[1] |
KHUSH G S. What it will take to feed 5.0 billion rice consumers in 2030[J]. Plant Molecular Biology, 2005, 59(1): 1-6.
|
[2] |
林义钱, 王会福, 余山红. 噻唑锌对水稻白叶枯病的预防效果[J]. 浙江农业科学, 2020, 61(6): 1142-1143.
|
|
LIN Y Q, WANG H F, YU S H. Preventive effect of zinc thiazole on rice bacterial blight[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(6): 1142-1143. (in Chinese)
|
[3] |
王华弟, 沈颖, 严成其. 我国南方稻区防治白叶枯病药剂筛选试验与示范应用[J]. 浙江农业科学, 2017, 58(11): 2001-2002.
|
|
WANG H D, SHEN Y, YAN C Q. Screening test and demonstration application of pesticides for controlling bacterial blight in southern China[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(11): 2001-2002. (in Chinese)
|
[4] |
王忠华, 贾育林, 夏英武. 植物抗病分子机制研究进展[J]. 植物学通报, 2004, 39(5): 521-530.
|
|
WANG Z H, JIA Y L, XIA Y W. Research advances on molecular mechanism of disease resistance in plants[J]. Chinese Bulletin of Botany, 2004, 39(5): 521-530. (in Chinese with English abstract)
|
[5] |
LI Q T, MARTÍN-FONTECHA E S, KHOSLA A, et al. The strigolactone receptor D14 targets SMAX1 for degradation in response to GR24 treatment and osmotic stress[J]. Plant Communications, 2022, 3(2): 100303.
|
[6] |
ZHOU F, LIN Q B, ZHU L H, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013, 504(7480): 406-410.
|
[7] |
YOSHIDA S, KAMEOKA H, TEMPO M, et al. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis[J]. The New Phytologist, 2012, 196(4): 1208-1216.
|
[8] |
COOK C E, WHICHARD L P, TURNER B, et al. Germination of witchweed (Striga lutea lour.): isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753): 1189-1190.
|
[9] |
黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281.
|
|
LI J, LI C Y. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Scientia Sinica(Vitae), 2019, 49(10): 1227-1281. (in Chinese with English abstract)
|
[10] |
WATERS M T, GUTJAHR C, BENNETT T, et al. Strigolactone signaling and evolution[J]. Annual Review of Plant Biology, 2017, 68: 291-322.
|
[11] |
WANG Y H, XUE Y B, LI J Y. Towards molecular breeding and improvement of rice in China[J]. Trends in Plant Science, 2005, 10(12): 610-614.
|
[12] |
ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant and Cell Physiology, 2005, 46(1): 79-86.
|
[13] |
ZHAO J F, WANG T, WANG M X, et al. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching[J]. Plant and Cell Physiology, 2014, 55(6): 1096-1109.
|
[14] |
BYTHELL-DOUGLAS R, ROTHFELS C J, STEVENSON D W D, et al. Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues[J]. BMC Biology, 2017, 15(1): 1-21.
|
[15] |
ZHENG J S, HONG K, ZENG L J, et al. Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness[J]. The Plant Cell, 2020, 32(9): 2780-2805.
|
[16] |
SUN S Y, WANG T, WANG L L, et al. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523.
|
[17] |
YAN H F, SAIKA H, MAEKAWA M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes & Genetic Systems, 2007, 82(4): 361-366.
|
[18] |
PIISILÄ M, KECELI M A, BRADER G, et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biology, 2015, 15: 53.
|
[19] |
何子文. 利用CRISPR/Cas9技术编辑Pi21和D3基因改良水稻抗性和株型的研究[D]. 雅安: 四川农业大学, 2019.
|
|
HE Z W. Study on improving rice resistance and plant type by editing Pi21 and D3 genes with CRISPR/Cas9 technology[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese with English abstract)
|
[20] |
CHEONG H, KIM C Y, JEON J S, et al. Xanthomonas oryzae pv. oryzae type Ⅲ effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice[J]. PLoS One, 2013, 8(9): e73346.
|
[21] |
WANG J Y, WANG R Y, FANG H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Molecular Plant, 2021, 14(2): 253-266.
|
[22] |
段炼, 钱君, 郭小雨, 等. 一种快速高效的水稻原生质体制备和转化方法的建立[J]. 植物生理学报, 2014, 50(3): 351-357.
|
|
DUAN L, QIAN J, GUO X Y, et al. A rapid and efficient method for isolation and transformation of rice protoplast[J]. Plant Physiology Journal, 2014, 50(3): 351-357. (in Chinese with English abstract)
|
[23] |
RAIN J C, SELIG L, DE REUSE H, et al. The protein-protein interaction map of Helicobacter pylori[J]. Nature, 2001, 409(6817): 211-215.
|
[24] |
崔红军, 魏玉清. 酵母双杂交系统及其应用研究进展[J]. 安徽农业科学, 2015, 43(13): 45-47.
|
|
CUI H J, WEI Y Q. Review on application status of yeast two hybrid system[J]. Journal of Anhui Agricultural Sciences, 2015, 43(13): 45-47. (in Chinese with English abstract)
|
[25] |
AO K, TONG M, LI L, et al. SCFSNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity[J]. New Phytologist, 2021, 229(5): 2795-2811.
|
[26] |
CHEN F, LI Q, SUN L X, et al. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress[J]. DNA Research, 2006, 13(2): 53-63.
|
[27] |
许克恒, 张云彤, 张莹, 等. 植物F-box基因家族的研究进展[J]. 生物技术通报, 2018, 34(1): 26-32.
|
|
XU K H, ZHANG Y T, ZHANG Y, et al. Research advances on the F-box gene family in plants[J]. Biotechnology Bulletin, 2018, 34(1): 26-32. (in Chinese with English abstract)
|
[28] |
SHABEK N, TICCHIARELLI F, MAO H B, et al. Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling[J]. Nature, 2018, 563(7733): 652-656.
|
[29] |
姚瑞枫, 谢道昕. 独脚金内酯信号途径的新发现: 抑制子也是转录因子[J]. 植物学报, 2020, 55(4): 397-402.
|
|
YAO R F, XIE D X. New insight into strigolactone signaling[J]. Chinese Bulletin of Botany, 2020, 55(4): 397-402. (in Chinese with English abstract)
|
[30] |
JENSEN M, KJAERSGAARD T, NIELSEN M, et al. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling[J]. Biochemical Journal, 2010, 426(2): 183-196.
|
[31] |
NAKAI Y, FUJIWARA S, KUBO Y, et al. Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(3): e23358.
|
[32] |
SCHWARZENBACHER R E, WARDELL G, STASSEN J, et al. The IBI1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense[J]. Molecular Plant, 2020, 13(10): 1455-1469.
|