[1] |
CHENG Y, SIBUSISO L, HOU L F, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice[J]. International Journal of Biological Macromolecules, 2019, 131: 1162-1170.
|
[2] |
WU Q F, WU S Y, CHENG Y, et al. Sargassum fusiforme fucoidan modifies gut microbiota and intestinal metabolites during alleviation of hyperglycemia in type 2 diabetic mice[J]. Food & Function, 2021, 12(8): 3572-3585.
|
[3] |
李生尧, 许曹鲁, 李建榜, 等. 羊栖菜“鹿丰1号”人工选育及养殖中试[J]. 渔业科学进展, 2010, 31(2): 88-94.
|
|
LI S Y, XU C L, LI J B, et al. Selection, artificial breeding and cultivation of Hizikia “Lu Feng No.1”[J]. Progress in Fishery Sciences, 2010, 31(2): 88-94. (in Chinese with English abstract)
|
[4] |
高长颢, 骆其君, 张立宁. 羊栖菜“浙海1号”复水性与膨胀率的初步研究[J]. 宁波大学学报(理工版), 2017, 30(4): 42-46.
|
|
GAO C H, LUO Q J, ZHANG L N. Rehydration rate and the expansibility of two strains of Hizikia fusiforme[J]. Journal of Ningbo University(Natural Science & Engineering Edition), 2017, 30(4): 42-46. (in Chinese with English abstract)
|
[5] |
孙圆圆, 孙庆海, 孙建璋. 温度对羊栖菜生长的影响[J]. 浙江海洋学院学报(自然科学版), 2009, 28(3): 342-347.
|
|
SUN Y Y, SUN Q H, SUN J Z. The effect temperature on the growth of Sargassum fusiforme[J]. Journal of Zhejiang Ocean University(Natural Science), 2009, 28(3): 342-347. (in Chinese with English abstract)
|
[6] |
TIAN S P, ZHENG T T, WU M J, et al. Differences of photosynthesis and nutrient utilization in Sargassum fusiforme and its main epiphyte, Ulva lactuca[J]. Aquaculture Research, 2022, 53(8): 3176-3187.
|
[7] |
林立东, 吴明江. 基于聚类及简化基因组联合分析的浙江洞头栽培羊栖菜(Sargassum fusiforme)品系筛选研究[J]. 海洋与湖沼, 2021, 52(5): 1224-1235.
|
|
LIN L D, WU M J. The diversity of cultivated Sargassum fusiforme strains in Dongtou, Zhejiang Province by the combination of air-bladder phenotype and simplified genome[J]. Oceanologia et Limnologia Sinica, 2021, 52(5): 1224-1235. (in Chinese with English abstract)
|
[8] |
PLATT T, GALLEGOS C, HARRISON W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Journal of Marine Research, 1980, 38(4): 687-701.
|
[9] |
HENLEY W J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes[J]. Journal of Phycology, 1993, 29(6): 729-739.
|
[10] |
SUN H F, WANG H W, YUAN C Y. Optimization of zinc-cadmium reduction method for determination of nitrate in seawater[J]. Advanced Materials Research, 2013, 864/865/866/867: 1004-1007.
|
[11] |
CORZO A, NIELL F X. Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method[J]. Journal of Experimental Marine Biology and Ecology, 1991, 146(2): 181-191.
|
[12] |
CERVILLA L M, BLASCO B, RÍOS J J, et al. Response of nitrogen metabolism to boron toxicity in tomato plants[J]. Plant Biology, 2009, 11(5): 671-677.
|
[13] |
BALESTRASSE K B, GALLEGO S M, TOMARO M L. Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants[J]. Plant and Soil, 2006, 284(1/2): 187-194.
|
[14] |
KOCHERT G. Protein determination by dye binding[M]// HELLEBUSTJ A, CRAIGIEJ S. Handbook of phycological methods:physiological and biochemical methods. Cambridge: Cambridge University Press, 1978: 93.
|
[15] |
ERSHADI A, KARIMI R, MAHDEI K N. Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars[J]. Acta Physiologiae Plantarum, 2015, 38(1): 1-10.
|
[16] |
MAHAWAR L, POPEK R, SHEKHAWAT G S, et al. Exogenous hemin improves Cd2+ tolerance and remediation potential in Vigna radiataby intensifying the HO-1 mediated antioxidant defence system[J]. Scientific Reports, 2021, 11: 2811.
|
[17] |
LI S B, ZHOU L L, ADDO-DANSO S D, et al. Nitrogen supply enhances the physiological resistance of Chinese fir plantlets under polyethylene glycol (PEG)-induced drought stress[J]. Scientific Reports, 2020, 10(1): 7509.
|
[18] |
HASANUZZAMAN M, HOSSAIN M A, FUJITA M. Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings[J]. Plant Biotechnology Reports, 2011, 5(4): 353-365.
|
[19] |
XU L L, LUO L, ZUO X J, et al. Effects of temperature and irradiance on the regeneration of juveniles from the holdfasts of Sargassum fusiforme, a commercial seaweed[J]. Aquaculture, 2022, 557: 738317.
|
[20] |
MATHUR S, AGRAWAL D, JAJOO A. Photosynthesis: response to high temperature stress[J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116-126.
|
[21] |
YANG X Q, ZHANG Q S, ZHANG D, et al. Interaction of high seawater temperature and light intensity on photosynthetic electron transport of eelgrass (Zostera marina L.)[J]. Plant Physiology and Biochemistry, 2018, 132: 453-464.
|
[22] |
HURD C L, HARRISON P J, BISCHOF K, et al. Seaweed ecology and physiology[M]. Cambridge: Cambridge University Press, 2014
|
[23] |
LALEGERIE F, GAGER L, STIGER-POUVREAU V, et al. The stressful life of red and brown seaweeds on the temperate intertidal zone: effect of abiotic and biotic parameters on the physiology of macroalgae and content variability of particular metabolites[J]. Advances in Botanical Research, 2020, 95: 247-287.
|
[24] |
HANCKE K, GLUD R N. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities[J]. Aquatic Microbial Ecology, 2004, 37: 265-281.
|
[25] |
TAIT L W, SCHIEL D R. Impacts of temperature on primary productivity and respiration in naturally structured macroalgal assemblages[J]. PLoS One, 2013, 8(9): e74413.
|
[26] |
CHEN B B, ZOU D H, DU H, et al. Carbon and nitrogen accumulation in the economic seaweed Gracilaria lemaneiformis affected by ocean acidification and increasing temperature[J]. Aquaculture, 2018, 482: 176-182.
|
[27] |
CHEN B B, XIA J, ZOU D, et al. Responses to ocean acidification and diurnal temperature variation in a commercially farmed seaweed, Pyropia haitanensis(Rhodophyta)[J]. European Journal of Phycology, 2019, 54(2): 184-192.
|
[28] |
KUMAR Y N, POONG S W, GACHON C, et al. Impact of elevated temperature on the physiological and biochemical responses of Kappaphycus alvarezii(Rhodophyta)[J]. PLoS One, 2020, 15(9): e0239097.
|
[29] |
VASCONCELOS J B, VASCONCELOS E R T P P, URREA-VICTORIA V, et al. Environmental stress tolerance and antioxidant response of Palisadaperforata(Rhodophyta) from a tropical reef[J]. Journal of Phycology, 2021, 57(3): 1045-1058.
|
[30] |
WANG W L, LIN Y H, TENG F, et al. Comparative transcriptome analysis between heat-tolerant and sensitive Pyropia haitanensis strains in response to high temperature stress[J]. Algal Research, 2018, 29: 104-112.
|
[31] |
LIU G Y, DU Q J, LI J M. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings[J]. Scientia Horticulturae, 2017, 214: 41-50.
|
[32] |
SANJESH T, ANURADHA P, MOHAN P S. Phytohormone up-regulates the biochemical constituent, exopolysaccharide and nitrogen metabolism in paddy-field cyanobacteria exposed to chromium stress[J]. BMC Microbiology, 2020, 20(1): 206.
|
[33] |
HAMMER K J, BORUM J, HASLER-SHEETAL H, et al. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina[J]. Marine Ecology Progress Series, 2018, 604: 121-132.
|