浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2219-2228.DOI: 10.3969/j.issn.1004-1524.20231186
唐跃辉(), 陈淑颖, 何文琼, 王涵瑾, 包欣欣, 贾赛男, 王瑶瑶, 陈宇阳, 杨同文
收稿日期:
2023-10-13
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
唐跃辉(1985—),男,河南许昌人,博士,副教授,研究方向为植物逆境胁迫。E-mail:yhtang2005@163.com
基金资助:
TANG Yuehui(), CHEN Shuying, HE Wenqiong, WANG Hanjin, BAO Xinxin, JIA Sainan, WANG Yaoyao, CHEN Yuyang, YANG Tongwen
Received:
2023-10-13
Online:
2024-10-25
Published:
2024-10-30
摘要:
AP2/ERF转录因子在植物生长发育和响应非生物胁迫过程中起重要的调控作用,克隆麻风树AP2/ERF基因JcERF22,分析其对非生物胁迫的响应,鉴定其在调控拟南芥抗逆胁迫中的作用,为麻风树耐逆品种的培育提供依据。以麻风树为材料,利用逆转录PCR(RT-PCR)技术克隆麻风树JcERF22基因,利用生物信息学方法分析JcERF22基因序列,使用实时荧光定量PCR(qRT-PCR)技术分析非生物胁迫下JcERF22基因的表达模式,利用花粉浸染法构建JcERF22转基因拟南芥植株,并分析转基因植株在正常生长、缺磷和盐胁迫下的表型。结果显示,克隆的JcERF22基因编码区(CDS)长度为1074 bp,编码357个氨基酸。亚细胞定位结果显示,JcERF22蛋白定位于细胞核。在缺磷和盐胁迫条件下,麻风树叶片中JcERF22基因的表达量均显著降低。正常条件下,过表达JcERF22基因不影响拟南芥地上部分的生长发育,但增加了拟南芥的根毛长度和根毛数量;缺磷胁迫下,JcERF22过表达拟南芥叶片中的花青素含量显著低于野生型,花青素合成相关基因(CHS、DFR、F3H、LDOX、FLS1、UF3GT)的表达量也均显著低于野生型;盐胁迫下,JcERF22过表达拟南芥的叶片白化严重,鲜重显著低于野生型,非生物胁迫相关基因(AtHKT1;1、AtP5CS1)的表达量显著低于野生型。综上,JcERF22基因在麻风树响应缺磷和盐胁迫中发挥重要作用。
中图分类号:
唐跃辉, 陈淑颖, 何文琼, 王涵瑾, 包欣欣, 贾赛男, 王瑶瑶, 陈宇阳, 杨同文. 麻风树JcERF22基因的克隆与功能分析[J]. 浙江农业学报, 2024, 36(10): 2219-2228.
TANG Yuehui, CHEN Shuying, HE Wenqiong, WANG Hanjin, BAO Xinxin, JIA Sainan, WANG Yaoyao, CHEN Yuyang, YANG Tongwen. Cloning and functional analysis of JcERF22 gene from Jatropha curcas[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2219-2228.
基因Gene | 正向引物Forward primer(5’→3’) | 反向引物Reverse primer (5’→3’) |
---|---|---|
JcERF22 | TTGAAAGGTGAACTGAAAAGGGA | GTGAAGAAGAACCAGCCAATGAT |
UF3GT | ATCGAATGAATCGTCAAGCATGA | GAGGGATAGAGATGGTGTGGAAAG |
CHS | AAGTTGGTCTCACCTTCCATCTCCT | TGTCGCCCTCATCTTCTCTTCCTT |
DFR | TGGTCGGTCCATTCATCACAACG | CTTGGCGGCTGCTTGTTCGTATA |
LDOX | TCTACGAGGGCAAATGGGTCACT | TCCGGCAACGGCTTAAGAACAATC |
F3H | AGTGACGGAGGAGTATAGTGAGAGG | TGTAGCAGCAAGGTAATGGTTCCAG |
FLS1 | ATGCGTCAATTACAGATTCTGGCCT | TTCTTTCAACGCATCACGCTTTAAC |
AtHKT1;1 | GGCTGCAAAGACGCGAGTT | AGACGAGGGGTAAAGAATCCA |
AtP5CS1 | AGGCTTGCACTGTTGAAGTTGTAG | CTTCGTGATCCTCTGTCACAATG |
JcActin | TAATGGTCCCTCTGGATGTG | AGAAAAGAAAAGAAAAAAGCAGC |
AtActin2 | GCACCCTGTTCTTCTTACCG | AACCCTCGTAGATTGGCACA |
表1 实时荧光定量PCR引物
Table 1 Primers for real-time fluorescent quantitative PCR
基因Gene | 正向引物Forward primer(5’→3’) | 反向引物Reverse primer (5’→3’) |
---|---|---|
JcERF22 | TTGAAAGGTGAACTGAAAAGGGA | GTGAAGAAGAACCAGCCAATGAT |
UF3GT | ATCGAATGAATCGTCAAGCATGA | GAGGGATAGAGATGGTGTGGAAAG |
CHS | AAGTTGGTCTCACCTTCCATCTCCT | TGTCGCCCTCATCTTCTCTTCCTT |
DFR | TGGTCGGTCCATTCATCACAACG | CTTGGCGGCTGCTTGTTCGTATA |
LDOX | TCTACGAGGGCAAATGGGTCACT | TCCGGCAACGGCTTAAGAACAATC |
F3H | AGTGACGGAGGAGTATAGTGAGAGG | TGTAGCAGCAAGGTAATGGTTCCAG |
FLS1 | ATGCGTCAATTACAGATTCTGGCCT | TTCTTTCAACGCATCACGCTTTAAC |
AtHKT1;1 | GGCTGCAAAGACGCGAGTT | AGACGAGGGGTAAAGAATCCA |
AtP5CS1 | AGGCTTGCACTGTTGAAGTTGTAG | CTTCGTGATCCTCTGTCACAATG |
JcActin | TAATGGTCCCTCTGGATGTG | AGAAAAGAAAAGAAAAAAGCAGC |
AtActin2 | GCACCCTGTTCTTCTTACCG | AACCCTCGTAGATTGGCACA |
图1 JcERF22及其同源蛋白氨基酸序列分析 AtWIND1(AT1G78080)和AtWIND2(AT1G22190)来自拟南芥,ZmRAP2.4(NP_001333350)来自玉米,RcRAP2.4(XP_002533146)来自蓖麻,JcERF22(XP_012093083)来自麻风树。
Fig.1 Amino acid sequence analysis of JcERF22 and its homologous proteins AtWIND1 (AT1G78080) and AtWIND2 (AT1G22190) were from Arabidopsis thaliana, ZmRAP2.4 (NP_001333350) was from Zea mays, RcRAP2.4 (XP_002533146) was from Ricinus communis, and JcERF22 (XP_012093083) was from Jatropha curcas.
图2 JcERF22基因及其植物表达载体双酶切电泳图 A,JcERF22基因电泳图;B,JcERF22基因植物表达载体双酶切结果。
Fig.2 Electrophoretogram of JcERF22 gene and double enzyme digestion result of its plant expression vector A, Electrophoretogram of JcERF22 gene; B, Double enzyme digestion result of JcERF22 gene plant expression vector.
图4 麻风树叶片中JcERF22基因在缺磷和盐胁迫下的表达 *和**分别表示与对照相比在P<0.05和P<0.01水平差异显著。
Fig.4 Expression of JcERF22 gene under phosphorus deficiency and salt stress in Jatropha curcas leaves * and ** indicated significant differences at P<0.05 and P<0.01 levels compared with the control, respectively.
图5 JcERF22过表达拟南芥的表型 A,JcERF22过表达植株和野生型在正常生长条件下的表型;B,JcERF22基因在拟南芥中的表达;C,4 d的野生型和JcERF22过表达植株的根毛。WT,野生型;OE1、OE2、OE3为JcERF22过表达植株。
Fig.5 Phenotype of JcERF22 overexpressing Arabidopsis A, Phenotype of JcERF22 overexpressing plants and wild type under normal growth conditions; B, Expression of JcERF22 gene in Arabidopsis plants; C, Phenotype of root hair of wild type and JcERF22 overexpressing plants at 4 days. WT, Wild type; OE1, OE2 and OE3, JcERF22 overexpressing plants.
图6 JcERF22过表达拟南芥在缺磷胁迫条件下的表型和生理分析 A,野生型和JcERF22过表达植株在正常生长和缺磷胁迫条件下的表型;B,花青素含量;C,类胡萝卜素含量。数据以鲜重计。**表示在缺磷胁迫条件下JcERF22过表达植株中花青素含量与野生型相比差异显著(P<0.01)。WT,野生型;OE1、OE2、OE3为JcERF22过表达植株。
Fig.6 Phenotypical and physiological characterization of JcERF22 overexpressing Arabidopsis under phosphorus deficiency stress A, Phenotype of wild-type and JcERF22 overexpressing plants under normal growth and phosphorus deficiency stress; B, Anthocyanin content; C, Carotenoid content. Data was detected based on fresh weight. ** indicated that the anthocyanin content of JcERF22 overexpressing plants under phosphorus deficiency stress was significantly different from that of wild type. WT, Wild type; OE1, OE2 and OE3, JcERF22 overexpressing plants.
图7 拟南芥叶片中花青素相关基因的表达 **和*表示在缺磷胁迫条件下花青素相关基因在转基因植株中的表达与野生型相比差异显著(**P<0.01,*P<0.05)。WT,野生型;OE1、OE2、OE3为JcERF22过表达植株。
Fig.7 Expression of anthocyanin-related genes in Arabidopsis leaves ** and * indicate that the expression of anthocyanin-related genes in transgenic plants was significantly different from that in the wild type under phosphorus deficiency stress (**P<0.01, *P<0.05). WT, Wild type; OE1, OE2 and OE3, JcERF22 overexpressing plants.
图8 JcERF22过表达拟南芥在盐胁迫条件下的表型和鲜重 A,野生型和JcERF22过表达植株在盐胁迫条件下的表型;B,盐胁迫条件下野生型和JcERF22过表达植株的鲜重。**表示在盐胁迫条件下JcERF22过表达植株的鲜重与野生型相比差异显著(P<0.01)。WT,野生型;OE1、OE2、OE3为JcERF22过表达植株。
Fig.8 Phenotype and fresh weight of JcERF22 overexpressing Arabidopsis plants under salt stress A, Phenotype of wild-type and JcERF22 overexpressing plants under salt stress; B: Fresh weight of wild-type and JcERF22 overexpressing plants under salt stress. ** indicated that the fresh weight of JcERF22 overexpressing plants was significantly different from that of wild type under salt stress (P<0.01). WT, Wild type; OE1, OE2 and OE3, JcERF22 overexpressing plants.
图9 盐胁迫下拟南芥叶片中非生物胁迫相关基因的表达 **表示在盐胁迫条件下非生物胁迫相关基因在转基因植株中的表达与野生型相比差异显著(P<0.01)。WT,野生型;OE1、OE2、OE3为JcERF22过表达植株。
Fig.9 Expression of abiotic stress-related gene in Arabidopsis leaves under salt stress ** indicated that the expression of abiotic stress-related genes in transgenic plants under salt stress was significantly different from that of wild type (P<0.01). WT, Wild type; OE1, OE2 and OE3, JcERF22 overexpressing plants.
[1] | JIANG S L, TANG Y Q, FAN R, et al. Response of Carex breviculmis to phosphorus deficiency and drought stress[J]. Frontiers in Plant Science, 2023, 14: 1203924. |
[2] | RAMAIAH M, JAIN A, RAGHOTHAMA K G. Ethylene Response Factor070 regulates root development and phosphate starvation-mediated responses[J]. Plant Physiology, 2014, 164(3): 1484-1498. |
[3] | MURAKAMI H, KAKUTANI N, KUROYANAGI Y, et al. MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica[J]. FEBS Letters, 2020, 594(20): 3384-3394. |
[4] | 刘光瑞, 宗渊, 李云, 等. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
LIU G R, ZONG Y, LI Y, et al. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. (in Chinese with English abstract) | |
[5] | 李小兰, 张瑞, 郝兰兰, 等. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
LI X L, ZHANG R, HAO L L, et al. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. (in Chinese with English abstract) | |
[6] | JARAMBASA T, REGON P, JYOTI S Y, et al. Genome-wide identification and expression analysis of the Pisum sativum(L.) APETALA2/ethylene-responsive factor (AP2/ERF) gene family reveals functions in drought and cold stresses[J]. Genetica, 2023, 151(3): 225-239. |
[7] | QI W W, SUN F, WANG Q J, et al. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene[J]. Plant Physiology, 2011, 157(1): 216-228. |
[8] | HUANG Y P, LIU L, HU H T, et al. Arabidopsis ERF012 is a versatile regulator of plant growth, development and abiotic stress responses[J]. International Journal of Molecular Sciences, 2022, 23(12): 6841. |
[9] | QI Y T, YANG Z, SUN X Y, et al. Heterologous overexpression of StERF3 triggers cell death in Nicotiana benthamiana[J]. Plant Science, 2022, 315: 111149. |
[10] | LEE P F, ZHAN Y X, WANG J C, et al. The AtERF19 gene regulates meristem activity and flower organ size in plants[J]. The Plant Journal, 2023, 114(6): 1338-1352. |
[11] | ZHU J T, WEI X N, YIN C S, et al. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays[J]. Plant, Cell & Environment, 2023, 46(9): 2867-2883. |
[12] | CHARFEDDINE M, CHIAB N, CHARFEDDINE S, et al. Heat,drought, and combined stress effect on transgenic potato plants overexpressing the StERF94 transcription factor[J]. Journal of Plant Research, 2023, 136(4): 549-562. |
[13] | MAGHULY F, LAIMER M. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement[J]. Biotechnology Journal, 2013, 8(10): 1172-1182. |
[14] | TANG Y H, QIN S S, GUO Y L, et al. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress[J]. PLoS One, 2016, 11(3): e0150879. |
[15] | AN J P, LI R, QU F J, et al. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple[J]. The Plant Journal, 2018, 96(3): 562-577. |
[16] | CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735-743. |
[17] | YAN S S, CHEN N, HUANG Z J, et al. Anthocyanin fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit[J]. The New Phytologist, 2020, 225(5): 2048-2063. |
[18] | CHEN Z H, NIMMO G A, JENKINS G I, et al. BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis[J]. The Biochemical Journal, 2007, 405(1): 191-198. |
[19] | AN D, CHEN J G, GAO Y Q, et al. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. PLoS Genetics, 2017, 13(10): e1007086. |
[20] | LV W T, LIN B, ZHANG M, et al. Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress[J]. Plant Physiology, 2011, 156(4): 1921-1933. |
[1] | 麻仲花, 吴娜, 陈娟, 赵匆, 闫承宏, 刘吉利. 盐胁迫与供磷水平对柳枝稷苗期生理特性的影响[J]. 浙江农业学报, 2022, 34(6): 1205-1216. |
[2] | 李丽艳, 谭海霞, 李婧, 王连龙, 杜迎辉, 徐志文. 耐盐促生芽孢杆菌的筛选及其对盐胁迫下燕麦生长的影响[J]. 浙江农业学报, 2022, 34(6): 1268-1276. |
[3] | 刘晨, 徐浩博, 斯钰阳, 李亚鹏, 郭玉婷, 杜长霞. 基于转录组学的植物响应盐胁迫调控机制研究进展[J]. 浙江农业学报, 2022, 34(4): 870-878. |
[4] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[5] | 刘涛, 陈海荣, 汪成忠, 任丽, 张荻. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681. |
[6] | 孟娜, 薛辉, 魏明, 魏胜华. 氯通道抑制剂缓解栽培大豆盐伤害的离子特征[J]. 浙江农业学报, 2022, 34(10): 2095-2104. |
[7] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅生长与离子分布的影响[J]. 浙江农业学报, 2022, 34(1): 79-88. |
[8] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[9] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[10] | 陆安桥, 张峰举, 王学琴, 许兴. 盐胁迫对苗期湖南稷子K +、Na +含量与分布的影响[J]. 浙江农业学报, 2021, 33(3): 396-403. |
[11] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[12] | 毛爽, 周万里, 杨帆, 狄小琳, 蔺吉祥, 杨青杰. 植物根系应答盐碱胁迫机理研究进展[J]. 浙江农业学报, 2021, 33(10): 1991-2000. |
[13] | 宋新丹, 陈斌斌, 马增岭, 徐丽丽, 林立东, 吴明江. 盐度对羊栖菜(Sargassum fusiforme)幼体光合特性的影响[J]. 浙江农业学报, 2020, 32(9): 1634-1644. |
[14] | 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理[J]. 浙江农业学报, 2020, 32(7): 1141-1148. |
[15] | 朱森林, 梅忠, 邢承华. 缺磷抑制拟南芥对镉的吸收[J]. 浙江农业学报, 2020, 32(5): 804-809. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3071
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 142
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||