Artificial addition | 豫农25、豫麦25 Yunong25, Yumai25 | [ | |||||||||||
田间试验 Field experiment | 20 | Pb(173 mg·kg-1) | 自然污染 Natural pollution | 花培8号、周麦20 Huapei No. 8, Zhoumai20 | [ | |||||||||||
田间试验 Field experiment | 150 | Cr(26 mg·kg-1) | 人为添加 Artificial addition | Kohsar-95、Meiraj-08、Millet-011、 C-217、NARC-011 | [ | |||||||||||
水培试验 Hydroponic experiment | 30 | Cd(1 mg·L-1)、Pb(15 mg·L-1) | 人为添加 Artificial addition | LF-13、LF-16、LF-21、LF-13、LF-23、 LF-26、LF-27 | [ | |||||||||||
田间试验 Field experiment | 72 | Cd[(0.322±0.020)mg·kg-1、 (0.421±0.026)mg·kg-1、 (0.215±0.058)mg·kg-1] | 自然污染 Natural pollution | Taishan-24、Tanmai-98、Jimai-22 | [ | |||||||||||
田间试验 Field experiment | 8 | Cd[(1.12±0.24)mg·kg-1] | 自然污染 Natural pollution | Puxing5 | [ | |||||||||||
田间试验 Field experiment | 16 | Cd(1.69~2.35 mg·kg-1)、 Pb(142.63~210.23 mg·kg-1) | 自然污染 Natural pollution | AY 58 | [ | |||||||||||
田间试验 Field experiment | 18 | Cd(19.57 mg·kg-1) | 自然污染 Natural pollution | 西农979、郑麦129 Xinong979, Zhengmai129 | [ | |||||||||||
水稻Rice (Oryza sativa) | 盆栽试验 Pot experiment | 20 | Pb(25.5 mg·kg-1)、Cd(3.8 mg·kg-1) | 人为添加 Artificial addition | Y11(Pb)、Y16(Cd) | [ | ||||||||||
盆栽试验 Pot experiment | 20 | Pb、Cd | 自然污染 Natural pollution | 沈稻529号 Shendao No. 529 | [ | |||||||||||
盆栽试验 Pot experiment | 49 | Cd(1.64 mg·kg-1) | 自然污染 Natural pollution | Milyang 23 | [ | |||||||||||
田间试验 Field experiment | 138 | Cr(4.61~6.45 mg·kg-1) Pb(28.28~48.84 mg·kg-1) Cd(1.09~5.21 mg·kg-1) | 自然污染 Natural pollution | Xiushui 113(Cr)、Xiushui 09(Cr)、 Mingzhu 1(Cr)、Jia 02-5(Pb)、Jia C1(Pb)、 Dan K15(Pb)、Chunjiang 026(Cd)、 Chunjiang 11(Cd)、Hu 97-98(Cd) | [ | |||||||||||
田间试验 Field experiment | 26 | Cd(1.55 mg·kg-1) | 自然污染 Natural pollution | Huajingxian 74 | [ | |||||||||||
田间试验 Field experiment | 51 | As(12~154 mg·kg-1) Cd(2.09~12.38 mg·kg-1) | 自然污染 Natural pollution | HY638、HY86、TY816(As), DL203、GNZ(Cd) | [ | |||||||||||
田间试验 Field experiment | 12 | Cd(8.90 μmol·L-1) | 自然污染 Natural pollution | ZD14 | [ | |||||||||||
田间试验 Field experiment | 32 | Cd(1.0 mg·kg-1)、Pb(500 mg·kg-1) | 自然污染 Natural pollution | Wufengyou 2168、Tianyou 196、 Guinongzhan | [ | |||||||||||
田间试验 Field experiment | 17 | Cd(0.54~0.36 mg·kg-1) | 自然污染 Natural pollution | Gangyou 22、Jinyou 527、Fuyou 838 | [ | |||||||||||
田间试验 Field experiment | 11 | Cd(0.63 mg·kg-1)、 As(11.1 mg·kg-1) | 自然污染 Natural pollution | 广泰优粤禾丝苗 Guangtaiyouyuehesimiao | [ | |||||||||||
油菜 Oilseed rape (Brassica | 田间试验 Field experiment | 28 | Cd[(0.78±0.15)mg·kg-1]、 Pb[(330±5)mg·kg-1] | 自然污染 Natural pollution | Zheyou51(Cd),Zhongshuang11、 Zheyou51(Pb) | [ | ||||||||||
campestris) | 水培试验 Hydroponic experiment | 2 | Cd(100 μmol·L-1) | 人为添加 Artificial addition | ZD622 | [ | ||||||||||
水培试验 Hydroponic experiment | 4 | Cr(400μmol·L-1) | 人为添加 Artificial addition | ZS758 | [ | |||||||||||
番茄 Tomato (Solanum lycopersicum) | 盆栽试验 Pot experiment | 29 | Cd(2.28 mg·kg-1) | 人为添加 Artificial addition | 台湾黄圣女、黄金一点红、台湾珍珠、 新402、元明黄娇子、台湾红圣女 Taiwanhuangshengnyu, Huangjinyidianhong, Taiwanzhenzhu, Xin402, Yuanminghuang- jiaozi, Taiwanhongshengnyu | [ | ||||||||||
马铃薯Potato (Solanum tuberosum) | 盆栽试验 Pot experiment | 6 | Cd(1.246 mg·kg-1) | 人为添加 Artificial addition | 威芋7号(WY 7) Weiyu No. 7 (WY7) | [ | ||||||||||
花生Peanut (Arachis hypogaea) | 盆栽试验 Pot experiment | 9 | Cd(1、5、10 mg·L-1) | 人为添加 Artificial addition | 潍花八号 Weihua No. 8 | [ |
作物 Species | 筛选方法 Screening methods | 重金属及其浓度 Heavy metals and concentration | 低积累品种 Low metal accumulating varieties | 参考文献 References |
---|---|---|---|---|
水稻 Oryza sativa L. | 转基因育种 Transgenic breeding | Cd:2.01 mg·kg-1 | Xidao1(nramp5 × 7) | [ |
转基因育种 Transgenic breeding | Cd:0.39、0.5、1.40 mg·kg-1 | HZ-6-4-6 | [ | |
突变育种 Mutation breeding | Cd:0.35、1.5、2.6、4.5 mg·kg-1 | Lcd1 | [ | |
突变育种 Mutation breeding | Cd:0.36 mg·L-1 | Lcd-kmt1、Lcd-kmt2 | [ | |
转基因育种 Transgenic breeding | As:30、60.5 mg·kg-1 | PvACR3(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:10.43 mg·kg-1 | CdPCS(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:(2.8±0.5) mg·kg-1 | ScYCF1、OsABCC1 (转基因品系Transgenic lines) | [ |
表2 基于分子遗传学技术得到的低积累作物品种汇总
Table 2 Summary of low accumulation crop varieties acquired by molecular genetics technology
作物 Species | 筛选方法 Screening methods | 重金属及其浓度 Heavy metals and concentration | 低积累品种 Low metal accumulating varieties | 参考文献 References |
---|---|---|---|---|
水稻 Oryza sativa L. | 转基因育种 Transgenic breeding | Cd:2.01 mg·kg-1 | Xidao1(nramp5 × 7) | [ |
转基因育种 Transgenic breeding | Cd:0.39、0.5、1.40 mg·kg-1 | HZ-6-4-6 | [ | |
突变育种 Mutation breeding | Cd:0.35、1.5、2.6、4.5 mg·kg-1 | Lcd1 | [ | |
突变育种 Mutation breeding | Cd:0.36 mg·L-1 | Lcd-kmt1、Lcd-kmt2 | [ | |
转基因育种 Transgenic breeding | As:30、60.5 mg·kg-1 | PvACR3(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:10.43 mg·kg-1 | CdPCS(转基因品系Transgenic line) | [ | |
转基因育种 Transgenic breeding | As:(2.8±0.5) mg·kg-1 | ScYCF1、OsABCC1 (转基因品系Transgenic lines) | [ |
[1] | MOHAMMAD ALI M, HOSSAIN D, AL-IMRAN, et al. Environmental pollution with heavy metals:a public health concern[M]// Heavy metals: their environmental impacts and mitigationv, 2021. |
[2] | WANG H, ZHANG H, XU R K. Heavy metal pollution characteristics and health evaluation of farmland soil in a gold mine slag area of Luoyang in China[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(5):213-221. |
[3] | ZHANG G X, SHAO L Z, LI F L, et al. Bioaccessibility and health risk assessment of Pb and Cd in urban dust in Hangzhou, China[J]. Environmental Science and Pollution Research International, 2020, 27(11):11760-11771. |
[4] | JIANG R, WANG M E, CHEN W P, et al. Ecological risk of combined pollution on soil ecosystem functions: insight from the functional sensitivity and stability[J]. Environmental Pollution, 2019, 255:113184. |
[5] | ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759. |
[6] | ULLAH S, LIU Q L, WANG S Y, et al. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils[J]. Science of the Total Environment, 2023, 899:165726. |
[7] | AHMAD Z, KHAN S M, PAGE S E, et al. Environmental sustainability and resilience in a polluted ecosystem via phytoremediation of heavy metals and plant physiological adaptations[J]. Journal of Cleaner Production, 2023, 385:135733. |
[8] | LIU Z, LI Z, CHEN S G, et al. Enhanced phytoremediation of petroleum-contaminated soil by biochar and urea[J]. Journal of Hazardous Materials, 2023, 453:131404. |
[9] | 龚雪刚, 张云芝, 孙伟, 等. 北京地区农用地土壤重金属污染与健康风险评价[J]. 有色金属(冶炼部分), 2023(8):112-119. |
GONG X G, ZHANG Y Z, SUN W, et al. Heavy metal pollution and health risk assessment of agricultural land soil in Beijing Area[J]. Nonferrous Metals(Extractive Metallurgy), 2023(8):112-119. (in Chinese with English abstract) | |
[10] | XU J, LI Y Y, WANG S L, et al. Sources, transfers and the fate of heavy metals in soil-wheat systems: the case of lead (Pb)/zinc (Zn) smelting region[J]. Journal of Hazardous Materials, 2023, 441:129863. |
[11] | 米雅竹, 梁家妮, 周俊, 等. 典型冶炼厂大气沉降区农田耕层土壤重金属(Cd、Cu、Pb)输入输出平衡研究[J]. 土壤学报, 2024, 61(5): 1339-1348. |
MI Y Z, LIANG J N, ZHOU J, et al. Input and output balance of heavy metals (Cd, Cu, Pb) in arable soils in atmospheric deposition area of typical smelter[J]. Acta Pedologica Sinica, 2024, 61(5): 1339-1348. (in Chinese with English abstract) | |
[12] | ZHENG F, GUO X, TANG M Y, et al. Variation in pollution status, sources, and risks of soil heavy metals in regions with different levels of urbanization[J]. Science of the Total Environment, 2023, 866:161355. |
[13] | CHEN X H, LEI M, ZHANG S W, et al. Apportionment and spatial pattern analysis of soil heavy metal pollution sources related to industries of concern in a county in southwestern China[J]. International Journal of Environmental Research and Public Health, 2022, 19(12):7421. |
[14] | ACHKIR A, AOURAGH A, EL MAHI M, et al. Implication of sewage sludge increased application rates on soil fertility and heavy metals contamination risk[J]. Emerging Contaminants, 2023, 9(1):100200. |
[15] | NACCARATO A, VOMMARO M L, AMICO D, et al. Triazine herbicide and NPK fertilizer exposure:accumulation of heavy metals and rare earth elements, effects on cuticle melanization, and immunocompetence in the model species Tenebrio molitor[J]. Toxics, 2023, 11(6):499. |
[16] | SUN S X, SIDHU V, RONG Y H, et al. Pesticide pollution in agricultural soils and sustainable remediation methods:a review[J]. Current Pollution Reports, 2018, 4(3):240-250. |
[17] | LU D T, ZHANG C L, ZHOU Z R, et al. Pollution characteristics and source identification of farmland soils in Pb-Zn mining areas through an integrated approach[J]. Environmental Geochemistry and Health, 2023, 45(5):2533-2547. |
[18] | LUX A, MARTINKA M, VACULÍK M, et al. Root responses to cadmium in the rhizosphere:a review[J]. Journal of Experimental Botany, 2011, 62(1):21-37. |
[19] | QIAO D M, LU H F, ZHANG X X. Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere[J]. Environmental Pollution, 2020, 267:115452. |
[20] | ZHANG D Z, LIU J J, ZHANG Y B, et al. Morphophysiological, proteomic and metabolomic analyses reveal cadmium tolerance mechanism in common wheat (Triticum aestivum L.)[J]. Journal of Hazardous Materials, 2023, 445:130499. |
[21] | SHEORAN V, SHEORAN A S, POONIA P. Factors affecting phytoextraction:a review[J]. Pedosphere, 2016, 26(2):148-166. |
[22] | ARJUN J, HARIKRISHNAN K. Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome[J]. Biotechnology Bioinformatics Bioengineering, 2011, 1(3):361-367. |
[23] | SONG W Y, PARK J, MENDOZA-CÓZATL D G, et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2010, 107(49):21187-21192. |
[24] | YANG G Z, FU S, HUANG J J, et al. The tonoplast-localized transporter OsABCC9 is involved in cadmium tolerance and accumulation in rice[J]. Plant Science, 2021, 307:110894. |
[25] | WOLFE N, HOEHAMER C. Enzymes used by plants and microorganisms to detoxify organic compounds[M]// MCCUTCHEON S C, SCHNOOR J L. Phytoremediation:transformation and control of contaminants, Hoboken, New Jersey: John Wiley & Sons, Inc, 2004. |
[26] | LI R, WU H, DING J, et al. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil[J]. Plant Cell Reports, 2020, 39(10):1369-1380. |
[27] | LANDE R, THOMPSON R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics, 1990, 124(3):743-756. |
[28] | MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4):1819-1829. |
[29] | WANG W Y S, BARRATT B J, CLAYTON D G, et al. Genome-wide association studies:theoretical and practical concerns[J]. Nature Reviews Genetics, 2005, 6(2):109-118. |
[30] | RISCH N, MERIKANGAS K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281):1516-1517. |
[31] | FAN B, DU Z Q, GORBACH D M, et al. Development and application of high-density SNP arrays in genomic studies of domestic animals[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(7):833-847. |
[32] | 蒋蓓蓓. 玉米和水稻产量及品质性状的关联分析研究[D]. 杭州: 浙江大学, 2015. |
JIANG B B. Association studies on yield and quality traits of maize and rice[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[33] | PAN X W, LI Y C, LIU W Q, et al. QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study[J]. Scientific Reports, 2020, 10(1):11791. |
[34] | ZHAO J L, YANG W, ZHANG S H, et al. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection[J]. Rice, 2018, 11(1):61. |
[35] | ERDOČAN İ, CEVHER-KESKIN B, BILIR Ö, et al. Recent developments in CRISPR/Cas9 genome-editing technology related to plant disease resistance and abiotic stress tolerance[J]. Biology, 2023, 12(7):1037. |
[36] | BHATIA S, POOJA, YADAV S K. CRISPR-Cas for genome editing: classification, mechanism, designing and applications[J]. International Journal of Biological Macromolecules, 2023, 238:124054. |
[37] | SHAN Q W, BALTES N J, ATKINS P, et al. ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis:a disconnect between somatic and germinal cells[J]. Journal of Genetics and Genomics, 2018, 45(12):681-684. |
[38] | BECKER S, BOCH J. TALE and TALEN genome editing technologies[J]. Gene and Genome Editing, 2021, 2:100007. |
[39] | TANG L, MAO B G, LI Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1):14438. |
[40] | 郭文雅, 王海, 王亚杰, 等. 木薯MeWRKY12基因的CRISPR/Cas9基因编辑载体的构建及验证[J]. 分子植物育种, 2022, 20(5):1554-1559. |
GUO W Y, WANG H, WANG Y J, et al. Construction and verification of CRISPR/Cas9 gene editing vector for cassava MeWRKY12 gene[J]. Molecular Plant Breeding, 2022, 20(5):1554-1559. (in Chinese with English abstract) | |
[41] | MOCHIDA K, SHINOZAKI K. Advances in omics and bioinformatics tools for systems analyses of plant functions[J]. Plant & Cell Physiology, 2011, 52(12):2017-2038. |
[42] | GEHLENBORG N, O’DONOGHUE S I, BALIGA N S, et al. Visualization of omics data for systems biology[J]. Nature Methods, 2010, 7(3 Suppl):S56-S68. |
[43] | ZHOU X, SUN J, TIAN Y, et al. A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves[J]. Chemometrics and Intelligent Laboratory Systems, 2020, 200:103996. |
[44] | 卢增祥, 李衍达. 交互支持向量机学习算法及其应用[J]. 清华大学学报(自然科学版), 1999, 39(7):93-97. |
LU Z X, LI Y D. Interactive support vector machine learning algorithm and its application[J]. Journal of Tsinghua University(Science and Technology), 1999, 39(7):93-97. (in Chinese with English abstract) | |
[45] | RAY S, LAMA A, MISHRA P, et al. An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique Image 1[J]. Applied Soft Computing, 2023, 149:110939. |
[46] | WILBERFORCE T, ALASWAD A, GARCIA - PEREZ A, et al. Remaining useful life prediction for proton exchange membrane fuel cells using combined convolutional neural network and recurrent neural network[J]. International Journal of Hydrogen Energy, 2023, 48(1):291-303. |
[47] | NAGARAJU M, CHAWLA P. Systematic review of deep learning techniques in plant disease detection[J]. International Journal of System Assurance Engineering and Management, 2020, 11(3):547-560. |
[48] | MIRANI A A, MEMON M S, CHOHAN R, et al. Machine learning in agriculture:a review[J]. International Journal of Scientific & Technology Research, 2021, 10(5):229-234. |
[49] | YANG G J, LIU J G, ZHAO C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping:current status and perspectives[J]. Frontiers in Plant Science, 2017, 8:1111. |
[50] | RASKIN I, ENSLEY B D. Phytoremediation of toxic metals:using plants to clean up the environment[M]. [S.l.]:Wiley-Interscience, 1999. |
[51] | 段德超, 于明革, 施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1):287-296. |
DUAN D C, YU M G, SHI J Y. Research advances in uptake, translocation, accumulation and detoxification of Pb in plants[J]. Chinese Journal of Applied Ecology, 2014, 25(1):287-296. (in Chinese with English abstract) | |
[52] | 伍钧, 吴传星, 孟晓霞, 等. 重金属低积累玉米品种的稳定性和环境适应性分析[J]. 农业环境科学学报, 2011, 30(11):2160-2167. |
WU J, WU C X, MENG X X, et al. The analysis of stability and adaptability on low accumulation of heavy metals in various cultivars of Zea mays[J]. Journal of Agro-Environment Science, 2011, 30(11):2160-2167. (in Chinese with English abstract) | |
[53] | 邓洪, 刘惠见, 牛婧, 等. 玉米重金属低累积品种的筛选与研究[C]// 中国土壤学会土壤环境专业委员会第二十次会议暨农田土壤污染与修复研讨会摘要集. 合肥: 中国土壤学会, 2018:34. |
[54] | ZHA Y, ZHAO L, NIU T X, et al. Multi-target element-based screening of maize varieties with low accumulation of heavy metals (HMs) and metalloids:uptake, transport, and health risks[J]. Agriculture, 2023, 13(6):1123. |
[55] | YANG N K, WANG H B, WANG H J, et al. Screening maize (Zea mays L.) varieties with low accumulation of cadmium, arsenic, and lead in edible parts but high accumulation in other parts:a field plot experiment[J]. Environmental Science and Pollution Research, 2021, 28(25):33583-33598. |
[56] | WANG A Y, WANG M Y, LIAO Q, et al. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil:implication of maize cultivar selection for minimal risk to human health and for phytoremediation[J]. Environmental Science and Pollution Research, 2016, 23(6):5410-5419. |
[57] | 杨牧青, 和丽萍, 魏恒, 等. 云南某矿区周边重金属镉低积累、高产玉米品种筛选研究[J]. 农业灾害研究, 2023, 13(2):7-9. |
YANG M Q, HE L P, WEI H, et al. Screening of maize varieties with low cadmium accumulation and high yield around a mining area in Yunnan Province[J]. Journal of Agricultural Catastrophology, 2023, 13(2):7-9. (in Chinese with English abstract) | |
[58] | 任彧仲, 任超, 肖建辉, 等. 不同玉米品种Cd、Pb积累特性及先玉335与大丰30对比研究[J]. 江苏农业科学, 2022, 50(24):179-188. |
REN Y Z, REN C, XIAO J H, et al. Accumulation characteristics of Cd and Pb in different maize cultivars and comparison between Xianyu 335 and Dafeng 30[J]. Jiangsu Agricultural Sciences, 2022, 50(24):179-188. (in Chinese with English abstract) | |
[59] | 李贵杰, 田美玲, 阮建文, 等. 粤北矿业活动影响区重金属低积累玉米品种筛选研究[C]// 《环境工程》2019年全国学术年会论文集. 北京: 《环境工程》编辑部, 2019:318-324. |
[60] | 孙洪欣, 赵全利, 薛培英, 等. 不同夏玉米品种对镉、铅积累与转运的差异性田间研究[J]. 生态环境学报, 2015, 24(12):2068-2074. |
SUN H X, ZHAO Q L, XUE P Y, et al. Variety difference of cadmium and lead accumulation and translocation in summer maize[J]. Ecology and Environmental Sciences, 2015, 24(12):2068-2074. (in Chinese with English abstract) | |
[61] | 李智鸣, 李艳, 曹巧莹, 等. 电子废弃物拆解区重金属低积累玉米品种筛选[J]. 成都大学学报(自然科学版), 2022, 41(1):11-18. |
LI Z M, LI Y, CAO Q Y, et al. Selection for low heavy metals accumulation cultivars of Zea mays in E-waste disassembling contaminated areas[J]. Journal of Chengdu University(Natural Science Edition), 2022, 41(1):11-18. (in Chinese with English abstract) | |
[62] | 张欣, 王华忠, 王利, 等. 不同品种小麦幼苗耐镉差异[J]. 江苏农业科学, 2018, 46(7):61-65. |
ZHANG X, WANG H Z, WANG L, et al. Differences of cadmium tolerance of different wheat cultivars during seedling stage[J]. Jiangsu Agricultural Sciences, 2018, 46(7):61-65. (in Chinese with English abstract) | |
[63] | 李友军, 朱志勇. 不同小麦基因型耐镉性差异研究[C]// 2011年生物医学与工程国际学术会议论文集. 香港: 国际工业电子中心, 2011:7. |
[64] | 杨素勤, 程海宽, 张彪, 等. 不同品种小麦Pb积累差异性研究[J]. 生态与农村环境学报, 2014, 30(5):646-651. |
YANG S Q, CHENG H K, ZHANG B, et al. Differences in Pb accumulation between wheat varieties[J]. Journal of Ecology and Rural Environment, 2014, 30(5):646-651. (in Chinese with English abstract) | |
[65] | ALMAS F, HASSAN A, BIBI A, et al. Identification of genome-wide single-nucleotide polymorphisms (SNPs) associated with tolerance to chromium toxicity in spring wheat (Triticum aestivum L.)[J]. Plant and Soil, 2018, 422(1):371-384. |
[66] | LIU W T, LIANG L C, ZHANG X, et al. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars[J]. Environmental Science and Pollution Research International, 2015, 22(11):8432-8441. |
[67] | LIU N, HUANG X M, SUN L M, et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241:125065. |
[68] | ZHANG L G, ZHANG C, DU B Y, et al. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars[J]. Science of the Total Environment, 2020, 725:138358. |
[69] | GUO G H, LEI M, WANG Y W, et al. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment[J]. International Journal of Environmental Research and Public Health, 2018, 15(11):2601. |
[70] | 艾金华, 廖晓勇, 王凌青, 等. 镉胁迫下小麦镉低累积品种筛选[J]. 南昌大学学报(理科版), 2019, 43(2):175-181. |
AI J H, LIAO X Y, WANG L Q, et al. The selection of low cadmium accumulation wheat varieties under cadmium stress[J]. Journal of Nanchang University(Natural Science), 2019, 43(2):175-181. (in Chinese with English abstract) | |
[71] | 冯文强, 涂仕华, 秦鱼生, 等. 水稻不同基因型对铅镉吸收能力差异的研究[J]. 农业环境科学学报, 2008, 27(2):447-451. |
FENG W Q, TU S H, QIN Y S, et al. Uptake capacity of different rice genotypes for lead and cadmium from soil[J]. Journal of Agro-Environment Science, 2008, 27(2):447-451. (in Chinese with English abstract) | |
[72] | 何玉龙, 李军. 不同水稻品种在镉铅胁迫下的吸收积累特性[J]. 资源节约与环保, 2016(7):178. |
HE Y L, LI J. Absorption and accumulation characteristics of different rice varieties under cadmium and lead stress[J]. Resources Economization & Environmental Protection, 2016(7):178. (in Chinese) | |
[73] | RAO T, AE N. Genotypic variations in cadmium levels of rice grain[J]. Soil Science and Plant Nutrition, 2003, 49(4):473-479. |
[74] | ZENG F R, MAO Y, CHENG W D, et al. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice[J]. Environmental Pollution, 2008, 153(2):309-314. |
[75] | SUI F Q, ZHAO D K, ZHU H T, et al. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain[J]. Journal of Experimental Botany, 2019, 70(10):2857-2871. |
[76] | CHI Y H, LI F B, TAM N F Y, et al. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials[J]. Science of the Total Environment, 2018, 643:1314-1324. |
[77] | QI X L, TAM N F Y, LI W C, et al. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics[J]. Environmental Pollution, 2020, 264:114736. |
[78] | LI B, WANG X, QI L X, et al. Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron,zinc,nickel and manganese[J]. Journal of Environmental Sciences, 2012, 24(10):1790-1798. |
[79] | LI B, HE W H, WANG C Q, et al. Selecting for cadmium exclusion or low accumulation rice cultivars in slight-moderate pollution area under field conditions[J]. Polish Journal of Environmental Studies, 2014, 23(4):1347-1353. |
[80] | 刘超超, 罗正良, 文军, 等. 镉、 砷低积累水稻品种筛选及其田间表现评价[J]. 湖南农业科学, 2022(10):8-11. |
LIU C C, LUO Z L, WEN J, et al. Screening of rice varieties with low bioaccumulation of Cd and As and evaluation of their field performance[J]. Hunan Agricultural Sciences, 2022(10):8-11. (in Chinese with English abstract) | |
[81] | CAO X R, WANG X Z, TONG W B, et al. Accumulation and distribution of cadmium and lead in 28 oilseed rape cultivars grown in a contaminated field[J]. Environmental Science and Pollution Research International, 2020, 27(2):2400-2411. |
[82] | MWAMBA T M, ISLAM F, ALI B, et al. Comparative metabolomic responses of low-and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus[J]. Chemosphere, 2020, 250:126308. |
[83] | GILL R A, ZANG L L, ALI B, et al. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L[J]. Chemosphere, 2015, 120:154-164. |
[84] | 谭小琪, 李取生, 何宝燕, 等. 番茄对镉吸收累积的品种差异[J]. 暨南大学学报(自然科学与医学版), 2014, 35(3):215-220. |
TAN X Q, LI Q S, HE B Y, et al. Differences in cadmium absorption and accumulation of tomato (Lycopersicon esculentum) varieties on Cd-polluted soil[J]. Journal of Jinan University(Natural Science & Medicine Edition), 2014, 35(3):215-220. (in Chinese with English abstract) | |
[85] | 夏蔓蔓, 何冠谛, 符东顺, 等. 镉胁迫对不同马铃薯品种形态和生理特性的影响及评价[J]. 种子, 2020, 39(9):41-46. |
XIA M M, HE G D, FU D S, et al. Effects of cadmium stress on morphology and physiology of different potato cultivars and cadmium-tolerant evaluation[J]. Seed, 2020, 39(9):41-46. (in Chinese with English abstract) | |
[86] | 李蕾, 张小乐, 孙世中, 等. 不同花生品种对土壤铅、镉污染的抗性研究[J]. 云南大学学报(自然科学版), 2022, 44(1):179-187. |
LI L, ZHANG X L, SUN S Z, et al. Study on resistance of different peanut varieties to soil lead and cadmium pollution[J]. Journal of Yunnan University(Natural Sciences Edition), 2022, 44(1):179-187. (in Chinese with English abstract) | |
[87] | LIU S M, JIANG J, LIU Y, et al. Characterization and evaluation of OsLCT1 and OsNramp5 mutants generated through CRISPR/Cas9-mediated mutagenesis for breeding low Cd rice[J]. Rice Science, 2019, 26(2):88-97. |
[88] | CAO Z Z, LIN X Y, YANG Y J, et al. Gene identification and transcriptome analysis of low cadmium accumulation rice mutant (lcd1) in response to cadmium stress using MutMap and RNA-seq[J]. BMC Plant Biology, 2019, 19(1):250. |
[89] | ISHIKAWA S, ISHIMARU Y, IGURA M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47):19166-19171. |
[90] | CHEN L M, WU W G, HAN F X, et al. Agronomic management and rice varieties controlling Cd bioaccumulation in rice[J]. International Journal of Environmental Research and Public Health, 2019, 16(13):2376. |
[91] | SHRI M, DAVE R, DIWEDI S, et al. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain[J]. Scientific Reports, 2014, 4:5784. |
[92] | DENG F L, YAMAJI N, MA J F, et al. Engineering rice with lower grain arsenic[J]. Plant Biotechnology Journal, 2018, 16(10):1691-1699. |
[93] | 付忠军. 玉米砷、汞积累连锁定位与全基因组关联分析[D]. 郑州: 河南农业大学, 2015. |
FU Z J. Linkage analysis and genome wide association of arsenic and mercury accumulation in maize[D]. Zhengzhou: Henan Agricultural University, 2015. (in Chinese with English abstract) | |
[94] | 何振艳, 闫慧莉, 骆永明, 等. 基于全基因组选择研究的水稻籽粒镉积累性状预测装置和预警系统:CN202211132783.X[P]. 2023-09-15. |
[95] | 赵鹏飞, 赵国建, 金建猛, 等. 基于无人机影像的小麦早衰品种筛选研究[J]. 种业导刊, 2022(3):14-21. |
ZHAO P F, ZHAO G J, JIN J M, et al. Screening of early aging wheat variety based on unmanned aerial vehicle images[J]. Journal of Seed Industry Guide, 2022(3):14-21. (in Chinese with English abstract) |
[1] | 朱仁超, 原樱其, 杨宇, 杨琦玥, 余爱华. 公路沿线农田重金属污染研究[J]. 浙江农业学报, 2024, 36(8): 1887-1897. |
[2] | 王建升, 沈钰森, 虞慧芳, 盛小光, 宋蒙飞, 顾宏辉. 中国西兰花育种研究进展[J]. 浙江农业学报, 2024, 36(8): 1934-1944. |
[3] | 潘志军, 吴小文, 吴晨阳, 程驭, 陈龙, 张晓红, 张进山, 周兵, 江波, 张文静, 车钊, 宋贺. 皖中不同类型再生稻品种产量与温光资源利用特征分析[J]. 浙江农业学报, 2024, 36(7): 1492-1501. |
[4] | 朱艳宇, 于文涛, 高水练, 吕水源, 王攀, 靳宛旻, 贵文静, 林浥, 叶乃兴. 福建安溪茶树种质资源遗传多样性与铁观音衍生品种遗传关系[J]. 浙江农业学报, 2024, 36(7): 1591-1601. |
[5] | 肖银润, 马吉平, 王赟萍, 王素贞, 钟国祥, 熊小文, 张诚. 三种钝化剂对土壤重金属和羊肚菌子实体重金属含量的影响[J]. 浙江农业学报, 2024, 36(7): 1646-1656. |
[6] | 廖鹏飞, 李琼艳, 罗顺高, 刘敏, 朱红涛, 李继娅, 白红英, 陈海佺, 范永慧, 董占鹏. 家蚕素斑品种菁松的茶斑限性定向转育[J]. 浙江农业学报, 2024, 36(5): 1032-1041. |
[7] | 鲁子正钢, 朱立新, 季宏兵, 汪康. 鞘氨醇单胞菌修复土壤重金属污染研究进展[J]. 浙江农业学报, 2024, 36(5): 1208-1216. |
[8] | 王卓权, 林祯芃, 陈旭东, 钱斌, 翟荣荣, 叶胜海, 叶靖, 巫明明, 朱国富, 张小明. 不同原料糯米品种对绍兴黄酒品质的影响[J]. 浙江农业学报, 2024, 36(4): 773-779. |
[9] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
[10] | 谭宇虹, 周敏, 张华, 张恒, 王伏林, 宋涛, 朱英, 徐恒. 灌浆期高温对稻米品质影响的品种类型间差异[J]. 浙江农业学报, 2024, 36(12): 2657-2665. |
[11] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
[12] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
[13] | 杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8. |
[14] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
[15] | 王迪, 杨汉梅, 李阳倩, 贾梦婷, 邹亮, 杨帆. 苦荞麦“品、质、效、用”的多维评价及其活性成分高值化利用的研究进展[J]. 浙江农业学报, 2023, 35(8): 1960-1974. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||