浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 977-986.DOI: 10.3969/j.issn.1004-1524.20240204
王闻琦(), 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲(
)
收稿日期:
2024-03-04
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
王闻琦(1998—),男,河南许昌人,硕士研究生,从事作物分子育种相关研究。E-mail:945987039@qq.com
通讯作者:
*王翠玲,E-mail: lywgg@126.com
基金资助:
WANG Wenqi(), WANG Panpan, ZHANG Yanling, LIU Qingqing, HONG Shuangshuang, ZHAO Gaopeng, LIU Hongchang, WANG Cuiling(
)
Received:
2024-03-04
Online:
2025-05-25
Published:
2025-06-11
摘要:
伪应答调节蛋白TOC1是伪应答调节因子(pseudo-response regulator, PRR)家族5个成员之一,作为生物钟中央振荡器的核心组成部分,与MYB类转录因子LHY和CCA1构成了中央振荡器的中心负反馈调控环,在生物钟系统中起着重要作用。ZmPRR1-2基因是拟南芥TOC1的同源基因,为了深入挖掘ZmPRR1-2的生物学功能,本研究利用酵母双杂交筛库技术,从前期构建的长日照诱导的热带玉米自交系的cDNA文库中筛选与ZmPRR1-2互作的蛋白质。结果表明,构建的诱饵载体pGBKT7-ZmPRR1-2对酵母菌株无毒性,且对报告基因无自激活活性。筛选鉴定出12个与ZmPRR1-2互作的蛋白质。这些候选互作蛋白质的功能涉及抗氧化反应、水缺乏响应、铝离子响应、光合作用、电子传递链、光收集、生长素激活信号通路、DNA模板转录的调控、色氨酸生物合成过程、翻译、免疫反应、凋亡信号通路的正向调节、参与蛋白质分解代谢过程的蛋白质水解等多个方面。推测ZmPRR1-2蛋白与以上蛋白质互作参与多个信号转导和代谢途径,该结果为进一步探索ZmPRR1-2基因的分子功能与调控网络奠定了基础。
中图分类号:
王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986.
WANG Wenqi, WANG Panpan, ZHANG Yanling, LIU Qingqing, HONG Shuangshuang, ZHAO Gaopeng, LIU Hongchang, WANG Cuiling. Screening of proteins interacting with circadian clock gene ZmPRR1-2 in maize[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 977-986.
图1 含ZmPRR1-2基因的诱饵载体的构建和酶切验证 M,1 kb DNA marker;A,诱饵载体pGBKT7-ZmPRR1-2;B,诱饵载体pGBKT7-ZmPRR1-2的酶切验证。
Fig.1 Construction and enzyme digestion of yeast bait vector Containing ZmPRR1-2 M, 1 kb DNA marker; A, bait vector pGBKT7-ZmPRR1-2; B, Verification of bait vector pGBKT7-ZmPRR1-2 by enzyme digestion.
图2 诱饵载体自激活与毒性检测分析 A,诱饵载体pGBKT7-ZmPRR1-2自激活检测;B,诱饵载体pGBKT7-ZmPRR1-2毒性检测。
Fig.2 Analysis of self-activation and toxicity of bait vector A, Analysis of self-activation of bait vector pGBKT7-ZmPRR1-2; B, Analysis of toxicity of bait vector pGBKT7-ZmPRR1-2.
图4 阳性克隆PCR检测 M,2 000 DNA Marker;1~68,阳性克隆菌落PCR检测结果。
Fig.4 PCR detection of positive clones M, 2 000 DNA Marker;1-68, Colony PCR detection result of positive clones.
基因名称 Gene name | 编码蛋白质 Coding protein | 染色体号码 Chr.No. | CDS长度 CDS length/bp | 氨基酸个数 Number of amino acid | 生物进程 Biological process | 分子功能 Molecular function | 亚细胞定位 Subcellular location | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZmAASR2 | 脱落酸胁迫 成熟2 Abscisic acid stress ripening2 | 2 | 396 | 132 | 转录调控,DNA 模板化 Regulation of transcription, DNA-templated 抗氧化反应 Response to oxidative stress 水缺乏响应 Response to water deprivation 铝离子响应 Response to aluminum ion | 序列特异性 DNA结合 Sequence-specific DNA binding | 细胞核 Nucleolus 细胞质 Cytoplasm | ||||||
ZmPET7 | 光系统Ⅰ反应 中心亚基Ⅱ Photosystem Ⅰ reaction center subunit Ⅱ | 1 | 600 | 200 | 光合作用 Photosynthesis | 未知 Unknown | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmUCC3 | Uclacyanin-3 | 10 | 510 | 170 | 电子传递链 Electron transport chain | 电子传递活性 Electron transfer activity DNA结合 DNA binding | 膜 Membrane | ||||||
ZmPSPB1 | 光系统Ⅱ出氧系统 的23 ku 亚基 23 ku subunit of oxygen evolving system of photosystem Ⅱ | 2 | 777 | 259 | 光合作用 Photosynthesis | 钙离子结合 Calcium ion binding 2-烯醛还原酶 [NAD(P)+]活性 2-Alkenal reductase [NAD(P)+] activity | 叶绿体 Chloroplast | ||||||
ZmLHCB2 | 叶绿素a-b结合 蛋白 Chlorophyll a-b binding protein | 7 | 789 | 263 | 光合作用,光收集 Photosynthesis, light harvesting | 叶绿素结合 Chlorophyll binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmRUM1 | 生长素响应蛋白 Auxin- responsive protein | 3 | 363 | 121 | 生长素激活信号通路 Auxin-activated signaling pathway DNA 模板转录的调控 Regulation of DNA- templated transcription | 未知 Unknown | 细胞核 Nucleolus | ||||||
ZmTSAH1 | 色氨酸合成酶 Tryptophan synthase | 1 | 1 020 | 340 | 色氨酸生物合成过程 Tryptophan biosynthetic process | 色氨酸合成酶活性 Tryptophan synthase activity 吲哚-3-甘油-磷酸 裂解酶活性 Indole-3-glycerol- phosphate lyase activity | 叶绿体 Chloroplast 胞液 Cytosol | ||||||
ZmNH4 | nudix 水解酶 Nudix hydrolase 4 | 9 | 435 | 145 | 未知 Unknown | 无机焦磷酸酶活性 Pyrophosphatase activity 水解酶活性 Hydrolase activity 金属离子结合 Metal ion binding | 细胞质 Cytoplasm 细胞核 Nucleolus | ||||||
ZmCL187-21A | 60S核糖体 蛋白L13 60S ribosomal protein L13 | 3 | 627 | 209 | 翻译 Translation | RNA结合 RNA binding 核糖体的结构成分 Structural constituent of ribosome | 细胞质大 核糖体 亚基 Cytosolic large ribosomal subunit | ||||||
ZmCCP2 | 半胱氨酸蛋白酶 Cysteine proteinase 2 | 7 | 1 083 | 361 | 免疫反应 Immune response 凋亡信号通路的正向调节 Positive regulation of apoptotic signaling pathway 参与蛋白质分解代谢 过程的蛋白质水解 Proteolysis involved in protein catabolic process | 半胱氨酸型内 肽酶活性 Cysteine-type endopeptidase activity 苯丙氨酸转氨 酶活性 Lyase activity | 细胞外 间隙 Extracellular space 溶酶体 Lysosome | ||||||
ZmCSU27 | 紫外线-B-抑制 蛋白 Ultraviolet-B- repressible protein | 7 | 369 | 123 | 光合作用 Photosynthesis | 蛋白质结构域特 异性结合 Protein domain specific binding | 细胞膜 Cytomembrane 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmNDF4 | 电子载体/电子传 递体/铁离子结合 蛋白 Electron carrier/ electron transporter/ iron ion binding protein | 7 | 576 | 192 | 电子传递链 Electron transport chain 含P450的电子传递链 P450-containing electron transport chain 光系统Ⅰ中的光合 电子传递 Photosynthetic electron transport in photosystem Ⅰ | 2个铁原子, 2个硫原子簇结合 2 Iron, 2 sulfur cluster binding 电子传递活性 Electron transfer activity 金属离子结合 Metal ion binding 铁硫团簇结合 Iron-sulfur cluster binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane 胞液 Cytosol |
表1 酵母双杂交文库筛选获得的ZmPRR1-2互作蛋白质及其描述
Table 1 Interacting proteins of ZmPRR1-2 screened by yeast two-hybrid system and their description
基因名称 Gene name | 编码蛋白质 Coding protein | 染色体号码 Chr.No. | CDS长度 CDS length/bp | 氨基酸个数 Number of amino acid | 生物进程 Biological process | 分子功能 Molecular function | 亚细胞定位 Subcellular location | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZmAASR2 | 脱落酸胁迫 成熟2 Abscisic acid stress ripening2 | 2 | 396 | 132 | 转录调控,DNA 模板化 Regulation of transcription, DNA-templated 抗氧化反应 Response to oxidative stress 水缺乏响应 Response to water deprivation 铝离子响应 Response to aluminum ion | 序列特异性 DNA结合 Sequence-specific DNA binding | 细胞核 Nucleolus 细胞质 Cytoplasm | ||||||
ZmPET7 | 光系统Ⅰ反应 中心亚基Ⅱ Photosystem Ⅰ reaction center subunit Ⅱ | 1 | 600 | 200 | 光合作用 Photosynthesis | 未知 Unknown | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmUCC3 | Uclacyanin-3 | 10 | 510 | 170 | 电子传递链 Electron transport chain | 电子传递活性 Electron transfer activity DNA结合 DNA binding | 膜 Membrane | ||||||
ZmPSPB1 | 光系统Ⅱ出氧系统 的23 ku 亚基 23 ku subunit of oxygen evolving system of photosystem Ⅱ | 2 | 777 | 259 | 光合作用 Photosynthesis | 钙离子结合 Calcium ion binding 2-烯醛还原酶 [NAD(P)+]活性 2-Alkenal reductase [NAD(P)+] activity | 叶绿体 Chloroplast | ||||||
ZmLHCB2 | 叶绿素a-b结合 蛋白 Chlorophyll a-b binding protein | 7 | 789 | 263 | 光合作用,光收集 Photosynthesis, light harvesting | 叶绿素结合 Chlorophyll binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmRUM1 | 生长素响应蛋白 Auxin- responsive protein | 3 | 363 | 121 | 生长素激活信号通路 Auxin-activated signaling pathway DNA 模板转录的调控 Regulation of DNA- templated transcription | 未知 Unknown | 细胞核 Nucleolus | ||||||
ZmTSAH1 | 色氨酸合成酶 Tryptophan synthase | 1 | 1 020 | 340 | 色氨酸生物合成过程 Tryptophan biosynthetic process | 色氨酸合成酶活性 Tryptophan synthase activity 吲哚-3-甘油-磷酸 裂解酶活性 Indole-3-glycerol- phosphate lyase activity | 叶绿体 Chloroplast 胞液 Cytosol | ||||||
ZmNH4 | nudix 水解酶 Nudix hydrolase 4 | 9 | 435 | 145 | 未知 Unknown | 无机焦磷酸酶活性 Pyrophosphatase activity 水解酶活性 Hydrolase activity 金属离子结合 Metal ion binding | 细胞质 Cytoplasm 细胞核 Nucleolus | ||||||
ZmCL187-21A | 60S核糖体 蛋白L13 60S ribosomal protein L13 | 3 | 627 | 209 | 翻译 Translation | RNA结合 RNA binding 核糖体的结构成分 Structural constituent of ribosome | 细胞质大 核糖体 亚基 Cytosolic large ribosomal subunit | ||||||
ZmCCP2 | 半胱氨酸蛋白酶 Cysteine proteinase 2 | 7 | 1 083 | 361 | 免疫反应 Immune response 凋亡信号通路的正向调节 Positive regulation of apoptotic signaling pathway 参与蛋白质分解代谢 过程的蛋白质水解 Proteolysis involved in protein catabolic process | 半胱氨酸型内 肽酶活性 Cysteine-type endopeptidase activity 苯丙氨酸转氨 酶活性 Lyase activity | 细胞外 间隙 Extracellular space 溶酶体 Lysosome | ||||||
ZmCSU27 | 紫外线-B-抑制 蛋白 Ultraviolet-B- repressible protein | 7 | 369 | 123 | 光合作用 Photosynthesis | 蛋白质结构域特 异性结合 Protein domain specific binding | 细胞膜 Cytomembrane 叶绿体类 囊体膜 Chloroplast thylakoid membrane | ||||||
ZmNDF4 | 电子载体/电子传 递体/铁离子结合 蛋白 Electron carrier/ electron transporter/ iron ion binding protein | 7 | 576 | 192 | 电子传递链 Electron transport chain 含P450的电子传递链 P450-containing electron transport chain 光系统Ⅰ中的光合 电子传递 Photosynthetic electron transport in photosystem Ⅰ | 2个铁原子, 2个硫原子簇结合 2 Iron, 2 sulfur cluster binding 电子传递活性 Electron transfer activity 金属离子结合 Metal ion binding 铁硫团簇结合 Iron-sulfur cluster binding | 叶绿体类 囊体膜 Chloroplast thylakoid membrane 胞液 Cytosol |
[1] | 关淑艳, 张洪琳, 蒋振忠, 等. 光受体和赤霉素对植物开花协同作用的研究进展[J]. 吉林农业大学学报, 2023, 45(2): 127-136. |
GUAN S Y, ZHANG H L, JIANG Z Z, et al. Research progress of synergistic effect of photoreceptor and gibberellin on plant flowering[J]. Journal of Jilin Agricultural University, 2023, 45(2): 127-136. (in Chinese with English abstract) | |
[2] | POSTMA F M, LUNDEMO S, ÅGREN J. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana[J]. Annals of Botany, 2016, 117(2): 249-256. |
[3] | IMAIZUMI T. Arabidopsis circadian clock and photoperiodism: time to think about location[J]. Current Opinion in Plant Biology, 2010, 13(1): 83-89. |
[4] | 史勇, 金维环, 任真真, 等. 玉米光周期敏感调节机制的研究进展[J]. 玉米科学, 2021, 29(1): 92-96. |
SHI Y, JIN W H, REN Z Z, et al. Research advances in regulation mechanism of photoperiod sensitivity in maize[J]. Journal of Maize Sciences, 2021, 29(1): 92-96. (in Chinese with English abstract) | |
[5] | 史勇, 郭莎, 董世凤, 等. 拟南芥生物节律调节基因CCA1/LHY的研究进展[J]. 分子植物育种, 2020, 18(21): 7080-7087. |
SHI Y, GUO S, DONG S F, et al. Research advances in circadian rhythm regulation genes CCA1/LHY in Arabidopsis[J]. Molecular Plant Breeding, 2020, 18(21): 7080-7087. (in Chinese with English abstract) | |
[6] | MILLAR A J. The intracellular dynamics of circadian clocks reach for the light of ecology and evolution[J]. Annual Review of Plant Biology, 2016, 67: 595-618. |
[7] | BAUDRY A, ITO S, SONG Y H, et al. F-box proteins FKF1 and LKP2 act in concert with zeitlupe to control Arabidopsis clock progression[J]. The Plant Cell, 2010, 22(3): 606-622. |
[8] | KAMIOKA M, TAKAO S, SUZUKI T, et al. Direct repression of evening genes by circadian clock-associated1 in the Arabidopsis circadian clock[J]. The Plant Cell, 2016, 28(3): 696-711. |
[9] | GAO H, JIN M N, ZHENG X M, et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16337-16342. |
[10] | WANG L, KIM J, SOMERS D E. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 761-766. |
[11] | SOY J, LEIVAR P, GONZÁLEZ-SCHAIN N, et al. Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(17): 4870-4875. |
[12] | WU L J, TIAN L, WANG S X, et al. Comparative proteomic analysis of the response of maize (Zea mays L.) leaves to long photoperiod condition[J]. Frontiers in Plant Science, 2016, 7: 752. |
[13] | GENDRON J M, PRUNEDA-PAZ J L, DOHERTY C J, et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 3167-3172. |
[14] | KEILY J, MACGREGOR D R, SMITH R W, et al. Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock[J]. The Plant Journal, 2013, 76(2): 247-257. |
[15] | ZHU J Y, OH E, WANG T N, et al. TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis[J]. Nature Communications, 2016, 7: 13692. |
[16] | SYED N H, PRINCE S J, MUTAVA R N, et al. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean[J]. Journal of Experimental Botany, 2015, 66(22): 7129-7149. |
[17] | YAN J P, LI S B, KIM Y J, et al. TOC1 clock protein phosphorylation controls complex formation with NF-YB/C to repress hypocotyl growth[J]. The EMBO Journal, 2021, 40(24): 1-23. |
[18] | LIU Y, MA M D, LI G, et al. Transcription factors FHY3 and FAR1 regulate light-induced circadian clock associated1 gene expression in Arabidopsis[J]. The Plant Cell, 2020, 32(5): 1464-1478. |
[19] | 董柯清, 王雷立, 刘青青, 等. 玉米生物钟基因ZmPRR1-2的克隆及表达分析[J]. 西北植物学报, 2023, 43(1): 21-28. |
DONG K Q, WANG L L, LIU Q Q, et al. Cloning and expression analysis of circadian gene ZmPRR1-2 in maize[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(1): 21-28. (in Chinese with English abstract) | |
[20] | 盛慧, 陈姗姗, 艾聪聪, 等. 利用酵母双杂交技术筛选卵菌效应因子互作蛋白概述[J]. 山东农业大学学报(自然科学版), 2019, 50(3): 357-360. |
SHENG H, CHEN S S, AI C C, et al. A review of interaction proteins of oomycete effectors screened by yeast two hybrid system[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2019, 50(3): 357-360. (in Chinese with English abstract) | |
[21] | 胡晓, 侯旭, 袁雪, 等. ARF和Aux/IAA调控果实发育成熟机制研究进展[J]. 生物技术通报, 2017, 33(12): 37-44. |
HU X, HOU X, YUAN X, et al. Research progress on mechanism of ARF and aux/IAA regulating fruit development and ripening[J]. Biotechnology Bulletin, 2017, 33(12): 37-44. (in Chinese with English abstract) | |
[22] | WANG Y J, DENG D X, BIAN Y L, et al. Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays. L.)[J]. Molecular Biology Reports, 2010, 37(8): 3991-4001. |
[23] | ZHANG Y X, PASCHOLD A, MARCON C, et al. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots[J]. Journal of Experimental Botany, 2014, 65(17): 4919-4930. |
[24] | RAMOS BÁEZ R, BUCKLEY Y, YU H, et al. A synthetic approach allows rapid characterization of the maize nuclear auxin response circuit[J]. Plant Physiology, 2020, 182(4): 1713-1722. |
[25] | MASHIGUCHI K, TANAKA K, SAKAI T, et al. The main auxin biosynthesis pathway in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18512-18517. |
[26] | PIÑERO-FERNANDEZ S, CHIMEREL C, KEYSER U F, et al. Indole transport across Escherichia coli membranes[J]. Journal of Bacteriology, 2011, 193(8): 1793-1798. |
[27] | GROSZYK J, KOWALCZYK M, YANUSHEVSKA Y, et al. Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.)[J]. PLoS One, 2017, 12(2): 1-21. |
[28] | ERB M, VEYRAT N, ROBERT C A M, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J]. Nature Communications, 2015, 6: 6273. |
[29] | TZIN V, HOJO Y, STRICKLER S R, et al. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding[J]. Journal of Experimental Botany, 2017, 68(16): 4709-4723. |
[30] | SHIRAKU M L, MAGWANGA R O, CAI X Y, et al. Knockdown of 60S ribosomal protein L14-2 reveals their potential regulatory roles to enhance drought and salt tolerance in cotton[J]. Journal of Cotton Research, 2021, 4(1): 27. |
[1] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
[2] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
[3] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
[4] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
[5] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[6] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
[7] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
[8] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[9] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
[10] | 郑冉, 吕丹, 武清贵, 邸晓红, 朱通通, 邱冠杰, 罗红兵. 玉米C型胞质不育系S37-2败育的生物学与生理生化机制分析[J]. 浙江农业学报, 2023, 35(2): 259-265. |
[11] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
[12] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
[13] | 孟繁昊, 杨恒山, 张瑞富, 张玉芹, 李维敏, 张雨珊, 张明伟. 灌溉方式对西辽河平原玉米产量和水氮利用效率的影响[J]. 浙江农业学报, 2022, 34(9): 1826-1836. |
[14] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[15] | 任梦云, 杜龙岗, 王美兴, 黄益峰. 糯玉米可溶性糖组分特征与采后品质特性[J]. 浙江农业学报, 2022, 34(6): 1133-1140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||