浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 18-31.DOI: 10.3969/j.issn.1004-1524.20230284
周丽丽1,2,3(), 冯海宽4, 聂臣巍2,3, 许晓斌5, 刘媛1,2,3, 孟麟2,3, 薛贝贝2, 明博2, 梁齐云1, 苏涛1,*(
), 金秀良2,3,*(
)
收稿日期:
2023-03-06
出版日期:
2024-01-25
发布日期:
2024-02-18
作者简介:
金秀良,E-mail:jinxiuliang@caas.cn;通讯作者:
* 苏涛,E-mail:st7162003@163.com
基金资助:
ZHOU Lili1,2,3(), FENG Haikuan4, NIE Chenwei2,3, XU Xiaobin5, LIU Yuan1,2,3, MENG Lin2,3, XUE Beibei2, MING Bo2, LIANG Qiyun1, SU Tao1,*(
), JIN Xiuliang2,3,*(
)
Received:
2023-03-06
Online:
2024-01-25
Published:
2024-02-18
摘要:
为探讨不同时间获取的无人机多光谱数据对玉米冠层叶绿素密度(canopy chlorophyll density, CCD)估算的影响,分别在玉米抽雄吐丝期、籽粒建成期、乳熟期和蜡熟期选择同一天的10:00—10:59、11:00—11:59、13:00—13:59和14:00—14:59进行无人机多光谱观测试验,并结合PROSAIL模型模拟结果与实测CCD数据,分析一天中不同时刻典型植被指数的变化规律及CCD估算结果的差异。结果表明:在同一天中,无人机玉米冠层反射率和与实测CCD相关性较好的植被指数值均随时间变化,近红外波段的反射率变化最明显,越接近12:00,实测的植被指数值越低,而在一天的不同时间PROSAIL模型模拟的植被指数值几乎没有差异。在同一天,基于不同观测时间获取的同一植被指数与实测CCD的相关性存在较大差异,且不同生育时期和不同指数间的差异不一致;而模拟得到的同一植被指数与CCD的相关性在同一天不同时间的差异不明显。在不同生育时期,基于不同观测时间无人机数据构建的CCD估算模型均可以取得较好的精度,但不同观测时间的估算结果存在差异,决定系数最低的为0.53,最高的为0.80。这些结果表明,在传统的光谱数据获取时间范围内(10:00—14:00),无人机影像获取时间仍对玉米CCD估算有影响,越接近12:00,估算精度越高。研究结果可为后续作物的CCD精准估算提供基础支撑。
中图分类号:
周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31.
ZHOU Lili, FENG Haikuan, NIE Chenwei, XU Xiaobin, LIU Yuan, MENG Lin, XUE Beibei, MING Bo, LIANG Qiyun, SU Tao, JIN Xiuliang. Influence of unmanned aerial vehicle observation time on estimation of canopy chlorophyll density of maize[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 18-31.
处理 Treatment | 不同种植时间的肥料施用量Application rate of fertilizer at different time | |||||
---|---|---|---|---|---|---|
50 d | 60 d | 70 d | 80 d | 90 d | 100 d | |
ND1 | 0 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND2 | 0 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND3 | 0 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND4 | 0 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND5 | 0 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND6 | 0 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND7 | 0 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND8 | 0 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND9 | 0 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND10 | 72.92 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND11 | 72.92 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND12 | 72.92 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND13 | 72.92 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND14 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND15 | 72.92 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND16 | 72.92 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND17 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND18 | 72.92 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND19 | 145.83 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND20 | 145.83 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND21 | 145.83 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND22 | 145.83 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND23 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND24 | 145.83 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND25 | 145.83 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND26 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND27 | 145.83 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
表1 施肥方案
Table 1 Fertilization scheme kg·hm-2
处理 Treatment | 不同种植时间的肥料施用量Application rate of fertilizer at different time | |||||
---|---|---|---|---|---|---|
50 d | 60 d | 70 d | 80 d | 90 d | 100 d | |
ND1 | 0 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND2 | 0 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND3 | 0 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND4 | 0 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND5 | 0 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND6 | 0 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND7 | 0 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND8 | 0 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND9 | 0 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND10 | 72.92 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND11 | 72.92 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND12 | 72.92 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND13 | 72.92 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND14 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND15 | 72.92 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND16 | 72.92 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND17 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND18 | 72.92 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
ND19 | 145.83 | 0 | 0 | 72.92 | 72.92 | 72.92 |
ND20 | 145.83 | 0 | 72.92 | 72.92 | 72.92 | 72.92 |
ND21 | 145.83 | 0 | 145.83 | 72.92 | 72.92 | 72.92 |
ND22 | 145.83 | 72.92 | 0 | 72.92 | 72.92 | 72.92 |
ND23 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 | 72.92 |
ND24 | 145.83 | 72.92 | 145.83 | 72.92 | 72.92 | 72.92 |
ND25 | 145.83 | 145.83 | 0 | 72.92 | 72.92 | 72.92 |
ND26 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 | 72.92 |
ND27 | 145.83 | 145.83 | 145.83 | 72.92 | 72.92 | 72.92 |
生育时期 Growth stage | 观测时间 Observation time | 太阳天顶角 Solar zenith angle(SZA)/(°) | 太阳方位角 Solar azimuth angle(SAA)/(°) |
---|---|---|---|
抽雄吐丝期Tasseling silking stage (VT/R1) | 10:00—10:59(10AM) | 35.59 | 125.46 |
11:00—11:59(11AM) | 28.16 | 148.67 | |
13:00—13:59(1PM) | 28.18 | 211.31 | |
14:00—14:59(2PM) | 35.62 | 234.50 | |
籽粒建成期Blister stage (R2) | 10:00—10:59(10AM) | 38.17 | 128.70 |
11:00—11:59(11AM) | 31.16 | 151.15 | |
13:00—13:59(1PM) | 31.18 | 208.83 | |
14:00—14:59(2PM) | 38.21 | 231.25 | |
乳熟期Milk stage (R3) | 10:00—10:59(10AM) | 40.76 | 131.52 |
11:00—11:59(11AM) | 34.11 | 153.18 | |
13:00—13:59(1PM) | 34.14 | 206.80 | |
14:00—14:59(2PM) | 40.80 | 228.43 | |
蜡熟期Dough stage (R5) | 10:00—10:59(10AM) | 44.30 | 134.84 |
11:00—11:59(11AM) | 38.09 | 155.45 | |
13:00—13:59(1PM) | 38.12 | 204.54 | |
14:00—14:59(2PM) | 44.35 | 225.11 |
表2 PROSAIL模型中太阳天顶角和方位角参数的具体设置
Table 2 Specific settings of solar zenith angle and azimuth angle of PROSAIL model
生育时期 Growth stage | 观测时间 Observation time | 太阳天顶角 Solar zenith angle(SZA)/(°) | 太阳方位角 Solar azimuth angle(SAA)/(°) |
---|---|---|---|
抽雄吐丝期Tasseling silking stage (VT/R1) | 10:00—10:59(10AM) | 35.59 | 125.46 |
11:00—11:59(11AM) | 28.16 | 148.67 | |
13:00—13:59(1PM) | 28.18 | 211.31 | |
14:00—14:59(2PM) | 35.62 | 234.50 | |
籽粒建成期Blister stage (R2) | 10:00—10:59(10AM) | 38.17 | 128.70 |
11:00—11:59(11AM) | 31.16 | 151.15 | |
13:00—13:59(1PM) | 31.18 | 208.83 | |
14:00—14:59(2PM) | 38.21 | 231.25 | |
乳熟期Milk stage (R3) | 10:00—10:59(10AM) | 40.76 | 131.52 |
11:00—11:59(11AM) | 34.11 | 153.18 | |
13:00—13:59(1PM) | 34.14 | 206.80 | |
14:00—14:59(2PM) | 40.80 | 228.43 | |
蜡熟期Dough stage (R5) | 10:00—10:59(10AM) | 44.30 | 134.84 |
11:00—11:59(11AM) | 38.09 | 155.45 | |
13:00—13:59(1PM) | 38.12 | 204.54 | |
14:00—14:59(2PM) | 44.35 | 225.11 |
图2 不同观测时间下的波段反射率变化 10AM、11AM、1PM、2PM对应的时间分别为10:00—10:59、11:00—11:59、13:00—13:59、14:00—14:59。下同。图a~d分别对应于抽雄吐丝期(VT/R1)、籽粒建成期(R2)、乳熟期(R3)、蜡熟期(R5)。
Fig.2 Changes of waveband reflectance at different observation time 10AM, 11AM, 1PM, 2PM represent 10:00—10:59, 11:00—11:59, 13:00—13:59, 14:00—14:59, respectively. The same as below. Fig. a-d represent the tasseling silking stage (VT/R1), blister stage (R2), milk stage (R3), and dough stage (R5), respectively.
植被指数 Vegetation index | 各生育时期的相关系数Correlation coefficient at different growth stages | |||
---|---|---|---|---|
VT/R1 | R2 | R3 | R5 | |
MTCI | 0.65** | 0.74** | 0.72** | 0.68** |
NDVIrededge | 0.70** | 0.76** | 0.75** | 0.75** |
CIrededge | 0.68** | 0.75** | 0.74** | 0.73** |
NDVI | 0.36** | 0.61** | 0.64** | 0.66** |
GNDVI | 0.72** | 0.67** | 0.77** | 0.76** |
TCARI/OSAVI | 0.26** | 0.46** | 0.13* | 0.41** |
OSAVI | 0.28** | 0.43** | 0.16* | 0.55** |
SIPI | 0.07 | 0.02 | 0.09 | 0.34** |
EVI | 0.23** | 0.31** | 0.09 | 0.47** |
DVI | 0.24** | 0.31** | 0.09 | 0.44** |
TCARI | 0.20** | 0.37** | 0.08 | 0.33** |
MCARI | 0.20** | 0.37** | 0.08 | 0.33** |
PPR | 0.11* | 0.31** | 0.13* | 0.37** |
表3 植被指数与冠层叶绿素密度(CCD)的相关性
Table 3 Correlations within vegetatino indexes and canopy chlorophyll density (CCD)
植被指数 Vegetation index | 各生育时期的相关系数Correlation coefficient at different growth stages | |||
---|---|---|---|---|
VT/R1 | R2 | R3 | R5 | |
MTCI | 0.65** | 0.74** | 0.72** | 0.68** |
NDVIrededge | 0.70** | 0.76** | 0.75** | 0.75** |
CIrededge | 0.68** | 0.75** | 0.74** | 0.73** |
NDVI | 0.36** | 0.61** | 0.64** | 0.66** |
GNDVI | 0.72** | 0.67** | 0.77** | 0.76** |
TCARI/OSAVI | 0.26** | 0.46** | 0.13* | 0.41** |
OSAVI | 0.28** | 0.43** | 0.16* | 0.55** |
SIPI | 0.07 | 0.02 | 0.09 | 0.34** |
EVI | 0.23** | 0.31** | 0.09 | 0.47** |
DVI | 0.24** | 0.31** | 0.09 | 0.44** |
TCARI | 0.20** | 0.37** | 0.08 | 0.33** |
MCARI | 0.20** | 0.37** | 0.08 | 0.33** |
PPR | 0.11* | 0.31** | 0.13* | 0.37** |
图3 基于PROSAIL模型模拟的植被指数在不同观测时间下的变化 NDVI,归一化植被指数;GNDVI,绿色归一化植被指数;CIrededge,红边叶绿素指数;NDVIrededge,红边归一化植被指数;MTCI,MERIS陆地叶绿素指数。下同。
Fig.3 Changes of vegetation indexes simulated by PROSAIL model under different observation time NDVI, Normalized difference vegetation index; GNDVI, Green normalized difference vegetation index; CIrededge, Red edge chlorophyll index; NDVIrededge, Red edge normalized difference vegetation index; MTCI, MERIS terrestrial chlorophyll index. The same as below.
图5 基于PROSAIL模型模拟的植被指数与冠层叶绿素密度(CCD)的绝对相关系数(r) a~e分别表示的是NDVI、GNDVI、CIrededge、NDVIrededge、MTCI与CCD的相关性。图6同。
Fig.5 Absolute correlation coefficient (r) within the vegetation indexes simulated by PROSAIL model and canopy chlorophyll density (CCD) a-e represent the correlation within NDVI, GNDVI, CIrededge, NDVIrededge, MTCI and CCD, respectively. The same as in Fig.6.
图6 基于无人机影像实测的植被指数与冠层叶绿素密度(CCD)的绝对相关系数
Fig.6 Absolute correlation coefficient within the measured vegetation indexes based on unmanned aerial vehicle images and canopy chlorophyll density (CCD)
图7 基于PROSAIL模型模拟的植被指数对冠层叶绿素密度(CCD)估算的影响 RMSE,均方根误差;NRMSE,归一化均方根误差。下同。
Fig.7 Influence of the vegetation indexes simulated by PROSAIL model on canopy chlorophyll density (CCD) estimation RMSE, Root mean square error; NRMSE, Normalized root mean squared error. The same as below.
图8 基于无人机影像实测的植被指数对冠层叶绿素密度(CCD)估算的影响 R2,决定系数。
Fig.8 Influence of the measured vegetation indexes based on unmanned aerial vehicle images on canopy chlorophyll density (CCD) estimation R2,Coefficient of determination.
[1] | TIAN X L, LIU J J, LIU Q C, et al. The effects of soil properties, cropping systems and geographic location on soil prokaryotic communities in four maize production regions across China[J]. Journal of Integrative Agriculture, 2022, 21(7): 2145-2157. |
[2] | SHAO G M, HAN W T, ZHANG H H, et al. Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods[J]. Agricultural Water Management, 2023, 276: 108064. |
[3] | LÓPEZ A, JURADO J M, OGAYAR C J, et al. A framework for registering UAV-based imagery for crop-tracking in Precision Agriculture[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 97: 102274. |
[4] | DENG L, MAO Z H, LI X J, et al. UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146: 124-136. |
[5] | CHENG J P, YANG H, QI J B, et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery[J]. Computers and Electronics in Agriculture, 2022, 202: 107401. |
[6] | JAY S, BARET F, DUTARTRE D, et al. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops[J]. Remote Sensing of Environment, 2019, 231: 110898. |
[7] | WANG N, SUOMALAINEN J, BARTHOLOMEUS H, et al. Diurnal variation of sun-induced chlorophyll fluorescence of agricultural crops observed from a point-based spectrometer on a UAV[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96: 102276. |
[8] | 郭松, 常庆瑞, 郑智康, 等. 基于无人机高光谱影像的玉米叶绿素含量估测[J]. 江苏农业学报, 2022, 38(4): 976-984. |
GUO S, CHANG Q R, ZHENG Z K, et al. Estimation of maize chlorophyll content based on unmanned aerial vehicle (UAV) hyperspectral images[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(4): 976-984. (in Chinese with English abstract) | |
[9] | QIAO L, ZHANG Z Y, CHEN L S, et al. Detection of chlorophyll content in maize canopy from UAV imagery[J]. IFAC-PapersOnLine, 2019, 52(30): 330-335. |
[10] | LI Z H, LI Z H, FAIRBAIRN D, et al. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral[J]. Computers and Electronics in Agriculture, 2019, 162: 174-182. |
[11] | YANG G J, LI C C, WANG Y J, et al. The DOM generation and precise radiometric calibration of a UAV-mounted miniature snapshot hyperspectral imager[J]. Remote Sensing, 2017, 9(7): 642. |
[12] | PENG M M, HAN W T, LI C Q, et al. Modeling the daytime net primary productivity of maize at the canopy scale based on UAV multispectral imagery and machine learning[J]. Journal of Cleaner Production, 2022, 367: 133041. |
[13] | 周珊羽. 基于无人机高光谱系统多角度观测的农作物叶绿素含量反演[D]. 济南: 山东大学, 2019. |
ZHOU S Y. Parameter retrieval of different crop types based on hyperspectral multi-angle data recorded from a UAV platform[D]. Jinan: Shandong University, 2019. (in Chinese with English abstract) | |
[14] | WANG L, LIAO Q H, XU X B, et al. Estimating the vertical distribution of chlorophyll in winter wheat based on multi-angle hyperspectral data[J]. Remote Sensing Letters, 2020, 11(11): 1032-1041. |
[15] | ADELUYI O, HARRIS A, VERRELST J, et al. Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102454. |
[16] | LI D, CHEN J M, ZHANG X, et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time[J]. Remote Sensing of Environment, 2020, 248: 111985. |
[17] | 舒方, 袁金国. 基于模型模拟的NDVI对叶片生化组分参数的敏感性及叶绿素估算[J]. 科技通报, 2019, 35(4): 120-128. |
SHU F, YUAN J G. Sensitivity of NDVI to leaf biochemical components parameters based on simulation and chlorophyll content estimation[J]. Bulletin of Science and Technology, 2019, 35(4): 120-128. (in Chinese with English abstract) | |
[18] | 何宇航. 多角度遥感植物冠层叶绿素含量反演研究[D]. 杭州: 杭州电子科技大学, 2021. |
HE Y H. Research on plant canopy chlorophyll content retrieval with multi-angle remote sensing techniques[D]. Hangzhou: Hangzhou Dianzi University, 2021. (in Chinese with English abstract) | |
[19] | 姚延娟, 范闻捷, 刘强, 等. 玉米全生长期叶面积指数收获测量法的改进[J]. 农业工程学报, 2010, 26(8): 189-194. |
YAO Y J, FAN W J, LIU Q, et al. Improved harvesting method for corn LAI measurement in corn whole growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 189-194. (in Chinese with English abstract) | |
[20] | 李得孝, 郭月霞, 员海燕, 等. 玉米叶绿素含量测定方法研究[J]. 中国农学通报, 2005, 21(6): 153-155. |
LI D X, GUO Y X, YAN H Y, et al. Determined methods of chlorophyll from maize[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 153-155. (in Chinese with English abstract) | |
[21] | TA N, CHANG Q R, ZHANG Y M. Estimation of apple tree leaf chlorophyll content based on machine learning methods[J]. Remote Sensing, 2021, 13(19): 3902. |
[22] | HAN H S, WAN R R, LI B. Estimating forest aboveground biomass using Gaofen-1 images, Sentinel-1 images, and machine learning algorithms: a case study of the dabie mountain region, China[J]. Remote Sensing, 2021, 14(1): 176. |
[23] | ZENG N, REN X L, HE H L, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102: 479-487. |
[24] | JACQUEMOUD S, VERHOEF W, BARET F, et al. PROSPECT+SAIL models: a review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113: S56-S66. |
[25] | DARVISHZADEH R, SKIDMORE A, SCHLERF M, et al. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland[J]. Remote Sensing of Environment, 2008, 112(5): 2592-2604. |
[26] | ROUSE J W, HAAS R H, SCHELL J A. Monitoring the vernal advancements and retrogradation (green wave effect) of natural vegetation[EB/OL]. (1973-04-01) [2023-03-06]. https://ntrs.nasa.gov/api/citations/19730017588/downloads/19730017588.pdf. |
[27] | GITELSON A A, MERZLYAK M N. Remote sensing of chlorophyll concentration in higher plant leaves[J]. Advances in Space Research, 1998, 22(5): 689-692. |
[28] | GITELSON A A, VIÑA A, CIGANDA V, et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophysical Research Letters, 2005, 32(8): L08403. |
[29] | PEN-UELAS J, FILELLA I, LLORET P, et al. Reflectance assessment of mite effects on apple trees[J]. International Journal of Remote Sensing, 1995, 16(14): 2727-2733. |
[30] | GITELSON A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation[J]. Journal of Plant Physiology, 1994, 143(3): 286-292. |
[31] | DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International Journal of Remote Sensing, 2004, 25(23): 5403-5413. |
[32] | DAUGHTRY C S T, WALTHALL C L, KIM M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229-239. |
[33] | ZARCO-TEJADA P J, HABOUDANE D, MILLER J R, et al. Leaf chlorophyll a+b and canopy LAI estimation in crops using R-T models and hyperspectral reflectance imagery[EB/OL]. [2023-03-06]. https://quantalab.ias.csic.es/pdf/zarco_ESA_2002.pdf. |
[34] | TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. |
[35] | HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1/2): 195-213. |
[36] | RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107. |
[37] | METTERNICHT G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. International Journal of Remote Sensing, 2003, 24(14): 2855-2877. |
[38] | HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2/3): 416-426. |
[39] | ALI A, IMRAN M, ALI A, et al. Evaluating Sentinel-2 red edge through hyperspectral profiles for monitoring LAI & chlorophyll content of Kinnow Mandarin orchards[J]. Remote Sensing Applications: Society and Environment, 2022, 26: 100719. |
[40] | MILLER J R, HARE E W, WU J. Quantitative characterization of the vegetation red edge reflectance 1: an inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing, 1990, 11(10): 1755-1773. |
[41] | 许晓斌. 基于辐射传输模型的玉米氮素高光谱遥感定量估算[D]. 青岛: 山东科技大学, 2019. |
XU X B. Nitrogen quantitative estimation of maize using hyperspectral remote sensing based on radiation transfer model[D]. Qingdao: Shandong University of Science and Technology, 2019. (in Chinese with English abstract) |
[1] | 冷益丰, 罗樊, 陈从顺, 丁鑫, 蔡光泽. 基于GBS测序的全基因组SNP揭示大凉山玉米地方品种资源的亲缘关系与遗传分化[J]. 浙江农业学报, 2024, 36(1): 32-47. |
[2] | 马启良, 杨小明, 胡水星, 黄子鸿, 祁亨年. 基于Mask RCNN和视觉技术的玉米种子发芽自动检测方法[J]. 浙江农业学报, 2023, 35(8): 1927-1936. |
[3] | 雷联. 膜下滴灌调亏对制种玉米植株生长、产量和水分利用的影响[J]. 浙江农业学报, 2023, 35(7): 1542-1549. |
[4] | 张淑红, 张运峰, 武秋颖, 高凤菊, 李亚子, 纪景欣, 许可, 范永山. 玉米大斑病菌醇脱氢酶基因家族的鉴定和生物信息学分析[J]. 浙江农业学报, 2023, 35(5): 1108-1115. |
[5] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[6] | 王宁柯, 张瑞, 章胜勇. 机械化服务程度和农地经营规模对玉米生产效率的影响[J]. 浙江农业学报, 2023, 35(3): 698-707. |
[7] | 郑冉, 吕丹, 武清贵, 邸晓红, 朱通通, 邱冠杰, 罗红兵. 玉米C型胞质不育系S37-2败育的生物学与生理生化机制分析[J]. 浙江农业学报, 2023, 35(2): 259-265. |
[8] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
[9] | 崔玲宇, 喻曼, 乔宇颖, 苏瑶, 王云龙, 沈阿林. 基于Web of Science数据库的土壤质量评价及其微生物指标研究趋势分析[J]. 浙江农业学报, 2023, 35(11): 2688-2697. |
[10] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
[11] | 孟繁昊, 杨恒山, 张瑞富, 张玉芹, 李维敏, 张雨珊, 张明伟. 灌溉方式对西辽河平原玉米产量和水氮利用效率的影响[J]. 浙江农业学报, 2022, 34(9): 1826-1836. |
[12] | 郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031. |
[13] | 姜昊梁, 黄允, 梁绍芳, 谢梦晨, 徐天成, 宋芷婷, 向文文, 陈青春, 万小荣, 孙伟. 镉胁迫对不同甜玉米自交系幼苗生长的影响及其相关简单重复序列分子标记初筛[J]. 浙江农业学报, 2022, 34(8): 1582-1590. |
[14] | 任梦云, 杜龙岗, 王美兴, 黄益峰. 糯玉米可溶性糖组分特征与采后品质特性[J]. 浙江农业学报, 2022, 34(6): 1133-1140. |
[15] | 胡开博, 杨清夏, 李扬, 吴开贤, 赵平, 龙光强. 化肥减氮配施氨基酸肥料对春玉米生产的影响[J]. 浙江农业学报, 2022, 34(4): 661-670. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||