浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1605-1614.DOI: 10.3969/j.issn.1004-1524.20241020
关秀生1(), 刘铁山2, 王娟2, 张茂林2, 刘春晓2, 董瑞2, 关海英2, 刘强2, 徐扬1, 何春梅2,*(
)
收稿日期:
2024-11-25
出版日期:
2025-08-25
发布日期:
2025-09-03
作者简介:
关秀生(2000—),女,安徽霍邱人,硕士研究生,研究方向为作物遗传育种。E-mail:mx120220781@stu.yzu.edu.cn
通讯作者:
*何春梅,E-mail: chunmeihe11@163.com
基金资助:
GUAN Xiusheng1(), LIU Tieshan2, WANG Juan2, ZHANG Maolin2, LIU Chunxiao2, DONG Rui2, GUAN Haiying2, LIU Qiang2, XU Yang1, HE Chunmei2,*(
)
Received:
2024-11-25
Online:
2025-08-25
Published:
2025-09-03
Contact:
HE Chunmei
摘要:
核因子Y(nuclear factor Y, NF-Y)由NF-YA、NF-YB和NF-YC亚基组成,能特异性识别靶基因启动子的CCAAT-box,是重要的转录因子。为探索玉米(Zea mays)NF-YA家族成员的功能,利用玉米基因数据库对玉米NF-YA家族16个成员进行生物信息学分析,成功克隆了13个成员,并测定了各成员的组织表达模式与盐胁迫下的表达规律。结果显示,除ZmNF-YA16外,玉米其他NF-YA家族成员均含有高度保守的CBFB_NF-YA结构域。系统进化分析表明,玉米NF-YA家族成员可分为3类。亚细胞定位预测显示,除ZmNF-YA14定位于细胞核和线粒体外,其他成员均定位于细胞核。启动子顺式作用原件分析表明,玉米NF-YA家族成员基因含有多种顺式作用元件。组织表达分析表明,5个玉米NF-YA家族成员表现出组织特异性,ZmNF-YA2、ZmNF-YA4在检测的所有组织中都有表达。盐胁迫条件下,ZmNF-YA5和ZmNF-YA10表现出正响应模式,而ZmNF-YA13则负调控玉米对盐胁迫的响应。本研究初步分析了玉米NF-YA家族成员的基因结构和盐胁迫响应规律,为进一步研究该家族成员的功能提供基础。
中图分类号:
关秀生, 刘铁山, 王娟, 张茂林, 刘春晓, 董瑞, 关海英, 刘强, 徐扬, 何春梅. 玉米NF-YA家族基因的生物信息学分析与克隆[J]. 浙江农业学报, 2025, 37(8): 1605-1614.
GUAN Xiusheng, LIU Tieshan, WANG Juan, ZHANG Maolin, LIU Chunxiao, DONG Rui, GUAN Haiying, LIU Qiang, XU Yang, HE Chunmei. Bioinformatics analysis and cloning of NF-YA family genes in maize(Zea mays)[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1605-1614.
基因名称 | 基因ID | 正向引物序列 | 反向引物序列 |
---|---|---|---|
Gene name | Gene ID | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
ZmNF-YA1 | Zm00001d027874 | ATCCATGCTCCCTCCTCATCTCAC | CCCGGCTCACCGCCCCCTCTCG |
ZmNF-YA2 | Zm00001d031063 | ATCCATGACATCTGTTGTTCACAG | CGACTGCCTGCCCTGAT |
ZmNF-YA3 | Zm00001d031092 | ATGATGAGCTTCAGGAGCA | GAATCAAGACCACCCAAGCT |
ZmNF-YA4 | Zm00001d033215 | GCTGCTGGATTCTTTGGTGT | CAGAGAATCCATACCGAGAC |
ZmNF-YA5 | Zm00001d029489 | ATGCTTCTGCGAGAAAT | TGGAGATTGAGTGATGCGAT |
ZmNF-YA6 | Zm00001d033602 | ATCCATGAGCAGCATGGAGTCGC | AGCCTCGTTCTGTCGTAG |
ZmNF-YA7 | Zm00001d006835 | ATCCATGCCTGTGATTTTACGGG | TGGTGGAAACACGCTGCT |
ZmNF-YA8 | Zm00001d007882 | ATCCATGGATCCTCCCGCGTCCT | CAGAAAAAACAGAGGGGT |
ZmNF-YA9 | Zm00001d041491 | ATCCATGCAGGTCACCAGCGAT | TTCACGACTAGGCGCCTG |
ZmNF-YA10 | Zm00001d013676 | ATGATGAGCTTCAAGGGAC | CGCCCTGAGGAGCTCGCAG |
ZmNF-YA11 | Zm00001d033773 | ATGATGAGCTTCAAGGGAC | CGCCCTGAGGAGCTCGC |
ZmNF-YA12 | Zm00001d018255 | ATCCATGTACGCGTCCCTGGATT | TCTCATAACTGGAACCCT |
ZmNF-YA13 | Zm00001d022109 | ATGTGCCTTTTACGGGAAAG | TGGTGGAAACACGCTGCTG |
ZmNF-YA14 | Zm00001d026305 | ATGCCTGTGATTTTACGGGT | AAGCCAATGGATGGTAAAG |
ZmNF-YA15 | Zm00001d013501 | ATGTTGTCGCGGCCGGG | TCAAGCCTCGTTGTGTCG |
ZmNF-YA16 | Zm00001d013856 | ATGAACGGAGCGCATGAGT | TTAAAGCCAATGGATGGT |
表1 16个NF-YA成员的引物序列
Table 1 Primers sequences for 16 NF-YA family members
基因名称 | 基因ID | 正向引物序列 | 反向引物序列 |
---|---|---|---|
Gene name | Gene ID | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
ZmNF-YA1 | Zm00001d027874 | ATCCATGCTCCCTCCTCATCTCAC | CCCGGCTCACCGCCCCCTCTCG |
ZmNF-YA2 | Zm00001d031063 | ATCCATGACATCTGTTGTTCACAG | CGACTGCCTGCCCTGAT |
ZmNF-YA3 | Zm00001d031092 | ATGATGAGCTTCAGGAGCA | GAATCAAGACCACCCAAGCT |
ZmNF-YA4 | Zm00001d033215 | GCTGCTGGATTCTTTGGTGT | CAGAGAATCCATACCGAGAC |
ZmNF-YA5 | Zm00001d029489 | ATGCTTCTGCGAGAAAT | TGGAGATTGAGTGATGCGAT |
ZmNF-YA6 | Zm00001d033602 | ATCCATGAGCAGCATGGAGTCGC | AGCCTCGTTCTGTCGTAG |
ZmNF-YA7 | Zm00001d006835 | ATCCATGCCTGTGATTTTACGGG | TGGTGGAAACACGCTGCT |
ZmNF-YA8 | Zm00001d007882 | ATCCATGGATCCTCCCGCGTCCT | CAGAAAAAACAGAGGGGT |
ZmNF-YA9 | Zm00001d041491 | ATCCATGCAGGTCACCAGCGAT | TTCACGACTAGGCGCCTG |
ZmNF-YA10 | Zm00001d013676 | ATGATGAGCTTCAAGGGAC | CGCCCTGAGGAGCTCGCAG |
ZmNF-YA11 | Zm00001d033773 | ATGATGAGCTTCAAGGGAC | CGCCCTGAGGAGCTCGC |
ZmNF-YA12 | Zm00001d018255 | ATCCATGTACGCGTCCCTGGATT | TCTCATAACTGGAACCCT |
ZmNF-YA13 | Zm00001d022109 | ATGTGCCTTTTACGGGAAAG | TGGTGGAAACACGCTGCTG |
ZmNF-YA14 | Zm00001d026305 | ATGCCTGTGATTTTACGGGT | AAGCCAATGGATGGTAAAG |
ZmNF-YA15 | Zm00001d013501 | ATGTTGTCGCGGCCGGG | TCAAGCCTCGTTGTGTCG |
ZmNF-YA16 | Zm00001d013856 | ATGAACGGAGCGCATGAGT | TTAAAGCCAATGGATGGT |
基因名称 Gene name | 基因号 Gene ID | 正向引物序列 Forward primer sequence(5'-3') | 反向引物序列 Reverse primer sequence(5'-3') |
---|---|---|---|
NF-YA1 | Zm00001d027874 | GGCATGGTTCCGTCCTCTCG | TCCGCCTCTAGCTTTGCACG |
NF-YA2 | Zm00001d031063 | ATGCATCCGGCTGGCTTACC | CAGCTCCCCTGGCCCTTTTC |
NF-YA3 | Zm00001d031092 | AGCCTGTCGGGTTCAGAGGT | TCAGGAGGTCGCAGCAGACT |
NF-YA4 | Zm00001d033215 | GCTCGCCAAAGGCAGAAAGC | GACACGTCGGAGCCAGACAG |
NF-YA5 | Zm00001d029489 | ACCATTGCCAGTTGGGCCTG | CTGGTCCACGGACTCGCTTC |
NF-YA6 | Zm00001d033602 | GAACGAACCTGGTGGAGCCC | CTCGCTGCTCTCGTCACTCG |
NF-YA7 | Zm00001d006835 | GTGCGGTTGGGGTCTTGACA | AGCACGTGTTTGCCTCCTCC |
NF-YA9 | Zm00001d041491 | CGGCGGCTTATGGTGGACAT | GGCCCTTGACAAGCTTCCGT |
NF-YA10 | Zm00001d013676 | TCAGCGACGGCAGCAACCC | GCGGCAGCGGGGTGAAGAA |
NF-YA12 | Zm00001d018255 | TGCCACTGTGTTCCGTTCCC | CGGAACCTCGTGCCCTCTTC |
NF-YA13 | Zm00001d022109 | CAGCAGTACCAGGCGTCGAG | ACTGAAGTTGGCTGTGGGGC |
NF-YA14 | Zm00001d026305 | GCACGTGTTTGCCTCCTCCT | TGCCATTGTCCATCCCCAGC |
NF-YA15 | Zm00001d013501 | GGGCGGGACGACGAACCTG | CCGCGGTACTGCTTGGCGT |
表2 13个NF-YA家族成员的实时荧光定量PCR引物序列
Table 2 Primer sequences for the 13 NF-YA family members for real-time quantitative PCR
基因名称 Gene name | 基因号 Gene ID | 正向引物序列 Forward primer sequence(5'-3') | 反向引物序列 Reverse primer sequence(5'-3') |
---|---|---|---|
NF-YA1 | Zm00001d027874 | GGCATGGTTCCGTCCTCTCG | TCCGCCTCTAGCTTTGCACG |
NF-YA2 | Zm00001d031063 | ATGCATCCGGCTGGCTTACC | CAGCTCCCCTGGCCCTTTTC |
NF-YA3 | Zm00001d031092 | AGCCTGTCGGGTTCAGAGGT | TCAGGAGGTCGCAGCAGACT |
NF-YA4 | Zm00001d033215 | GCTCGCCAAAGGCAGAAAGC | GACACGTCGGAGCCAGACAG |
NF-YA5 | Zm00001d029489 | ACCATTGCCAGTTGGGCCTG | CTGGTCCACGGACTCGCTTC |
NF-YA6 | Zm00001d033602 | GAACGAACCTGGTGGAGCCC | CTCGCTGCTCTCGTCACTCG |
NF-YA7 | Zm00001d006835 | GTGCGGTTGGGGTCTTGACA | AGCACGTGTTTGCCTCCTCC |
NF-YA9 | Zm00001d041491 | CGGCGGCTTATGGTGGACAT | GGCCCTTGACAAGCTTCCGT |
NF-YA10 | Zm00001d013676 | TCAGCGACGGCAGCAACCC | GCGGCAGCGGGGTGAAGAA |
NF-YA12 | Zm00001d018255 | TGCCACTGTGTTCCGTTCCC | CGGAACCTCGTGCCCTCTTC |
NF-YA13 | Zm00001d022109 | CAGCAGTACCAGGCGTCGAG | ACTGAAGTTGGCTGTGGGGC |
NF-YA14 | Zm00001d026305 | GCACGTGTTTGCCTCCTCCT | TGCCATTGTCCATCCCCAGC |
NF-YA15 | Zm00001d013501 | GGGCGGGACGACGAACCTG | CCGCGGTACTGCTTGGCGT |
基因名称 | 染色体 | 起始位点 | 终止位点 | 编码区 | 氨基酸数量 | 分子量 | 等电点 |
---|---|---|---|---|---|---|---|
Gene name | Chr | Start/bp | End/bp | CDS/bp | Amino acid number | Molecular mass/u | pI |
NF-YA1 | 1 | 15805373 | 15808637 | 750 | 214 | 27 207.16 | 8.96 |
NF-YA2 | 1 | 175263789 | 175269072 | 2 229 | 742 | 85 041.59 | 9.42 |
NF-YA3 | 1 | 174875434 | 174876987 | 993 | 330 | 35 231.81 | 8.93 |
NF-YA4 | 1 | 250376435 | 250383733 | 897 | 322 | 34 122.58 | 9.61 |
NF-YA5 | 1 | 71587764 | 71597309 | 273 | 90 | 10 062.62 | 11.87 |
NF-YA6 | 1 | 263505895 | 263513358 | 795 | 264 | 26 775.89 | 9.52 |
NF-YA7 | 2 | 211453451 | 211457855 | 898 | 300 | 32 759.35 | 9.02 |
NF-YA8 | 2 | 235102149 | 235107745 | 881 | 294 | 31 336.04 | 9.78 |
NF-YA9 | 3 | 123429802 | 123439843 | 1 020 | 215 | 31 009.56 | 9.39 |
NF-YA10 | 5 | 16478975 | 16486358 | 1 040 | 341 | 35 736.46 | 9.40 |
NF-YA11 | 1 | 268502777 | 268507502 | 570 | 262 | 29 076.26 | 9.80 |
NF-YA12 | 5 | 211713589 | 211721532 | 882 | 265 | 31 907.09 | 10.31 |
NF-YA13 | 7 | 165029459 | 165036770 | 901 | 301 | 29 607.50 | 6.63 |
NF-YA14 | 10 | 141890017 | 141899048 | 876 | 291 | 48 253.63 | 6.16 |
NF-YA15 | 5 | 12556164 | 12560070 | 562 | 111 | 14 415.92 | 10.90 |
NF-YA16 | 5 | 23241181 | 23243549 | 397 | 156 | 16 876.48 | 9.64 |
表3 玉米NF-YA成员的基因信息
Table 3 Genetic information of maize NF-YA family members
基因名称 | 染色体 | 起始位点 | 终止位点 | 编码区 | 氨基酸数量 | 分子量 | 等电点 |
---|---|---|---|---|---|---|---|
Gene name | Chr | Start/bp | End/bp | CDS/bp | Amino acid number | Molecular mass/u | pI |
NF-YA1 | 1 | 15805373 | 15808637 | 750 | 214 | 27 207.16 | 8.96 |
NF-YA2 | 1 | 175263789 | 175269072 | 2 229 | 742 | 85 041.59 | 9.42 |
NF-YA3 | 1 | 174875434 | 174876987 | 993 | 330 | 35 231.81 | 8.93 |
NF-YA4 | 1 | 250376435 | 250383733 | 897 | 322 | 34 122.58 | 9.61 |
NF-YA5 | 1 | 71587764 | 71597309 | 273 | 90 | 10 062.62 | 11.87 |
NF-YA6 | 1 | 263505895 | 263513358 | 795 | 264 | 26 775.89 | 9.52 |
NF-YA7 | 2 | 211453451 | 211457855 | 898 | 300 | 32 759.35 | 9.02 |
NF-YA8 | 2 | 235102149 | 235107745 | 881 | 294 | 31 336.04 | 9.78 |
NF-YA9 | 3 | 123429802 | 123439843 | 1 020 | 215 | 31 009.56 | 9.39 |
NF-YA10 | 5 | 16478975 | 16486358 | 1 040 | 341 | 35 736.46 | 9.40 |
NF-YA11 | 1 | 268502777 | 268507502 | 570 | 262 | 29 076.26 | 9.80 |
NF-YA12 | 5 | 211713589 | 211721532 | 882 | 265 | 31 907.09 | 10.31 |
NF-YA13 | 7 | 165029459 | 165036770 | 901 | 301 | 29 607.50 | 6.63 |
NF-YA14 | 10 | 141890017 | 141899048 | 876 | 291 | 48 253.63 | 6.16 |
NF-YA15 | 5 | 12556164 | 12560070 | 562 | 111 | 14 415.92 | 10.90 |
NF-YA16 | 5 | 23241181 | 23243549 | 397 | 156 | 16 876.48 | 9.64 |
图4 ZmNF-YA5和ZmNF-YA6序列比对 a、d,ZmNF-YA5和ZmNF-YA6在MaizeGDB中的序列;b、c,克隆的ZmNF-YA5序列;e、f,克隆的ZmNF-YA6序列。
Fig.4 Alignment of ZmNF-YA5 and ZmNF-YA6 sequences a and d, ZmNF-YA5 and ZmNF-YAYA6 sequences in MaizeGDB; b and c, Cloned sequence of ZmNF-YA5; e and f, Cloned sequences of ZmNF-YA6.
图6 NaCl胁迫下玉米NF-YA家族成员的相对表达水平
Fig.6 Relative expression levels of NF-YA family members in maize under NaCl stress *,p<0.05;**,p<0.01;***,p<0.001;****,p<0.000 1。
[1] | KAHLE J, BAAKE M, DOENECKE D, et al. Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13[J]. Molecular and Cellular Biology, 2005, 25(13): 5339-5354. |
[2] | SWAIN S, MYERS Z A, SIRIWARDANA C L, et al. The multifaceted roles of NUCLEAR FACTOR-Y in Arabidopsis thaliana development and stress responses[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2017, 1860(5): 636-644. |
[3] | ALBANI D, ROBERT L S. Cloning and characterization of a Brassica napus gene encoding a homologue of the B subunit of a heteromeric CCAAT-binding factor[J]. Gene, 1995, 167(1/2): 209-213. |
[4] | NARDONE V, CHAVES-SANJUAN A, NARDINI M. Structural determinants for NF-Y/DNA interaction at the CCAAT box[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2017, 1860(5): 571-580. |
[5] | LUGER K, MÄDER A W, RICHMOND R K, et al. Crystal structure of the nucleosome core particle at 2.8 Å resolution[J]. Nature, 1997, 389(6648): 251-260. |
[6] | COUSTRY F, MAITY S N, SINHA S, et al. The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit[J]. Journal of Biological Chemistry, 1996, 271(24): 14485-14491. |
[7] | LALOUM T, DE MITA S, GAMAS P, et al. CCAAT-box binding transcription factors in plants: Y so many?[J]. Trends in Plant Science, 2013, 18(3): 157-166. |
[8] | GUSMAROLI G, TONELLI C, MANTOVANI R. Regulation of the CCAAT-binding NF-Y subunits in Arabidopsis thaliana[J]. Gene, 2001, 264(2): 173-185. |
[9] | THIRUMURUGAN T, ITO Y, KUBO T, et al. Identification, characterization and interaction of HAP family genes in rice[J]. Molecular Genetics and Genomics, 2008, 279(3): 279-289. |
[10] | MU J Y, TAN H L, HONG S L, et al. Arabidopsis transcription factor genes NF-YA1 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development[J]. Molecular Plant, 2013, 6(1): 188-201. |
[11] | YU T F, LIU Y, FU J D, et al. The NF-Y-PYR module integrates the abscisic acid signal pathway to regulate plant stress tolerance[J]. Plant Biotechnology Journal, 2021, 19(12): 2589-2605. |
[12] | HWANG K, SUSILA H, NASIM Z, et al. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering[J]. Molecular Plant, 2019, 12(4): 489-505. |
[13] | BALLIF J, ENDO S, KOTANI M, et al. Over-expression of HAP3b enhances primary root elongation in Arabidopsis[J]. Plant Physiology and Biochemistry, 2011, 49(6): 579-583. |
[14] | WEST M A L, YEE K M, DANAO J, et al. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and Cotyledon identity in Arabidopsis[J]. The Plant Cell, 1994, 6(12): 1731-1745. |
[15] | NELSON D E, REPETTI P P, ADAMS T R, et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(42): 16450-16455. |
[16] | LI W X, OONO Y, ZHU J H, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. The Plant Cell, 2008, 20(8): 2238-2251. |
[17] | LOTAN T, OHTO M A, YEE K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell, 1998, 93(7): 1195-1205. |
[18] | SU H H, CAO Y Y, KU L X, et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize[J]. Journal of Experimental Botany, 2018, 69(21): 5177-5189. |
[19] | XU Z H, ZHONG S H, LI X H, et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots[J]. PLoS One, 2011, 6(11): e28009. |
[20] | LAPORTE P, LEPAGE A, FOURNIER J, et al. The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection[J]. Journal of Experimental Botany, 2014, 65(2): 481-494. |
[21] | LV M Y, CAO H Z, WANG X, et al. Identification and expression analysis of maize NF-YA subunit genes[J]. PeerJ, 2022, 10: e14306. |
[22] | CAO L R, MA C C, YE F Y, et al. Genome-wide identification of NF-Y gene family in maize (Zea mays L.) and the positive role of ZmNF-YC12 in drought resistance and recovery ability[J]. Frontiers in Plant Science, 2023, 14: 1159955. |
[23] | COMBIER J P, DE BILLY F, GAMAS P, et al. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development[J]. Genes & Development, 2008, 22(11): 1549-1559. |
[24] | MACH J. CONSTANS companion: co binds the NF-YB/NF-YC dimer and confers sequence-specific DNA binding[J]. The Plant Cell, 2017, 29(6): 1183. |
[25] | NARDINI M, GNESUTTA N, DONATI G, et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination[J]. Cell, 2013, 152(1/2): 132-143. |
[26] | GILMOUR S J, ZARKA D G, STOCKINGER E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal, 1998, 16(4): 433-442. |
[27] | SATO H, MIZOI J, TANAKA H, et al. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits[J]. The Plant Cell, 2014, 26(12): 4954-4973. |
[28] | LUAN M D, XU M Y, LU Y M, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 555(2): 178-185. |
[29] | XING L J, ZHU M, LUAN M D, et al. miR169q and NUCLEAR FACTOR YA8 enhance salt tolerance by activating PEROXIDASE1 expression in response to ROS[J]. Plant Physiology, 2022, 188(1): 608-623. |
[1] | 咸若彤, 缪青梅, 彭城, 陈笑芸, 杨蕾, 徐晓丽, 魏巍, 徐俊锋, 李玥莹, 汪小福. 转基因玉米WYN17132转化体特异性实时荧光PCR检测方法的建立与应用[J]. 浙江农业学报, 2025, 37(7): 1397-1406. |
[2] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
[3] | 王晓阳, 李强, 赵武云, 戴飞, 严兆荣, 王久鑫. 铲式青贮玉米起茬及残膜回收联合作业机设计与试验[J]. 浙江农业学报, 2024, 36(9): 2132-2145. |
[4] | 李清超, 杨珊, 张登峰, 刘建新, 孙开利, 吴迅. 四百八十七份玉米地方种质资源穗部性状的表型多样性[J]. 浙江农业学报, 2024, 36(7): 1481-1491. |
[5] | 高憬, 陆玲鸿, 古咸彬, 范飞, 宋根华, 张慧琴. 猕猴桃AcWRKY94基因的克隆及其在盐胁迫下的功能分析[J]. 浙江农业学报, 2024, 36(11): 2501-2509. |
[6] | 唐跃辉, 陈淑颖, 何文琼, 王涵瑾, 包欣欣, 贾赛男, 王瑶瑶, 陈宇阳, 杨同文. 麻风树JcERF22基因的克隆与功能分析[J]. 浙江农业学报, 2024, 36(10): 2219-2228. |
[7] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
[8] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
[9] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
[10] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
[11] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[12] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
[13] | 郑冉, 吕丹, 武清贵, 邸晓红, 朱通通, 邱冠杰, 罗红兵. 玉米C型胞质不育系S37-2败育的生物学与生理生化机制分析[J]. 浙江农业学报, 2023, 35(2): 259-265. |
[14] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
[15] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||