浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 9-17.DOI: 10.3969/j.issn.1004-1524.20221670
罗英杰1,2(
), 崔维军2, 王忠华1, 吴月燕1, 林宏友2, 周洁2, 严成其1,3,*(
), 王栩鸣2,*(
)
收稿日期:2022-11-22
出版日期:2024-01-25
发布日期:2024-02-18
作者简介:严成其,E-mail: yanchengqi@163.com;通讯作者:
* 王栩鸣,E-mail: xmwang@zaas.ac.cn
基金资助:
LUO Yingjie1,2(
), CUI Weijun2, WANG Zhonghua1, WU Yueyan1, LIN Hongyou2, ZHOU Jie2, YAN Chengqi1,3,*(
), WANG Xuming2,*(
)
Received:2022-11-22
Online:2024-01-25
Published:2024-02-18
摘要:
多蘖矮秆基因dwarf-3(D3)是水稻独脚金内酯信号转导过程中的重要节点基因,拟南芥中的MAX2基因与D3同源,且MAX2参与拟南芥的抗病防卫反应。本研究以水稻泛素连接酶D3为诱饵进行酵母双杂筛库,发现水稻抗病相关蛋白维管植物单锌指蛋白VOZ2与D3存在潜在的相互作用。通过酵母双杂交试验证实,D3与VOZ2存在互作。通过荧光定量PCR证实,接种水稻白叶枯病菌后,VOZ2基因在转录水平上的表达受到显著诱导。利用水稻原生质体开展的亚细胞共定位实验发现,D3与VOZ2共定位于细胞核。双分子荧光互补实验发现,D3与VOZ2在烟草叶肉细胞的细胞核和细胞质均产生较强的荧光,进一步证实了D3与VOZ2的相互作用。研究结果为进一步探究D3和VOZ2在水稻抗病防卫反应中的功能与分子机理奠定了基础。
中图分类号:
罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17.
LUO Yingjie, CUI Weijun, WANG Zhonghua, WU Yueyan, LIN Hongyou, ZHOU Jie, YAN Chengqi, WANG Xuming. Interaction analysis between rice ubiquitin ligase D3 and the disease resistance associated protein VOZ2[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 9-17.
| 名称Name | 引物序列Primer sequence (5'→3') | 用途Usage |
|---|---|---|
| D3-CDS-F | ATGGCGGAAGAGGAGGAGG | 基因克隆 |
| D3-CDS-R | CTAATCATCAATTTGCCGGCT | Gene cloning |
| VOZ2-CDS-F | AGTCCTCTTCTTCGCCCAC | 基因克隆(含部分UTR) |
| VOZ2-CDS-R | AATATGCTATCTTCATGTCCCGT | Gene cloning (contains some UTR) |
| D3-pB2E-F | TCCGAATTCGCCCTTATGGCGGAAGAGGAGGAGG | D3-pB2E载体构建 |
| D3-pB2E-R | GTCGAATTCGCCCTTCTAATCATCAATTTGCCGGCT | Construction of D3-pB2E vector |
| VOZ2-pB2E-F | TCCGAATTCGCCCTTATGGCCGGCGATCCGGCC | VOZ2-pB2E载体构建 |
| VOZ2-pB2E-R | GTCGAATTCGCCCTTTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pB2E vector |
| D3-pGBKT7-F | AGGAGGACCTGCATATGGCGGAAGAGGAGGAGG | D3-pGBKT7载体构建 |
| D3-pGBKT7-R | GCAGGTCGACGGATCCCTAATCATCAATTTGCCGGCTG | Construction of D3-pGBKT7 vector |
| VOZ2-pGBKT7-F | CAGATTACGCTCATATGGCCGGCGATCCGGCC | VOZ2-pGBKT7载体构建 |
| VOZ2-pGBKT7-R | CGAGCTCGATGGATCCTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pGBKT7 vector |
| VOZ2-35S-Flag-F | CGGTACCCGGGGATCCATGGCCGGCGATCCGGCCG | VOZ2-3×flag载体构建 |
| VOZ2-35S-Flag-R | GGGCGAATTGGTCGACTGTCCCGTCACTAGGGTTCCAGT | Construction of VOZ2-3×flag vector |
| VOZ2-RT-F | AGGGCGATTGCGGAGGAATG | 实时荧光定量PCR |
| VOZ2-RT-R | ATTGGGGCCGTCTGGGTTTG | qRT-PCR |
表1 引物信息
Table 1 Primer information
| 名称Name | 引物序列Primer sequence (5'→3') | 用途Usage |
|---|---|---|
| D3-CDS-F | ATGGCGGAAGAGGAGGAGG | 基因克隆 |
| D3-CDS-R | CTAATCATCAATTTGCCGGCT | Gene cloning |
| VOZ2-CDS-F | AGTCCTCTTCTTCGCCCAC | 基因克隆(含部分UTR) |
| VOZ2-CDS-R | AATATGCTATCTTCATGTCCCGT | Gene cloning (contains some UTR) |
| D3-pB2E-F | TCCGAATTCGCCCTTATGGCGGAAGAGGAGGAGG | D3-pB2E载体构建 |
| D3-pB2E-R | GTCGAATTCGCCCTTCTAATCATCAATTTGCCGGCT | Construction of D3-pB2E vector |
| VOZ2-pB2E-F | TCCGAATTCGCCCTTATGGCCGGCGATCCGGCC | VOZ2-pB2E载体构建 |
| VOZ2-pB2E-R | GTCGAATTCGCCCTTTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pB2E vector |
| D3-pGBKT7-F | AGGAGGACCTGCATATGGCGGAAGAGGAGGAGG | D3-pGBKT7载体构建 |
| D3-pGBKT7-R | GCAGGTCGACGGATCCCTAATCATCAATTTGCCGGCTG | Construction of D3-pGBKT7 vector |
| VOZ2-pGBKT7-F | CAGATTACGCTCATATGGCCGGCGATCCGGCC | VOZ2-pGBKT7载体构建 |
| VOZ2-pGBKT7-R | CGAGCTCGATGGATCCTCATGTCCCGTCACTAGGGTTCC | Construction of VOZ2-pGBKT7 vector |
| VOZ2-35S-Flag-F | CGGTACCCGGGGATCCATGGCCGGCGATCCGGCCG | VOZ2-3×flag载体构建 |
| VOZ2-35S-Flag-R | GGGCGAATTGGTCGACTGTCCCGTCACTAGGGTTCCAGT | Construction of VOZ2-3×flag vector |
| VOZ2-RT-F | AGGGCGATTGCGGAGGAATG | 实时荧光定量PCR |
| VOZ2-RT-R | ATTGGGGCCGTCTGGGTTTG | qRT-PCR |
图3 酵母的β-半乳糖苷酶活性 共转pGBKT7-D3和pGADT7-VOZ2的酵母,以及阳性对照(共转pGBKT7-53和pGADT7-T的酵母)、阴性对照(共转pGBKT7-Lam和pGADT7-T的酵母)β-半乳糖苷酶的米氏常数平均值分别为0.396、0.629、0.214。该实验共进行了3次生物学重复2次技术重复,并采用t检验对比各组数据差异。**表示与对照相比差异显著(P≤0.01)。下同。
Fig.3 β-Galactosidase activity of yeast The average Michaelis constant values of β-galactosidase in pGBKT7-D3 and pGADT7-VOZ2 co-transformed yeast, positive control yeast (con-transformed with pGBKT7-53 and pGADT7-T) and negative control yeast (co-transformed with pGBKT7-Lam and pGADT7-T) were 0.396,0.629 and 0.214, respectively. Three biological replicates and two technical replicates were carried out, and t-test was used to compare the data differences between the groups. ** indicated significant difference (P≤0.01) compared with the control. The same as below.
图5 D3与VOZ2的亚细胞定位 BF,明场;GFP,绿色荧光;RFP,红色荧光;Merge,混合通道。
Fig.5 Subcellular localization of D3 and VOZ2 BF, Bright field; GFP, Green fluorescent; RFP, Red fluorescent; Merge, Merge channel.
图6 双分子荧光互补法验证D3与VOZ2之间的蛋白互作 BF,明场;YFP,黄色荧光;Chl,叶绿体自发荧光;Merge, 混合通道。
Fig.6 The protein interaction between D3 and VOZ2 verified by bimolecular fluorescent complimentary method BF, Bright field; YFP, Yellow fluorescent; Chl, Chloroplast fluorescent; Merge, Merge channel.
| [1] | KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology, 2005, 59(1): 1-6. |
| [2] | 林义钱, 王会福, 余山红. 噻唑锌对水稻白叶枯病的预防效果[J]. 浙江农业科学, 2020, 61(6): 1142-1143. |
| LIN Y Q, WANG H F, YU S H. Preventive effect of zinc thiazole on rice bacterial blight[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(6): 1142-1143. (in Chinese) | |
| [3] | 王华弟, 沈颖, 严成其. 我国南方稻区防治白叶枯病药剂筛选试验与示范应用[J]. 浙江农业科学, 2017, 58(11): 2001-2002. |
| WANG H D, SHEN Y, YAN C Q. Screening test and demonstration application of pesticides for controlling bacterial blight in southern China[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(11): 2001-2002. (in Chinese) | |
| [4] | 王忠华, 贾育林, 夏英武. 植物抗病分子机制研究进展[J]. 植物学通报, 2004, 39(5): 521-530. |
| WANG Z H, JIA Y L, XIA Y W. Research advances on molecular mechanism of disease resistance in plants[J]. Chinese Bulletin of Botany, 2004, 39(5): 521-530. (in Chinese with English abstract) | |
| [5] | LI Q T, MARTÍN-FONTECHA E S, KHOSLA A, et al. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress[J]. Plant Communications, 2022, 3(2): 100303. |
| [6] | ZHOU F, LIN Q B, ZHU L H, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480): 406-410. |
| [7] | YOSHIDA S, KAMEOKA H, TEMPO M, et al. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis[J]. The New Phytologist, 2012, 196(4): 1208-1216. |
| [8] | COOK C E, WHICHARD L P, TURNER B, et al. Germination of witchweed (Striga lutea lour.): isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753): 1189-1190. |
| [9] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
| LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Scientia Sinica(Vitae), 2019, 49(10): 1227-1281. (in Chinese with English abstract) | |
| [10] | WATERS M T, GUTJAHR C, BENNETT T, et al. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology, 2017, 68: 291-322. |
| [11] | WANG Y H, XUE Y B, LI J Y. Towards molecular breeding and improvement of rice in China[J]. Trends in Plant Science, 2005, 10(12): 610-614. |
| [12] | ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology, 2005, 46(1): 79-86. |
| [13] | ZHAO J F, WANG T, WANG M X, et al. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching[J]. Plant and Cell Physiology, 2014, 55(6): 1096-1109. |
| [14] | BYTHELL-DOUGLAS R, ROTHFELS C J, STEVENSON D W D, et al. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues[J]. BMC Biology, 2017, 15(1): 1-21. |
| [15] | ZHENG J S, HONG K, ZENG L J, et al. Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness[J]. The Plant Cell, 2020, 32(9): 2780-2805. |
| [16] | SUN S Y, WANG T, WANG L L, et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. |
| [17] | YAN H F, SAIKA H, MAEKAWA M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes & Genetic Systems, 2007, 82(4): 361-366. |
| [18] | PIISILÄ M, KECELI M A, BRADER G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biology, 2015, 15: 53. |
| [19] | 何子文. 利用CRISPR/Cas9技术编辑Pi21和D3基因改良水稻抗性和株型的研究[D]. 雅安: 四川农业大学, 2019. |
| HE Z W. Study on improving rice resistance and plant type by editing Pi21 and D3 genes with CRISPR/Cas9 technology[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
| [20] | CHEONG H, KIM C Y, JEON J S, et al. Xanthomonas oryzae pv. oryzae type Ⅲ effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice[J]. PLoS One, 2013, 8(9): e73346. |
| [21] | WANG J Y, WANG R Y, FANG H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Molecular Plant, 2021, 14(2): 253-266. |
| [22] | 段炼, 钱君, 郭小雨, 等. 一种快速高效的水稻原生质体制备和转化方法的建立[J]. 植物生理学报, 2014, 50(3): 351-357. |
| DUAN L, QIAN J, GUO X Y, et al. A rapid and efficient method for isolation and transformation of rice protoplast[J]. Plant Physiology Journal, 2014, 50(3): 351-357. (in Chinese with English abstract) | |
| [23] | RAIN J C, SELIG L, DE REUSE H, et al. The protein-protein interaction map of Helicobacter pylori[J]. Nature, 2001, 409(6817): 211-215. |
| [24] | 崔红军, 魏玉清. 酵母双杂交系统及其应用研究进展[J]. 安徽农业科学, 2015, 43(13): 45-47. |
| CUI H J, WEI Y Q. Review on application status of yeast two hybrid system[J]. Journal of Anhui Agricultural Sciences, 2015, 43(13): 45-47. (in Chinese with English abstract) | |
| [25] | AO K, TONG M, LI L, et al. SCFSNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity[J]. New Phytologist, 2021, 229(5): 2795-2811. |
| [26] | CHEN F, LI Q, SUN L X, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63. |
| [27] | 许克恒, 张云彤, 张莹, 等. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1): 26-32. |
| XU K H, ZHANG Y T, ZHANG Y, et al. Research advances on the F-box gene family in plants[J]. Biotechnology Bulletin, 2018, 34(1): 26-32. (in Chinese with English abstract) | |
| [28] | SHABEK N, TICCHIARELLI F, MAO H B, et al. Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling[J]. Nature, 2018, 563(7733): 652-656. |
| [29] | 姚瑞枫, 谢道昕. 独脚金内酯信号途径的新发现: 抑制子也是转录因子[J]. 植物学报, 2020, 55(4): 397-402. |
| YAO R F, XIE D X. New insight into strigolactone signaling[J]. Chinese Bulletin of Botany, 2020, 55(4): 397-402. (in Chinese with English abstract) | |
| [30] | JENSEN M, KJAERSGAARD T, NIELSEN M, et al. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling[J]. Biochemical Journal, 2010, 426(2): 183-196. |
| [31] | NAKAI Y, FUJIWARA S, KUBO Y, et al. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(3): e23358. |
| [32] | SCHWARZENBACHER R E, WARDELL G, STASSEN J, et al. The IBI1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense[J]. Molecular Plant, 2020, 13(10): 1455-1469. |
| [1] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [2] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. |
| [3] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [4] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [5] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [6] | 王闻琦, 王盼盼, 张严玲, 刘青青, 洪双双, 赵高鹏, 刘泓畅, 王翠玲. 玉米生物钟基因ZmPRR1-2互作蛋白质的筛选[J]. 浙江农业学报, 2025, 37(5): 977-986. |
| [7] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [8] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
| [9] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| [10] | 谢昶琰, 金雨濛, 张苗, 董青君, 李青, 纪力, 钟平, 陈川, 章安康. 利用河道淤泥开发机插水稻秧苗营养土及其应用效果[J]. 浙江农业学报, 2025, 37(3): 538-547. |
| [11] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
| [12] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
| [13] | 徐伟东, 陆强, 姚张良, 王晖, 王瑞森, 郎淑平. 水稻田夏熟杂草多样性特征对不同轮作模式的响应[J]. 浙江农业学报, 2025, 37(10): 2138-2149. |
| [14] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
| [15] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||