浙江农业学报 ›› 2023, Vol. 35 ›› Issue (9): 2097-2108.DOI: 10.3969/j.issn.1004-1524.20221258
高晓萍(), 张婧, 牛天航, 刘阳, 常有麟, 刘思恬, 颉建明(
)
收稿日期:
2022-08-29
出版日期:
2023-09-25
发布日期:
2023-10-09
作者简介:
高晓萍(1996—),女,甘肃武威人,硕士研究生,主要从事设施蔬菜栽培与生理研究。E-mail:1523558378@qq.com
通讯作者:
颉建明,E-mail:基金资助:
GAO Xiaoping(), ZHANG Jing, NIU Tianhang, LIU Yang, CHANG Youlin, LIU Sitian, XIE Jianming(
)
Received:
2022-08-29
Online:
2023-09-25
Published:
2023-10-09
摘要:
为探究外源甜菜碱对茄子高温胁迫伤害的缓解作用,以茄子品种新娘为材料,幼苗四叶一心时叶面喷施0(CK)、20(T1)、40(T2)和60 mmol·L-1(T3)甜菜碱,连续喷施3 d。在气候箱40 ℃高温胁迫48 h后,测定幼苗生物量积累、光合特性、卡尔文循环关键酶与抗氧化酶活性的变化。结果表明:喷施不同浓度的甜菜碱均可不同程度缓解高温胁迫下茄子幼苗的生长,其中以40 mmol·L-1处理缓解的效果最为明显。与CK相比,T2处理幼苗株高、鲜重、根长、根表面积、根体积与根尖数均显著(P<0.05)提高,分别提高32.97%、34.17%、19.47%、16.55%、32.20%和25.29%;T2处理显著提高了叶绿素a、叶绿素b和总叶绿素含量;同时,显著提高叶片净光合速率(Pn)、气孔导度(Gs)与蒸腾速率(Tr),分别提高51.26%、40.24%和49.86%,并显著提高果糖1,6二磷酸酶(FBPase)、果糖1,6二磷酸醛缩酶(FBA)、3-磷酸甘油醛脱氢酶(GAPDH)与转酮醇酶(TK)等卡尔文循环相关酶活性,以及光系统Ⅱ的实际光化学效率。T2处理显著提高了叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性和脯氨酸(Pro)含量,分别提高35.62%、109.65%、72.99%和58.13%,显著降低了丙二醛(MDA)含量。40 mmol·L-1的甜菜碱能够减轻高温胁迫下茄子幼苗叶片叶绿素的降解,维持光合碳循环酶活性,促进光合作用,提高叶片抗氧化能力,减轻细胞膜伤害,进而促进高温胁迫下茄子幼苗的生长。
中图分类号:
高晓萍, 张婧, 牛天航, 刘阳, 常有麟, 刘思恬, 颉建明. 甜菜碱对高温胁迫下茄子幼苗生理特性的影响[J]. 浙江农业学报, 2023, 35(9): 2097-2108.
GAO Xiaoping, ZHANG Jing, NIU Tianhang, LIU Yang, CHANG Youlin, LIU Sitian, XIE Jianming. Effect of glycine betaine on physiological characteristics of eggplant seedlings under high temperature stress[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2097-2108.
图1 高温胁迫下不同浓度甜菜碱处理的茄子幼苗表型 CK、T1、T2、T3处理的甜菜碱浓度分别为0、20、40、60 mmol·L-1。下同。
Fig.1 Phenotype of eggplant seedlings treated with different concentrations of glycine betaine under high temperature stress The glycine betaine concentrations of CK, T1, T2 and T3 were 0, 20, 40 and 60 mmol·L-1, respectively. The same as below.
处理 Treatment | 株高 Plant height/cm | 全株鲜重 Plant fresh weight/g | 全株干重 Plant dry weight/g | 地上部鲜重 Shoot fresh weight/g | 地上部干重 Shoot dry weight/g |
---|---|---|---|---|---|
CK | 9.10±0.12 c | 4.80±0.23 c | 0.81±0.01 c | 4.64±0.07 b | 0.71±0.01 b |
T1 | 10.10±0.17 b | 5.39±0.13 b | 0.83±0.01 bc | 4.89±0.12 b | 0.73±0.01 b |
T2 | 12.10±0.12 a | 6.44±0.18 a | 0.90±0.01 a | 5.74±0.24 a | 0.82±0.02 a |
T3 | 12.07±0.09 a | 6.04±0.04 a | 0.88±0.03 ab | 5.59±0.07 a | 0.81±0.01 a |
表1 高温胁迫下甜菜碱对茄子幼苗生长的影响
Table 1 Effects of glycine betaine on growth of eggplant seedlings under high temperature stress
处理 Treatment | 株高 Plant height/cm | 全株鲜重 Plant fresh weight/g | 全株干重 Plant dry weight/g | 地上部鲜重 Shoot fresh weight/g | 地上部干重 Shoot dry weight/g |
---|---|---|---|---|---|
CK | 9.10±0.12 c | 4.80±0.23 c | 0.81±0.01 c | 4.64±0.07 b | 0.71±0.01 b |
T1 | 10.10±0.17 b | 5.39±0.13 b | 0.83±0.01 bc | 4.89±0.12 b | 0.73±0.01 b |
T2 | 12.10±0.12 a | 6.44±0.18 a | 0.90±0.01 a | 5.74±0.24 a | 0.82±0.02 a |
T3 | 12.07±0.09 a | 6.04±0.04 a | 0.88±0.03 ab | 5.59±0.07 a | 0.81±0.01 a |
图2 高温胁迫下不同浓度甜菜碱处理的茄子幼苗根系形态
Fig.2 Root morphology of eggplant seedlings treated with different concentrations of glycine betaine under high temperature stress
处理 Treatment | 根长 Root length/cm | 根表面积 Surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Root tip |
---|---|---|---|---|
CK | 985.28±6.68 c | 150.90±3.79 b | 1.77±0.04 c | 2 214.67±101.18 c |
T1 | 1 048.91±22.61 b | 159.57±4.26 ab | 2.09±0.13 ab | 2 375.67±100.22 bc |
T2 | 1 177.07±25.88 a | 175.88±6.99 a | 2.34±0.04 a | 2 774.67±78.77 a |
T3 | 1 016.42±7.69 bc | 164.43±5.12 ab | 1.85±0.11 bc | 2 544.67±46.19 ab |
表2 甜菜碱对高温胁迫下茄子幼苗根系的影响
Table 2 Effect of glycine betaine on root of eggplant seedlings under high temperature stress
处理 Treatment | 根长 Root length/cm | 根表面积 Surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Root tip |
---|---|---|---|---|
CK | 985.28±6.68 c | 150.90±3.79 b | 1.77±0.04 c | 2 214.67±101.18 c |
T1 | 1 048.91±22.61 b | 159.57±4.26 ab | 2.09±0.13 ab | 2 375.67±100.22 bc |
T2 | 1 177.07±25.88 a | 175.88±6.99 a | 2.34±0.04 a | 2 774.67±78.77 a |
T3 | 1 016.42±7.69 bc | 164.43±5.12 ab | 1.85±0.11 bc | 2 544.67±46.19 ab |
处理 Treatment | 叶绿素a含量 Chlorophyll a content/(mg·g-1) | 叶绿素b含量 Chlorophyll b content/(mg·g-1) | 总叶绿素含量 Total chlorophyll content/(mg·g-1) | 叶绿素a/叶绿素b Chla/Chlb |
---|---|---|---|---|
CK | 1.90±0.04 c | 0.75±0.03 b | 2.65±0.04 c | 2.54±0.13 b |
T1 | 2.22±0.06 b | 0.74±0.03 b | 2.96±0.03 b | 3.03±0.21 a |
T2 | 2.57±0.04 a | 0.84±0.02 a | 3.41±0.02 a | 3.07±0.11 a |
T3 | 2.17±0.04 b | 0.81±0.01 b | 2.98±0.05 b | 2.68±0.05 ab |
表3 高温胁迫下不同浓度甜菜碱处理的茄子幼苗光合色素含量
Table 3 Photosynthetic pigment content of eggplant seedlings treated with different concentrations of glycine betaine under high temperature stress
处理 Treatment | 叶绿素a含量 Chlorophyll a content/(mg·g-1) | 叶绿素b含量 Chlorophyll b content/(mg·g-1) | 总叶绿素含量 Total chlorophyll content/(mg·g-1) | 叶绿素a/叶绿素b Chla/Chlb |
---|---|---|---|---|
CK | 1.90±0.04 c | 0.75±0.03 b | 2.65±0.04 c | 2.54±0.13 b |
T1 | 2.22±0.06 b | 0.74±0.03 b | 2.96±0.03 b | 3.03±0.21 a |
T2 | 2.57±0.04 a | 0.84±0.02 a | 3.41±0.02 a | 3.07±0.11 a |
T3 | 2.17±0.04 b | 0.81±0.01 b | 2.98±0.05 b | 2.68±0.05 ab |
处理 Treatment | 净光合速率 Pn/(μmol·m-2·s-1) | 气孔导度 Gs/(mmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 胞间CO2浓度 Ci/(μmol·mol-1) |
---|---|---|---|---|
CK | 5.93±0.30 c | 244.33±4.98 d | 3.47±0.09 d | 403.67±7.84 a |
T1 | 6.33±0.42 c | 306.67±2.85 c | 4.30±0.12 c | 385.33±2.33 b |
T2 | 8.97±0.35 a | 342.67±4.98 a | 5.20±0.06 a | 344.33±5.04 c |
T3 | 7.77±0.24 b | 325.67±2.03 b | 4.83±0.09 b | 390.67±3.28 ab |
表4 高温胁迫下不同浓度甜菜碱处理的茄子幼苗光合特性
Table 4 Photosynthesis of eggplant seedlings treated with different concentrations of glycine betaine under high temperature stress
处理 Treatment | 净光合速率 Pn/(μmol·m-2·s-1) | 气孔导度 Gs/(mmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 胞间CO2浓度 Ci/(μmol·mol-1) |
---|---|---|---|---|
CK | 5.93±0.30 c | 244.33±4.98 d | 3.47±0.09 d | 403.67±7.84 a |
T1 | 6.33±0.42 c | 306.67±2.85 c | 4.30±0.12 c | 385.33±2.33 b |
T2 | 8.97±0.35 a | 342.67±4.98 a | 5.20±0.06 a | 344.33±5.04 c |
T3 | 7.77±0.24 b | 325.67±2.03 b | 4.83±0.09 b | 390.67±3.28 ab |
图3 高温胁迫下甜菜碱处理的茄子幼苗光合作用关键酶活性 不同处理间没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.3 Key enzyme activity of photosynthesis in eggplant seedlings treated with glycine betaine under high temperature stress The bars of different treatments without the same lowercase letters indicated significant difference (P<0.05). The same as below.
图5 高温胁迫下甜菜碱处理的茄子幼苗叶片Fv/Fm的荧光成像
Fig.5 Fluorescence imaging of Fv/Fm in leaves of eggplant seedlings treated with glycine betaine under high temperature stress
处理 Treatment | 最大光化学效率 Fv/Fm | 实际光化学效率 ΦPSⅡ | 光化学猝灭系数 qP | 非光化学猝灭系数 NPQ |
---|---|---|---|---|
CK | 0.683±0.003 c | 0.531±0.013 c | 0.839±0.010 c | 0.178±0.003 a |
T1 | 0.756±0.004 b | 0.554±0.009 bc | 0.878±0.013 b | 0.166±0.004 ab |
T2 | 0.797±0.003 a | 0.601±0.006 a | 0.899±0.011 ab | 0.150±0.004 c |
T3 | 0.744±0.004 b | 0.567±0.009 b | 0.916±0.006 a | 0.156±0.004 bc |
表5 高温胁迫下不同浓度甜菜碱处理的茄子幼苗叶绿素荧光参数
Table 5 Chlorophyll fluorescence parameters of eggplant seedlings treated with different concentrations of glycine betaine under high temperature stress
处理 Treatment | 最大光化学效率 Fv/Fm | 实际光化学效率 ΦPSⅡ | 光化学猝灭系数 qP | 非光化学猝灭系数 NPQ |
---|---|---|---|---|
CK | 0.683±0.003 c | 0.531±0.013 c | 0.839±0.010 c | 0.178±0.003 a |
T1 | 0.756±0.004 b | 0.554±0.009 bc | 0.878±0.013 b | 0.166±0.004 ab |
T2 | 0.797±0.003 a | 0.601±0.006 a | 0.899±0.011 ab | 0.150±0.004 c |
T3 | 0.744±0.004 b | 0.567±0.009 b | 0.916±0.006 a | 0.156±0.004 bc |
图7 高温胁迫下甜菜碱对茄子MDA含量、脯氨酸含量和超氧阴离子的影响 A,丙二醛含量;B,脯氨酸含量;C,茄子叶片组织化学染色结果。
Fig.7 Effects of glycine betaine on MDA content, proline content and superoxide anion in eggplant under high temperature stress A, Results of malondialdehyde (MDA) content; B, Results of proline content; C, Results of histochemical staining of eggplant leaves.
[1] | 吴雪霞, 王勇, 姜俊, 等. 外源NO对高温胁迫下茄子幼苗生长和抗氧化系统的影响[J]. 分子植物育种, 2021, 19(13): 4456-4465. |
WU X X, WANG Y, JIANG J, et al. Effect of exogenous NO on the plant growth and antioxidant system of eggplant seedlings under high temperature stress[J]. Molecular Plant Breeding, 2021, 19(13): 4456-4465. (in Chinese with English abstract) | |
[2] | 薛娟, 颉建明, 肖雪梅, 等. 不同缓释肥对茄子生长、产量及品质的影响[J]. 浙江农业学报, 2015, 27(4): 579-584. |
XUE J, XIE J M, XIAO X M, et al. Effects of different slow-release fertilizers on growth, yield and quality of eggplants[J]. Acta Agriculturae Zhejiangensis, 2015, 27(4): 579-584. (in Chinese with English abstract) | |
[3] | 李威, 肖熙鸥, 吕玲玲. 高温胁迫下茄子耐热性表现及耐热指标的筛选[J]. 热带作物学报, 2015, 36(6): 1142-1146. |
LI W, XIAO X O, LÜ L L. Morphological response to heat stress and screening of assessment indexes for heat tolerance in eggplant[J]. Chinese Journal of Tropical Crops, 2015, 36(6): 1142-1146. (in Chinese with English abstract) | |
[4] | 吴雪霞, 查丁石, 朱宗文, 等. 外源24-表油菜素内酯对高温胁迫下茄子幼苗生长和抗氧化系统的影响[J]. 植物生理学报, 2013, 49(9): 929-934. |
WU X X, ZHA D S, ZHU Z W, et al. Effects of exogenous 24-epibrassinolide on plant growth and antioxidant system in eggplant seedlings under high temperature stress[J]. Plant Physiology Journal, 2013, 49(9): 929-934. (in Chinese with English abstract) | |
[5] | 吴雪霞, 张圣美, 张爱冬, 等. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响[J]. 植物生理学报, 2019, 55(1): 49-60. |
WU X X, ZHANG S M, ZHANG A D, et al. Effect of exogenous melatonin on photosynthetic and physiological characteristics of eggplant seedlings under high temperature stress[J]. Plant Physiology Journal, 2019, 55(1): 49-60. (in Chinese with English abstract) | |
[6] | YILDIRIM E, EKINCI M, TURAN M, et al. Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.)[J]. Archives of Agronomy and Soil Science, 2015, 61(12): 1673-1689. |
[7] | ALLAKHVERDIEV S I, HAYASHI H, NISHIYAMA Y, et al. Glycine betaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation[J]. Journal of Plant Physiology, 2003, 160(1): 41-49. |
[8] | HE C M, ZHANG W W, GAO Q, et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings[J]. Euphytica, 2011, 177(2): 151-167. |
[9] | CASTRO-DUQUE N E, CHÁVEZ-ARIAS C C, RESTREPO-DÍAZ H. Foliar glycine betaine or hydrogen peroxide sprays ameliorate waterlogging stress in cape gooseberry[J]. Plants, 2020, 9(5): 644. |
[10] | MALEKZADEH P. Influence of exogenous application of glycine betaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.)[J]. Physiology and Molecular Biology of Plants, 2015, 21(2): 225-232. |
[11] | 孟凤, 郁松林, 郑强卿, 等. 甜菜碱与植物抗逆性关系之研究进展[J]. 中国农学通报, 2008, 24(4): 225-228. |
MENG F, YU S L, ZHENG Q Q, et al. Research progress on relationships between glycine betaine and plant stress resistance[J]. Chinese Agricultural Science Bulletin, 2008, 24(4): 225-228. (in Chinese with English abstract) | |
[12] | ALLAKHVERDIEV S I, LOS D A, MOHANTY P, et al. Glycine betaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition[J]. Biochimica et Biophysica Acta(BBA): Bioenergetics, 2007, 1767(12): 1363-1371. |
[13] | KATHURIA H, GIRI J, NATARAJA K N, et al. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes[J]. Plant Biotechnology Journal, 2009, 7(6): 512-526. |
[14] | 呼彧, 刘建辉, 王平, 等. 外源甜菜碱对高温胁迫下菜豆幼苗的生理效应[J]. 北方园艺, 2009(8): 5-8. |
HU Y, LIU J H, WANG P, et al. Physiological effects of glycine betaine under high temperature stress of kidney bean seedlings[J]. Northern Horticulture, 2009(8): 5-8. (in Chinese with English abstract) | |
[15] | 孟凤, 郁松林, 郑强卿, 等. 外源甜菜碱对葡萄幼苗抗高温胁迫能力的影响[J]. 果树学报, 2008, 25(4): 581-584. |
MENG F, YU S L, ZHENG Q Q, et al. Effects of exogenous glycine betaine on the heat resistance of young grape plants[J]. Journal of Fruit Science, 2008, 25(4): 581-584. (in Chinese with English abstract) | |
[16] | SORWONG A, SAKHONWASEE S. Foliar application of glycine betaine mitigates the effect of heat stress in three marigold (Tagetes erecta) cultivars[J]. The Horticulture Journal, 2015, 84(2): 161-171. |
[17] | LI S F, LI F, WANG J W, et al. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings[J]. Plant, Cell & Environment, 2011, 34(11): 1931-1943. |
[18] | WAHID A, SHABBIR A. Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine[J]. Plant Growth Regulation, 2005, 46(2): 133-141. |
[19] | ZHANG T P, LI Z M, LI D X, et al. Comparative effects of glycinebetaine on the thermotolerance in codA-and BADH-transgenic tomato plants under high temperature stress[J]. Plant Cell Reports, 2020, 39(11): 1525-1538. |
[20] | ISLAM S, AHMAD PARREY Z, SHAH S H, et al. Glycine betaine mediated changes in growth, photosynthetic efficiency, antioxidant system, yield and quality of mustard[J]. Scientia Horticulturae, 2021, 285: 110170. |
[21] | MIN Z, LI R Y, CHEN L, et al. Alleviation of drought stress in grapevine by foliar-applied strigolactones[J]. Plant Physiology and Biochemistry, 2019, 135: 99-110. |
[22] | 李静. 低温弱光下辣椒叶片中类胡萝卜素组分的变化及其与品种耐性的关系研究[D]. 兰州: 甘肃农业大学, 2018. |
LI J. Changes of carotenoid components in pepper leaves under low temperature and weak light and their relationship with variety tolerance[D]. Lanzhou: Gansu Agricultural University, 2018. (in Chinese with English abstract) | |
[23] | 胡琳莉. 铵硝营养缓解小型大白菜幼苗弱光胁迫的生理和分子机制[D]. 兰州: 甘肃农业大学, 2016. |
HU L L. Physiological and molecular mechanism of ammonium nitrate nutrition alleviating weak light stress in small Chinese cabbage seedlings[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese with English abstract) | |
[24] | 陈刚, 李胜. 植物生理学实验[M]. 北京: 高等教育出版社, 2016. |
[25] | 夏凌君. 干旱胁迫对油菜种子萌发期及苗期生理影响及抗氧化酶基因表达分析[D]. 扬州: 扬州大学, 2016. |
XIA L J. Physiological effects of drought stress on rapeseed germination and seedling stage and analysis of antioxidant enzyme gene expression[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract) | |
[26] | 杜锦华, 樊德苗, 冯晓东. 氯化钙对高温胁迫下茄子幼苗生理特性的影响[J]. 分子植物育种, 2021, 19(16): 5503-5511. |
DU J H, FAN D M, FENG X D. Effect of CaCl2 on the physiological characteristics of eggplant seedlings under high temperature stress[J]. Molecular Plant Breeding, 2021, 19(16): 5503-5511. (in Chinese with English abstract) | |
[27] | TISARUM R, THEERAWITAYA C, SAMPHUMPHUNG T, et al. Exogenous foliar application of glycine betaine to alleviate water deficit tolerance in two indica rice genotypes under greenhouse conditions[J]. Agronomy, 2019, 9(3): 138. |
[28] | ZULFIQAR F, ASHRAF M, SIDDIQUE K H M. Role of glycine betaine in the thermotolerance of plants[J]. Agronomy, 2022, 12(2): 276. |
[29] | 马玉峰, 周忠雄, 李雨桐, 等. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
MA Y F, ZHOU Z X, LI Y T, et al. Effects of nitrogen level and form on root morphology of mini Chinese cabbage and its physiological index[J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389. (in Chinese with English abstract) | |
[30] | WANG C, LV J A, COULTER J A, et al. Slow-release fertilizer improves the growth, quality, and nutrient utilization of wintering Chinese chives (Allium tuberosum Rottler ex Spreng.)[J]. Agronomy, 2020, 10(3): 381. |
[31] | 赵新西, 马千全, 杨兴洪, 等. 根施甜菜碱对干旱胁迫下小麦幼苗类囊体膜组分和功能的影响[J]. 植物生理与分子生物学学报, 2005, 31(2): 135-142. |
ZHAO X X, MA Q Q, YANG X H, et al. Effects of root-applied glycinebetaine on the composition and function of wheat thylakoid membrane under drought stress[J]. Acta Photophysiologica Sinica, 2005, 31(2): 135-142. (in Chinese with English abstract) | |
[32] | 王继玥, 陈俊峰, 卯丹, 等. 干旱胁迫对黄秋葵幼苗生长以及叶片光合特性的影响[J]. 热带农业科学, 2017, 37(5): 5-9. |
WANG J Y, CHEN J F, MAO D, et al. Effect of drought stress on seedling growth and leaf photosynthetic traits of okra[J]. Chinese Journal of Tropical Agriculture, 2017, 37(5): 5-9. (in Chinese with English abstract) | |
[33] | 郝召君, 周春华, 刘定, 等. 高温胁迫对芍药光合作用、叶绿素荧光特性及超微结构的影响[J]. 分子植物育种, 2017, 15(6): 2359-2367. |
HAO Z J, ZHOU C H, LIU D, et al. Effects of high temperature stress on photosynthesi, chlorophyll fluorescence and ultrastructure of herbaceous peony (Paeonia lactiflora Pall.)[J]. Molecular Plant Breeding, 2017, 15(6): 2359-2367. (in Chinese with English abstract) | |
[34] | MÄKELÄ P, KÄRKKÄINEN J, SOMERSALO S. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity[J]. Biologia Plantarum, 2000, 43(3): 471-475. |
[35] | 余雪娜, 李婧娴, 谢永东, 等. 外源褪黑素对高温胁迫下茄子幼苗光合及抗氧化特性的影响[J]. 湖南农业大学学报(自然科学版), 2016, 42(5): 496-499. |
YU X N, LI J X, XIE Y D, et al. Effects of exogenous melatonin on photosynthesis and antioxidant activity of eggplant seedlings under high temperature stress[J]. Journal of Hunan Agricultural University(Natural Sciences), 2016, 42(5): 496-499. (in Chinese with English abstract) | |
[36] | ZHANG X, PU P, TANG Y, et al. C4 photosynthetic enzymes play a key role in wheat spike bracts primary carbon metabolism response under water deficit[J]. Plant Physiology and Biochemistry, 2019, 142: 163-172. |
[37] | 赵艳, 陈丽梅, 李昆志. C4光合作用关键酶PEPC的反应机制[J]. 安徽农业科学, 2006, 34(23): 6113-6114. |
ZHAO Y, CHEN L M, LI K Z. Molecular catalytic mechanism of major enzyme-phosphoenolpyruvate carboxylase in C4 photosynthesis[J]. Journal of Anhui Agricultural Sciences, 2006, 34(23): 6113-6114. (in Chinese with English abstract) | |
[38] | MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: a practical guide[J]. Journal of Experimental Botany, 2000, 51(345): 659-668. |
[39] | 卞凤娥, 孙永江, 牛彦杰, 等. 高温胁迫下根施褪黑素对葡萄叶片叶绿素荧光特性的影响[J]. 植物生理学报, 2017, 53(2): 257-263. |
BIAN F E, SUN Y J, NIU Y J, et al. Effect of root-applied melatonin on photosystem Ⅱ in grape leaves under heat stress[J]. Plant Physiology Journal, 2017, 53(2): 257-263. (in Chinese with English abstract) | |
[40] | LI D X, WANG M W, ZHANG T P, et al. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants[J]. Photosynthesis Research, 2021, 147(3): 301-315. |
[41] | SULEMAN P, REDHA A, AFZAL M, et al. Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius(Engl.)[J]. Acta Physiologiae Plantarum, 2013, 35(4): 1223-1231. |
[42] | TONHATI R, MELLO S C, MOMESSO P, et al. L-proline alleviates heat stress of tomato plants grown under protected environment[J]. Scientia Horticulturae, 2020, 268: 109370. |
[43] | RASHEED R, IQBAL M, ASHRAF M A, et al. Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato[J]. The Journal of Horticultural Science and Biotechnology, 2018, 93(4): 385-391. |
[44] | GUPTA N, THIND S K, BAINS N S. Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat[J]. Plant Growth Regulation, 2014, 72(3): 221-228. |
[45] | 柴文臣, 阎世江. 甜菜碱对干旱胁迫下茄子幼苗生长及生理指标的影响[J]. 中国瓜菜, 2021, 34(8): 78-83. |
CHAI W C, YAN S J. Effect of betaine on the growth and physiological indexes of eggplant seedlings under drought stress[J]. China Cucurbits and Vegetables, 2021, 34(8): 78-83. (in Chinese with English abstract) | |
[46] | 刘术均, 刘爱群, 何明. 外源甜菜碱对低温胁迫下茄子幼苗抗性的影响[J]. 北方园艺, 2018(22): 57-61. |
LIU S J, LIU A Q, HE M. Effect of exogenous glycine betaine on eggplant seedling resistance under low temperature stress[J]. Northern Horticulture, 2018(22): 57-61. (in Chinese with English abstract) |
[1] | 许耀照, 曾秀存, 王振朝, 党仕卓, 刘永晶. NaCl胁迫对冬油菜种子萌发和生理特性的影响[J]. 浙江农业学报, 2023, 35(3): 499-508. |
[2] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[3] | 尤翠翠, 贺一哲, 徐鹏, 黄亚茹, 王辉, 何海兵, 柯健, 武立权. 高温胁迫对水稻生长发育的伤害效应及其防御对策[J]. 浙江农业学报, 2023, 35(1): 10-22. |
[4] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[5] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
[6] | 段媛媛, 刘晓洪, 吴佳奇, 郭晓亮, 王帆帆, 唐涛, 游景茂, 郭杰. 厚朴凋落叶分解对湖北贝母生长与生理特性的影响[J]. 浙江农业学报, 2022, 34(11): 2358-2367. |
[7] | 赵国富, 严亚琴, 汪精磊, 魏庆镇, 包崇来. 茄子脂氧合酶家族基因全基因组鉴定与表达分析[J]. 浙江农业学报, 2021, 33(6): 1025-1034. |
[8] | 吴燕, 乔晓燕, 葛伟强, 高青海. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429. |
[9] | 庞强强, 周曼, 孙晓东, 张文, 蔡兴来. 菜心耐热性评价及酶促抗氧化系统对高温胁迫的响应[J]. 浙江农业学报, 2020, 32(1): 72-79. |
[10] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[11] | 李戌清, 张敬泽, 张雅, 吴根良. 浙江省绍兴市茄子黄萎病菌菌株致病型鉴定及其生物学特性研究[J]. 浙江农业学报, 2019, 31(5): 784-789. |
[12] | 丁小雪, 汪炳良, 海睿, 胡雨晴, 米月华, 叶红霞. 不同来源托鲁巴姆种子的发芽特性研究[J]. 浙江农业学报, 2019, 31(3): 420-427. |
[13] | 魏庆镇, 王五宏, 胡天华, 胡海娇, 汪精磊, 包崇来. 浙茄类型茄子品种DNA指纹图谱构建[J]. 浙江农业学报, 2019, 31(11): 1863-1870. |
[14] | 郭彦宏, 张晶星, 杨永娟, 陈俊通, 孙明, 廖晶. 六种野生广义菊属植物对干旱胁迫的生理响应[J]. 浙江农业学报, 2018, 30(8): 1349-1354. |
[15] | 胡能兵, 庞丹丹, 隋益虎, 舒英杰, 何克勤, 朱小妹. 14种辣椒对高温胁迫的生理响应及抗热性评价[J]. 浙江农业学报, 2018, 30(7): 1168-1174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||