浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 965-976.DOI: 10.3969/j.issn.1004-1524.20240119
何国欣1,2(), 李素娟2(
), 王剑3, 陶晓园4, 叶子弘1, 陈光3,*(
), 徐盛春1,2,4,*(
)
收稿日期:
2024-02-01
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
何国欣(1999—),男,浙江温州人,硕士研究生,主要从事大豆耐低氮生理机制研究。E-mail:s21090710014@cjlu.edu.cn;通讯作者:
*徐盛春,E-mail:scxu@zaas.ac.cn;基金资助:
HE Guoxin1,2(), LI Sujuan2(
), WANG Jian3, TAO Xiaoyuan4, YE Zihong1, CHEN Guang3,*(
), XU Shengchun1,2,4,*(
)
Received:
2024-02-01
Online:
2025-05-25
Published:
2025-06-11
摘要:
苗期大豆耐低氮精准鉴定可有效提高种质规模化筛选,加速耐低氮品种培育。本研究以557份不同来源大豆种质为材料,在不同氮素水平(7.5、0.75 mmol·L-1)下开展苗期鉴定,测定生物量、根长、相对叶绿素含量等14个生理指标,利用方差分析、相关性分析、模糊隶属函数法、主成分综合评价法和聚类分析等对种质资源的耐低氮特性进行评价。在低氮胁迫下,除第2片复叶的实际光合效率和第1片复叶调节性能量耗散的量子产量无显著性差异外,其余12个指标均呈显著性差异。通过主成分分析将显著变化的12个性状耐氮系数转化为5个综合指标,累计贡献率为80.87%,基于主成分综合评价值(D)将557份大豆种质聚类分析分为5类,分别是耐低氮型、较耐低氮型、中耐低氮型、低氮较敏感型和低氮敏感型。筛选出耐低氮型,包含石豆2号、YJ002313和AMURSKAYA 402共3份;低氮敏感型,包含克c14-705、中野1号、97鉴23、皮黑豆和永城大籽绿豆等10份。依据逐步线性回归分析筛选出地下部长度、地下部干重、根冠比(RL/SL)、第2片复叶调节性能量耗散的量子产量和第1片复叶相对叶绿素含量作为关键重要特征对大豆耐低氮特性进行评价。本研究挖掘到大豆耐低氮优异种质,可为大豆耐低氮品种的选育提供材料基础。
中图分类号:
何国欣, 李素娟, 王剑, 陶晓园, 叶子弘, 陈光, 徐盛春. 大豆种质苗期低氮耐性筛选和鉴定[J]. 浙江农业学报, 2025, 37(5): 965-976.
HE Guoxin, LI Sujuan, WANG Jian, TAO Xiaoyuan, YE Zihong, CHEN Guang, XU Shengchun. Screening and identification of soybean germplasm for low nitrogen tolerance during seedling stage[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 965-976.
图1 不同大豆种质幼苗在低氮胁迫下的生理表现 A,大豆水培试验培养场景图(部分材料);B,低氮胁迫处理14 d后低氮敏感型和耐低氮型大豆幼苗的生理表现,LN为低氮胁迫条件下,CK为正常生长条件。
Fig.1 Phenotypes of different soybean germplasm seedlings under low nitrogen stress A, Landscape of hydroponic growth condition for parts of soybean genotypes; B, Physiological performance of soybean seedlings under low nitrogen stress after 14 days. LN, Low nitrogen condition. CK, Normal growth condition.
性状 Trait | 低氮胁迫条件Low-nitrogen stress conditions | 正常氮条件Normal nitrogen conditions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | |
SL/cm | 10.20 | 79.60 | 34.41 | 9.68 | 28.13 | 12.10 | 80.20 | 36.38 | 10.63 | 29.21 |
SW/(g·plant-1) | 0.03 | 2.76 | 0.80 | 0.37 | 46.82 | 0.04 | 3.92 | 1.07 | 0.55 | 51.38 |
RL/cm | 7.10 | 73.20 | 28.00 | 8.49 | 30.32 | 2.40 | 87.10 | 24.77 | 6.97 | 28.15 |
RW/(g·plant-1) | 0.01 | 2.25 | 0.22 | 0.16 | 73.02 | 0.01 | 1.58 | 0.19 | 0.15 | 78.50 |
RW/SW | 0.02 | 5.92 | 0.32 | 0.34 | 106.79 | 0.01 | 8.06 | 0.22 | 0.30 | 136.79 |
RL/SL | 0.21 | 2.78 | 0.87 | 0.33 | 37.52 | 0.09 | 3.10 | 0.73 | 0.27 | 36.43 |
Phi2_1 | 0.01 | 0.81 | 0.63 | 0.09 | 14.66 | 0.02 | 0.82 | 0.62 | 0.10 | 16.22 |
Phi2_2 | 0.05 | 0.82 | 0.64 | 0.09 | 14.82 | 0.02 | 0.83 | 0.64 | 0.10 | 16.25 |
PhiNPQ_1 | 0.06 | 0.97 | 0.20 | 0.09 | 45.12 | 0.04 | 0.97 | 0.19 | 0.11 | 56.05 |
PhiNPQ_2 | 0.05 | 0.93 | 0.18 | 0.09 | 51.41 | 0.02 | 0.96 | 0.17 | 0.12 | 69.18 |
PhiNO_1 | 0.02 | 0.38 | 0.18 | 0.05 | 26.36 | 0.01 | 0.50 | 0.19 | 0.06 | 29.98 |
PhiNO_2 | 0.02 | 0.45 | 0.18 | 0.04 | 25.34 | 0.02 | 0.42 | 0.19 | 0.06 | 30.79 |
SPAD_1 | 6.53 | 50.05 | 24.72 | 7.34 | 29.70 | 6.53 | 77.80 | 35.99 | 6.47 | 17.98 |
SPAD_2 | 6.53 | 73.86 | 29.39 | 7.48 | 25.45 | 6.53 | 78.25 | 38.91 | 5.81 | 14.95 |
表1 557份大豆种质苗期在正常条件和低氮胁迫下生理表现差异
Table 1 Seedling performances of different physiological traits of 557 soybean accessions under low-nitrogen stress and normal nitrogen conditions
性状 Trait | 低氮胁迫条件Low-nitrogen stress conditions | 正常氮条件Normal nitrogen conditions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | |
SL/cm | 10.20 | 79.60 | 34.41 | 9.68 | 28.13 | 12.10 | 80.20 | 36.38 | 10.63 | 29.21 |
SW/(g·plant-1) | 0.03 | 2.76 | 0.80 | 0.37 | 46.82 | 0.04 | 3.92 | 1.07 | 0.55 | 51.38 |
RL/cm | 7.10 | 73.20 | 28.00 | 8.49 | 30.32 | 2.40 | 87.10 | 24.77 | 6.97 | 28.15 |
RW/(g·plant-1) | 0.01 | 2.25 | 0.22 | 0.16 | 73.02 | 0.01 | 1.58 | 0.19 | 0.15 | 78.50 |
RW/SW | 0.02 | 5.92 | 0.32 | 0.34 | 106.79 | 0.01 | 8.06 | 0.22 | 0.30 | 136.79 |
RL/SL | 0.21 | 2.78 | 0.87 | 0.33 | 37.52 | 0.09 | 3.10 | 0.73 | 0.27 | 36.43 |
Phi2_1 | 0.01 | 0.81 | 0.63 | 0.09 | 14.66 | 0.02 | 0.82 | 0.62 | 0.10 | 16.22 |
Phi2_2 | 0.05 | 0.82 | 0.64 | 0.09 | 14.82 | 0.02 | 0.83 | 0.64 | 0.10 | 16.25 |
PhiNPQ_1 | 0.06 | 0.97 | 0.20 | 0.09 | 45.12 | 0.04 | 0.97 | 0.19 | 0.11 | 56.05 |
PhiNPQ_2 | 0.05 | 0.93 | 0.18 | 0.09 | 51.41 | 0.02 | 0.96 | 0.17 | 0.12 | 69.18 |
PhiNO_1 | 0.02 | 0.38 | 0.18 | 0.05 | 26.36 | 0.01 | 0.50 | 0.19 | 0.06 | 29.98 |
PhiNO_2 | 0.02 | 0.45 | 0.18 | 0.04 | 25.34 | 0.02 | 0.42 | 0.19 | 0.06 | 30.79 |
SPAD_1 | 6.53 | 50.05 | 24.72 | 7.34 | 29.70 | 6.53 | 77.80 | 35.99 | 6.47 | 17.98 |
SPAD_2 | 6.53 | 73.86 | 29.39 | 7.48 | 25.45 | 6.53 | 78.25 | 38.91 | 5.81 | 14.95 |
图2 557份大豆种质对低氮胁迫的生理响应 A,生物量相关参数;B,光合参数。CK,正常氮条件;LN,低氮处理条件。*、**和***分别表示P<0.05、P<0.01和P<0.001;ns,无显著差异。
Fig.2 Physiological responses of 557 soybean germplasms to low nitrogen stress A, Biomass-related parameters; B, Photosynthetic parameters; CK, Normal nitrogen condition; LN, Low nitrogen condition. *, **, and *** indicates P<0.05, P<0.01, and P<0.001, respectively. ns, No significant difference between different conditions.
性状 Trait | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | F值 F value | 显著性 Significance |
---|---|---|---|---|---|---|---|
SPAD_1 | 0.21 | 2.03 | 0.70 | 0.20 | 28.82 | <2.2×10-16 | *** |
SPAD_2 | 0.25 | 1.45 | 0.76 | 0.17 | 22.00 | <2.2×10-16 | *** |
SW/(g·plant-1) | 0.25 | 4.10 | 0.84 | 0.42 | 49.48 | <2.2×10-16 | *** |
RL/SL | 0.51 | 3.27 | 1.24 | 0.40 | 32.37 | <2.2×10-16 | *** |
RL/cm | 0.53 | 2.73 | 1.17 | 0.36 | 30.62 | <2.2×10-16 | *** |
PhiNO_2 | 0.44 | 4.81 | 0.98 | 0.35 | 35.60 | <2.2×10-16 | *** |
PhiNO_1 | 0.47 | 8.54 | 0.99 | 0.40 | 40.01 | <2.2×10-16 | *** |
SL/cm | 0.44 | 2.18 | 0.97 | 0.22 | 22.42 | <2.2×10-16 | *** |
RW/SW | 0.13 | 18.33 | 1.93 | 1.65 | 85.15 | <2.2×10-16 | *** |
RW/(g·plant-1) | 0.18 | 15.16 | 1.47 | 1.21 | 82.17 | <2.2×10-16 | *** |
PhiNPQ_2 | 0.13 | 5.51 | 1.24 | 0.65 | 52.51 | 1.32×10-11 | *** |
Phi2_1 | 0.46 | 7.56 | 1.05 | 0.35 | 33.60 | 1.22×10-4 | *** |
PhiNPQ_1 | 0.19 | 4.25 | 1.11 | 0.48 | 43.44 | 0.22 | |
Phi2_2 | 0.46 | 7.89 | 1.04 | 0.41 | 39.11 | 0.87 |
表2 557份大豆种质苗期在正常条件和低氮胁迫下耐氮系数差异
Table 2 Analysis of variance for statistical analysis of nitrogen tolerance indexes in 557 soybean accessions
性状 Trait | 最小值 Min | 最大值 Max | 均值 Mean | 标准差 SD | 变异系数 CV/% | F值 F value | 显著性 Significance |
---|---|---|---|---|---|---|---|
SPAD_1 | 0.21 | 2.03 | 0.70 | 0.20 | 28.82 | <2.2×10-16 | *** |
SPAD_2 | 0.25 | 1.45 | 0.76 | 0.17 | 22.00 | <2.2×10-16 | *** |
SW/(g·plant-1) | 0.25 | 4.10 | 0.84 | 0.42 | 49.48 | <2.2×10-16 | *** |
RL/SL | 0.51 | 3.27 | 1.24 | 0.40 | 32.37 | <2.2×10-16 | *** |
RL/cm | 0.53 | 2.73 | 1.17 | 0.36 | 30.62 | <2.2×10-16 | *** |
PhiNO_2 | 0.44 | 4.81 | 0.98 | 0.35 | 35.60 | <2.2×10-16 | *** |
PhiNO_1 | 0.47 | 8.54 | 0.99 | 0.40 | 40.01 | <2.2×10-16 | *** |
SL/cm | 0.44 | 2.18 | 0.97 | 0.22 | 22.42 | <2.2×10-16 | *** |
RW/SW | 0.13 | 18.33 | 1.93 | 1.65 | 85.15 | <2.2×10-16 | *** |
RW/(g·plant-1) | 0.18 | 15.16 | 1.47 | 1.21 | 82.17 | <2.2×10-16 | *** |
PhiNPQ_2 | 0.13 | 5.51 | 1.24 | 0.65 | 52.51 | 1.32×10-11 | *** |
Phi2_1 | 0.46 | 7.56 | 1.05 | 0.35 | 33.60 | 1.22×10-4 | *** |
PhiNPQ_1 | 0.19 | 4.25 | 1.11 | 0.48 | 43.44 | 0.22 | |
Phi2_2 | 0.46 | 7.89 | 1.04 | 0.41 | 39.11 | 0.87 |
图3 大豆苗期不同性状耐低氮系数间的相关性及其显著性分析 大豆种质耐低氮相关生理性状耐氮系数(A)相关性和(B)显著性分析。蓝色代表2个性状之间呈正相关,红色代表2个性状之间呈负相关。颜色深浅代表相关性高低。*、**和***分别代表P值在0.05、0.01和0.001水平下的显著性。
Fig.3 Correlation and significance analysis of low nitrogen tolerance indexes at soybean seedling stage The correlation analysis (A) and significance analysis (B) of nitrogen tolerance indexes for low nitrogen tolerance related physiological traits. Different colors represent positive (blue) and negative (red) correlations between two traits. The color depth represents the size of the correlation. *, **, and *** indicates P<0.05, P<0.01, and P<0.001, respectively.
性状 Traits | 主成分1 PCA1 | 主成分2 PCA2 | 主成分3 PCA3 | 主成分4 PCA4 | 主成分5 PCA5 |
---|---|---|---|---|---|
SL | -0.21 | 0.31 | 0.74 | -0.04 | 0.34 |
RL | 0.54 | -0.34 | 0.68 | 0.05 | -0.24 |
SW | -0.14 | 0.22 | 0.83 | 0.20 | 0.01 |
RW | 0.08 | 0.20 | 0.12 | 0.91 | 0.07 |
RW/SW | 0.20 | 0.13 | -0.38 | 0.80 | 0.08 |
RL/SL | 0.66 | -0.50 | 0.19 | 0.07 | -0.47 |
Phi2_1 | 0.70 | 0.54 | -0.09 | -0.15 | 0.14 |
PhiNO_1 | 0.71 | 0.51 | -0.02 | -0.23 | 0.17 |
PhiNO_2 | 0.66 | 0.52 | 0.00 | -0.09 | 0.07 |
PhiNPQ_2 | -0.20 | -0.55 | 0.11 | -0.03 | 0.48 |
SPAD_1 | -0.52 | 0.53 | 0.08 | 0.00 | -0.32 |
SPAD_2 | -0.51 | 0.68 | 0.01 | -0.05 | -0.33 |
特征值 Eigenvectors | 2.83 | 2.43 | 1.93 | 1.61 | 0.91 |
贡献率Contribution ratio/% | 23.56 | 20.24 | 16.07 | 13.44 | 7.55 |
累计贡献率Cumulative contribution ratio/% | 23.56 | 43.80 | 59.87 | 73.31 | 80.87 |
表3 557份大豆种质响应低氮胁迫各变量对各主成分的贡献度
Table 3 Principal component analysis of different traits in response to low-nitrogen stress in 557 soybean accessions
性状 Traits | 主成分1 PCA1 | 主成分2 PCA2 | 主成分3 PCA3 | 主成分4 PCA4 | 主成分5 PCA5 |
---|---|---|---|---|---|
SL | -0.21 | 0.31 | 0.74 | -0.04 | 0.34 |
RL | 0.54 | -0.34 | 0.68 | 0.05 | -0.24 |
SW | -0.14 | 0.22 | 0.83 | 0.20 | 0.01 |
RW | 0.08 | 0.20 | 0.12 | 0.91 | 0.07 |
RW/SW | 0.20 | 0.13 | -0.38 | 0.80 | 0.08 |
RL/SL | 0.66 | -0.50 | 0.19 | 0.07 | -0.47 |
Phi2_1 | 0.70 | 0.54 | -0.09 | -0.15 | 0.14 |
PhiNO_1 | 0.71 | 0.51 | -0.02 | -0.23 | 0.17 |
PhiNO_2 | 0.66 | 0.52 | 0.00 | -0.09 | 0.07 |
PhiNPQ_2 | -0.20 | -0.55 | 0.11 | -0.03 | 0.48 |
SPAD_1 | -0.52 | 0.53 | 0.08 | 0.00 | -0.32 |
SPAD_2 | -0.51 | 0.68 | 0.01 | -0.05 | -0.33 |
特征值 Eigenvectors | 2.83 | 2.43 | 1.93 | 1.61 | 0.91 |
贡献率Contribution ratio/% | 23.56 | 20.24 | 16.07 | 13.44 | 7.55 |
累计贡献率Cumulative contribution ratio/% | 23.56 | 43.80 | 59.87 | 73.31 | 80.87 |
图4 大豆苗期低氮耐性相关性状的主成分分析 耐低氮相关生理性状在(A)主成分1和主成分2(B)主成分2和主成分3的分布。蓝色阴影及圆点代表国内来源的种质资源,黄色阴影及圆点代表国外来源的种质资源,灰色圆点代表未知来源的种质资源。箭头代表各生理性状在不同主成分的贡献度,由蓝色至绿色逐渐增加。
Fig.4 Principal component analysis of low nitrogen tolerance related physiological traits at soybean seedling stage The distribution of the low nitrogen tolerance related physiological traits on principal component 1 and principal component 2 (A), and principal component 2 and principal component 3 (B). The blue shadow and dots represent the domestic germplasms. The yellow shadows and dots represent the germplasms that come from foreign. And the grey dots represent the germplasm of unknown origin. The arrows represent the contributions of physiological traits in different principal components. The contribution rate increases from blue to green.
种质 Germplasm | D值 D value | 低氮耐性评价 Low nitrogen tolerance evaluation | 种质类型 Germplasm type |
---|---|---|---|
石豆2号 Shidou 2 | 0.84 | 耐低氮Tolerant to low nitrogen | 国内资源Domestic resources |
YJ002313 | 0.77 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
AMURSKAYA 402 | 0.74 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
RENTA | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
GARAVTT | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀HJ116 Yi HJ116 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
WDD02788 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀豆11 Yidou 11 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
潍豆7号 Weidou 7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
P73-7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
克c14-705 Ke c14-705 | 0.24 | 低氮敏感Sensitive to low nitrogen | 未知Unknown |
中野1号 Zhongye 1 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
97鉴2 397 Jian 23 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
皮黑豆 Piheidou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
永城大籽绿豆 Yongchengdazilvdou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
OKSKAY-1 | 0.23 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
KG-20 | 0.22 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
WDD02945 | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
OAC OXFord | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
99nf40 | 0.15 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
表4 主成分综合评价筛选出的低氮耐性和敏感种质
Table 4 The screen of low nitrogen tolerance and sensitive germplasms using principal component comprehensive evaluation method
种质 Germplasm | D值 D value | 低氮耐性评价 Low nitrogen tolerance evaluation | 种质类型 Germplasm type |
---|---|---|---|
石豆2号 Shidou 2 | 0.84 | 耐低氮Tolerant to low nitrogen | 国内资源Domestic resources |
YJ002313 | 0.77 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
AMURSKAYA 402 | 0.74 | 耐低氮Tolerant to low nitrogen | 国外资源Foreign resources |
RENTA | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
GARAVTT | 0.72 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀HJ116 Yi HJ116 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
WDD02788 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
冀豆11 Yidou 11 | 0.71 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
潍豆7号 Weidou 7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国内资源Domestic resources |
P73-7 | 0.70 | 较耐低氮Moderately tolerant to low nitrogen | 国外资源Foreign resources |
克c14-705 Ke c14-705 | 0.24 | 低氮敏感Sensitive to low nitrogen | 未知Unknown |
中野1号 Zhongye 1 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
97鉴2 397 Jian 23 | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
皮黑豆 Piheidou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
永城大籽绿豆 Yongchengdazilvdou | 0.24 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
OKSKAY-1 | 0.23 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
KG-20 | 0.22 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
WDD02945 | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
OAC OXFord | 0.21 | 低氮敏感Sensitive to low nitrogen | 国外资源Foreign resources |
99nf40 | 0.15 | 低氮敏感Sensitive to low nitrogen | 国内资源Domestic resources |
指标Index | 估计值Estimate | 标准误差Standard error | t值t value | P值 P value | 显著性Significance |
---|---|---|---|---|---|
截距 Intercept | 0.39 | 0.03 | 15.32 | <2×10-16 | *** |
RL | -0.06 | 0.02 | -3.59 | <0.001 | *** |
RW | -0.01 | 0 | -3.62 | <0.001 | *** |
RL/SL | 0.15 | 0.02 | 9.17 | <2×10-16 | *** |
PhiNPQ_2 | -0.02 | 0.01 | -3.76 | <0.001 | *** |
SPAD_1 | 0.04 | 0.02 | 1.79 | 0.07 |
表5 线性回归分析结果
Table 5 Linear regression analysis
指标Index | 估计值Estimate | 标准误差Standard error | t值t value | P值 P value | 显著性Significance |
---|---|---|---|---|---|
截距 Intercept | 0.39 | 0.03 | 15.32 | <2×10-16 | *** |
RL | -0.06 | 0.02 | -3.59 | <0.001 | *** |
RW | -0.01 | 0 | -3.62 | <0.001 | *** |
RL/SL | 0.15 | 0.02 | 9.17 | <2×10-16 | *** |
PhiNPQ_2 | -0.02 | 0.01 | -3.76 | <0.001 | *** |
SPAD_1 | 0.04 | 0.02 | 1.79 | 0.07 |
[1] | DA SILVA M A G, MUNIZ A S, MANNIGEL A R, et al. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield[J]. Brazilian Archives of Biology and Technology, 2011, 54(4): 665-674. |
[2] | ZHOU H L, YAO X D, ZHAO Q, et al. Rapid effect of nitrogen supply for soybean at the beginning flowering stage on biomass and sucrose metabolism[J]. Scientific Reports, 2019, 9(1): 15530. |
[3] | YAN X Y, XIA L L, TI C P. Temporal and spatial variations in nitrogen use efficiency of crop production in China[J]. Environmental Pollution, 2022, 293: 118496. |
[4] | 仇宏伟, 栾江, 孔祥永, 等. 我国农业生产中的氮肥利用效率分析[J]. 青岛农业大学学报(自然科学版), 2014, 31(4): 277-283. |
QIU H W, LUAN J, KONG X Y, et al. Estimation of nitrogen utilization efficiency in China' agricultural production[J]. Journal of Qingdao Agricultural University(Natural Science), 2014, 31(4): 277-283. (in Chinese with English abstract) | |
[5] | QUAN Z, LI S L, ZHANG X, et al. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies[J]. Soil and Tillage Research, 2020, 197: 104498. |
[6] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046. |
[7] | XIA L L, TI C P, LI B L, et al. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential[J]. Science of the Total Environment, 2016, 556: 116-125. |
[8] | 张庆乐, 王浩, 张丽青, 等. 饮水中硝态氮污染对人体健康的影响[J]. 地下水, 2008, 30(1): 57-59. |
ZHANG Q L, WANG H, ZHANG L Q, et al. Influence on nitrate nitrogen pollution to health in the drinkable water[J]. Ground Water, 2008, 30(1): 57-59. (in Chinese with English abstract) | |
[9] | 李明霞, 周际, 胡勇军, 等. 低氮胁迫下栽培大豆和野大豆幼苗适应性转录组学比较研究[J]. 东北师大学报(自然科学版), 2023, 55(2): 116-125. |
LI M X, ZHOU J, HU Y J, et al. Comparative study on the adaptable transcriptomics of cultivated and wild soybean seedling under low nitrogen stress[J]. Journal of Northeast Normal University(Natural Science Edition), 2023, 55(2): 116-125. (in Chinese with English abstract) | |
[10] | 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析[J]. 中国农业科学, 2016, 49(12): 2267-2279. |
XIONG S P, WU K Y, WANG X C, et al. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency[J]. Scientia Agricultura Sinica, 2016, 49(12): 2267-2279. (in Chinese with English abstract) | |
[11] | HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1): 1-18. |
[12] | CÓRDOVA S C, CASTELLANO M J, DIETZEL R, et al. Soybean nitrogen fixation dynamics in Iowa, USA[J]. Field Crops Research, 2019, 236: 165-176. |
[13] | 孙浩楠, 曹霞, 朱贵爽, 等. 耐低氮大豆资源的苗期筛选与评价[J]. 大豆科学, 2023, 42(5): 545-553. |
SUN H N, CAO X, ZHU G S, et al. Screening and evaluation of low nitrogen tolerant soybean resources at seedling stage[J]. Soybean Science, 2023, 42(5): 545-553. (in Chinese with English abstract) | |
[14] | QIU L J, XING L L, GUO Y, et al. A platform for soybean molecular breeding: the utilization of core collections for food security[J]. Plant Molecular Biology, 2013, 83(1/2): 41-50. |
[15] | 翟荣荣, 余鹏, 叶胜海, 等. 浙江省晚粳稻耐低氮品种的筛选和评价[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 565-572. |
ZHAI R R, YU P, YE S H, et al. Screening and comprehensive evaluation of low nitrogen tolerance of Zhejiang photosensitive japonicarice cultivars[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2016, 42(5): 565-572. (in Chinese with English abstract) | |
[16] | 李俊杰, 杜蒲芳, 石婷瑞, 等. 不同基因型小麦苗期耐低氮性评价及筛选[J]. 中国农业科技导报, 2021, 23(7): 21-32. |
LI J J, DU P F, SHI T R, et al. Screening and evaluation of low nitrogen tolerance from different genotypes wheat at seedling stage[J]. Journal of Agricultural Science and Technology, 2021, 23(7): 21-32. (in Chinese with English abstract) | |
[17] | 姜琪, 陈志伟, 刘成洪, 等. 大麦地方品种苗期耐低氮筛选和鉴定指标的研究[J]. 华北农学报, 2019, 34(1): 148-155. |
JIANG Q, CHEN Z W, LIU C H, et al. Screening and identification indices of low-nitrogen tolerance for barley landraces at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(1): 148-155. (in Chinese with English abstract) | |
[18] | LIU C J, GONG X W, WANG H L, et al. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling[J]. Plant Physiology and Biochemistry, 2020, 151: 233-242. |
[19] | 远月丽, 易媛媛, 战勇, 等. 大豆氮高效种质苗期筛选与鉴定[J]. 中国油料作物学报, 2022, 44(3): 539-547. |
YUAN Y L, YI Y Y, ZHAN Y, et al. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(3): 539-547. (in Chinese with English abstract) | |
[20] | 刘芯欣, 侯云龙, 杜楠琳, 等. 大豆耐低氮资源的苗期鉴定与筛选[J]. 植物遗传资源学报, 2023, 24(2): 408-418. |
LIU X X, HOU Y L, DU N L, et al. Identification and screening of soybean resources tolerant to low nitrogen by seedling assay[J]. Journal of Plant Genetic Resources, 2023, 24(2): 408-418. (in Chinese with English abstract) | |
[21] | 贵会平, 董强, 张恒恒, 等. 棉花苗期耐低氮基因型初步筛选[J]. 棉花学报, 2018, 30(4): 326-337. |
GUI H P, DONG Q, ZHANG H H, et al. Preliminary screening of low nitrogen-tolerant cotton genotypes at seedling stage[J]. Cotton Science, 2018, 30(4): 326-337. (in Chinese with English abstract) | |
[22] | 陈家辉. 水稻氮高效及耐低氮种质资源筛选与评价[D]. 哈尔滨: 东北农业大学, 2022. |
CHEN J H. Screening and evaluation of rice germplasm resources with high nitrogen efficiency and low nitrogen tolerance[D]. Harbin: Northeast Agricultural University, 2022. (in Chinese with English abstract) | |
[23] | SZIRA F, BÁLINT A F, BÖRNER A, et al. Evaluation of drought-related traits and screening methods at different developmental stages in spring barley[J]. Journal of Agronomy and Crop Science, 2008, 194(5): 334-342. |
[24] | 杨丽娜. 西藏野生大麦与栽培大麦氮利用效率的基因型差异研究[D]. 杭州: 浙江大学, 2014. |
YANG L N. Genotypic differences of nitrogen use efficiency between wild barley and cultivated barley in Tibet[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract) | |
[25] | 黄小辉, 吴焦焦, 王玉书, 等. 不同供氮水平的核桃幼苗生长及叶绿素荧光特性[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 119-126. |
HUANG X H, WU J J, WANG Y S, et al. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(2): 119-126. (in Chinese with English abstract) | |
[26] | PARK S, FISCHER A L, STEEN C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(38): 11965-11973. |
[27] | WANG Y, JIN W W, CHE Y H, et al. Atmospheric nitrogen dioxide improves photosynthesis in mulberry leaves via effective utilization of excess absorbed light energy[J]. Forests, 2019, 10(4): 312. |
[28] | GRUBER B D, GIEHL R F H, FRIEDEL S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiology, 2013, 163(1): 161-179. |
[29] | ZHANG L, YU Z P, XU Y, et al. Regulation of the stability and ABA import activity of NRT1.2/NPF4.6 by CEPR2-mediated phosphorylation in Arabidopsis[J]. Molecular Plant, 2021, 14(4): 633-646. |
[30] | XUAN W, BEECKMAN T, XU G H. Plant nitrogen nutrition: sensing and signaling[J]. Current Opinion in Plant Biology, 2017, 39: 57-65. |
[31] | LIU W W, SUN Q, WANG K, et al. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis[J]. New Phytologist, 2017, 214(2): 734-744. |
[32] | REMANS T, NACRY P, PERVENT M, et al. The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(50): 19206-19211. |
[33] | LEZHNEVA L, KIBA T, FERIA-BOURRELLIER A B, et al. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J]. The Plant Journal, 2014, 80(2): 230-241. |
[34] | XIN W, ZHANG L N, GAO J P, et al. Adaptation mechanism of roots to low and high nitrogen revealed by proteomic analysis[J]. Rice, 2021, 14(1): 5. |
[35] | PENG W T, QI W L, NIE M M, et al. Magnesium supports nitrogen uptake through regulating NRT2.1/2.2 in soybean[J]. Plant and Soil, 2020, 457(1): 97-111. |
[36] | MA R, YANG S, LIU Y H, et al. An R2R3-MYB transcription factor CmMYB42 improves low-nitrogen stress tolerance in Chrysanthemum[J]. Journal of Plant Growth Regulation, 2023, 42(9): 5600-5614. |
[1] | 许竹溦, 雷俊, 邵晓伟, 陈润兴, 姜欢, 汪寿根, 余文慧. 基于层次分析法与模糊综合评价法的衢州鲜食大豆低聚糖种质资源评价研究[J]. 浙江农业学报, 2025, 37(4): 754-766. |
[2] | 汤奥冉, 金秀, 王坦, 饶元, 李佳佳, 张武. 基于弯曲大豆植株主茎骨架重构的生理株高测量方法[J]. 浙江农业学报, 2025, 37(2): 466-479. |
[3] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
[4] | 高晓萍, 张婧, 牛天航, 刘阳, 常有麟, 刘思恬, 颉建明. 甜菜碱对高温胁迫下茄子幼苗生理特性的影响[J]. 浙江农业学报, 2023, 35(9): 2097-2108. |
[5] | 孙秀娟, 徐伟慧, 王志刚. 大豆根瘤内生细菌的分离鉴定及其对大豆植株的促生效应[J]. 浙江农业学报, 2023, 35(7): 1532-1541. |
[6] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[7] | 杨松花, 石贵阳, 王晶琴, 陈竹. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6): 1396-1406. |
[8] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[9] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[10] | 许耀照, 曾秀存, 王振朝, 党仕卓, 刘永晶. NaCl胁迫对冬油菜种子萌发和生理特性的影响[J]. 浙江农业学报, 2023, 35(3): 499-508. |
[11] | 刘悦, 徐伟慧, 王志刚. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 2023, 35(12): 2775-2784. |
[12] | 谭云峰, 陈霖, 胡森, 王键, 陈治帆, 吕小荣. 纵轴流柔性弯齿式大豆脱粒装置的设计与试验[J]. 浙江农业学报, 2023, 35(12): 2954-2965. |
[13] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[14] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[15] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||