浙江农业学报 ›› 2025, Vol. 37 ›› Issue (7): 1545-1555.DOI: 10.3969/j.issn.1004-1524.20240861
谭诗逸1,2(), 俞国红1,2, 薛向磊1,2, 赵颖雷1,2, 许宝玉1,2, 张成浩1,2,*(
)
收稿日期:
2024-10-10
出版日期:
2025-07-25
发布日期:
2025-08-20
作者简介:
谭诗逸(1993—),女,浙江湖州人,硕士,助理研究员,研究方向为设施农业装备与技术。E-mail:514141269@qq.com
通讯作者:
*张成浩,E-mail: zhchhao2008@163.com
基金资助:
TAN Shiyi1,2(), YU Guohong1,2, XUE Xianglei1,2, ZHAO Yinglei1,2, XU Baoyu1,2, ZHANG Chenghao1,2,*(
)
Received:
2024-10-10
Online:
2025-07-25
Published:
2025-08-20
摘要:
当前水稻工厂化智能育秧面临人工搬运秧盘劳动强度大、效率低、成本高等问题。为此,本研究针对立体循环运动式苗床,设计了一种水稻育秧盘搬运装置。该装置可一次性精准抓取多个秧盘,实现催芽后秧盘从输送线到苗床吊篮,以及育秧完成后从吊篮回输送线的自动化搬运。文中详细阐述了搬运装置的基本结构和工作原理,并基于有限元法(finite element method, FEM)和理论分析,对夹取机构、秧盘顶升机构、机械臂、输送机构等关键部件进行了结构设计与选型;以可编程逻辑控制器(programmable logic controller, PLC)为核心,搭建上下盘作业控制系统。样机试制和现场试验结果表明,在夹取高度10 mm、下放高度15 mm、机械臂执行速度0.6 m·s-1的参数下,上盘和下盘作业的平均成功率分别达到97.78%和98.89%。该研究结果为提升水稻育秧的机械化与智能化水平提供了技术参考。
中图分类号:
谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555.
TAN Shiyi, YU Guohong, XUE Xianglei, ZHAO Yinglei, XU Baoyu, ZHANG Chenghao. Design and experiment of tray handling device for industrialized rice seedling raising[J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1545-1555.
图2 水稻育秧盘搬运装置结构示意图 1,地轨系统;2,机械臂;3,输送机构;4,阻拦机构;5,夹取机构;6,吊篮固定机构;7,苗床(吊篮);8,顶升机构;9,秧盘;10,控制模块。
Fig.2 Structural diagram of rice seedling tray handling device 1, Ground rail system; 2, Robotic arm; 3, Conveying mechanism; 4, Blocking mechanism; 5, Clamping mechanism; 6, Basket fixing mechanism; 7, Seedbed (basket); 8, Lifting mechanism; 9, Seedling tray; 10, Control module.
图3 夹取机构结构示意图 1,夹爪;2,夹爪连接板;3,末端连接板;4,固定横杆;5,夹爪气缸。
Fig.3 Structure diagram of the clamping mechanism 1, Clamping jaw; 2, Clamping jaw connecting plate; 3, End connecting plate; 4, Fixed crossbar; 5, Clamping jaw cylinder.
图5 秧盘极限偏移位置与被夹取状态对比 l为夹爪的长度;a为秧盘可夹持位置的总长,为450 mm;α为秧盘偏移的角度,[-8°, 8°];f为秧盘位置被调整前后夹爪与秧盘触点间的距离。
Fig.5 Comparison of tray at maximum deviation position vs. corrected clamped state l was the length of clamping jaw; a was the total clampable length of the seedling tray, 450 mm; α was the deviation angle of the seedling tray, [-8°, 8°]; f was the distance between the contact points of the clamping jaw and the seedling tray before and after position adjustment.
图6 夹爪受力分析 a,满载条件下等效应力云图;b,满载条件下总变形云图。
Fig.6 Force analysis of the clamping jaw a, Cloud diagram of equivalent stress under full load; b, Cloud diagram of total deformation under full load.
图7 吊篮受力分析图 a,满载条件下等效应力云图;b,满载条件下总变形云图。
Fig.7 Force analysis diagram of the basket a, Cloud diagram of equivalent stress under full load; b, Cloud diagram of total deformation under full load.
图8 秧盘顶升机构结构示意图 1,顶升固定架;2,顶升板;3,顶升气缸;4,主机架;5,顶升直线轴承;6,顶升导向杆;7,平移导向杆;8,平移气缸;9,平移直线轴承。
Fig.8 Structure diagram of the seedling tray lifting mechanism 1, Lifting fixed frame; 2, Lifting plate; 3, Lifting cylinder; 4, Main frame; 5, Lifting linear bearing; 6, Lifting guide rod; 7, Translation guide rod; 8, Translation cylinder; 9, Translation linear bearing.
图10 输送机构结构示意图 1,固定架;2,阻拦气缸;3,导向杆;4,挡板;5,秧盘;6,输送带;7,光电传感器。
Fig.10 Structure diagram of the conveying mechanism 1, Fixed frame; 2, Blocking cylinder; 3, Guide rod; 4, Baffle plate; 5, Seedling tray; 6, Conveyor belt; 7, Photoelectric sensor.
图12 控制系统结构图 a,上盘作业控制系统流程图;b,下盘作业控制系统流程图。
Fig.12 Flow chart of control system a, Flow chart of loading control system; b, Flow chart of unloading control system.
试验号 No. | 上盘成功率 Success rate of loading | 下盘成功率 Success rate of unloading |
---|---|---|
1 | 96.67 | 100.00 |
2 | 100.00 | 100.00 |
3 | 96.67 | 96.67 |
平均值Average | 97.78 | 98.89 |
表1 上下盘作业的成功率
Table 1 Success rate of loading and unloading test %
试验号 No. | 上盘成功率 Success rate of loading | 下盘成功率 Success rate of unloading |
---|---|---|
1 | 96.67 | 100.00 |
2 | 100.00 | 100.00 |
3 | 96.67 | 96.67 |
平均值Average | 97.78 | 98.89 |
[1] | 国家统计局. 国家统计局关于2024年粮食产量数据的公告[EB/OL]. (2024-12-13)[2025-06-22]. https://www.stats.gov.cn/sj/zxfb/202412/t202412131957744.html. |
[2] | 王莉. 中国工厂化育苗生产现状与发展[J]. 农业工程技术, 2017, 37(4): 15-19. |
WANG L. Present situation and development of industrial seedling production in China[J]. Agricultural Engineering Technology, 2017, 37(4): 15-19. (in Chinese) | |
[3] | 杨家豪, 房欣, 马浏轩, 等. 水稻育秧机械的研究和进展[J]. 农机化研究, 2023, 45(6): 264-268. |
YANG J H, FANG X, MA L X, et al. Research and development of rice seedling raising machinery[J]. Journal of Agricultural Mechanization Research, 2023, 45(6): 264-268. (in Chinese with English abstract) | |
[4] | 李泽华, 马旭, 李秀昊, 等. 水稻栽植机械化技术研究进展[J]. 农业机械学报, 2018, 49(5): 1-20. |
LI Z H, MA X, LI X H, et al. Research progress of rice transplanting mechanization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 1-20. (in Chinese with English abstract) | |
[5] | 谢方平, 杨靖, 符志勇, 等. 2BP-2000型水稻育秧播种机分盘装置研制[J]. 农业工程学报, 2024, 40(3): 26-36. |
XIE F P, YANG J, FU Z Y, et al. Development of a tray-splitting equipment for the seed plate sowing machine for 2BP-2000 rice planter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(3): 26-36. (in Chinese with English abstract) | |
[6] | 应伟杰, 王亚梁, 朱德峰, 等. 水稻机械育插秧技术研究进展[J]. 中国稻米, 2024, 30(4): 12-16. |
YING W J, WANG Y L, ZHU D F, et al. Research progress of technology in rice seedling raising and machine transplanting[J]. China Rice, 2024, 30(4): 12-16. (in Chinese with English abstract) | |
[7] | 王福义. 水稻工厂化育苗关键技术装备研究[J]. 农业科技与装备, 2023(1): 43-45. |
WANG F Y. Research on key technology and equipment of rice industrialized seedling cultivation[J]. Agricultural Science & Technology and Equipment, 2023(1): 43-45. (in Chinese with English abstract) | |
[8] | 周太刚. 工厂化智能育秧关键技术[J]. 农业工程技术, 2023, 43(33): 22-23. |
ZHOU T G. Key technology of intelligent seedling raising in factory[J]. Agricultural Engineering Technology, 2023, 43(33): 22-23. (in Chinese) | |
[9] | 李玉兰, 张会桥. “M”型全自动育秧苗床设计[J]. 科学技术创新, 2019(29): 157-158. |
LI Y L, ZHANG H Q. Design of “M” type automatic seedling bed[J]. Scientific and Technological Innovation, 2019(29): 157-158. (in Chinese) | |
[10] | 张妮, 张国忠. 水稻种植机械化技术研究现状与展望[J]. 湖北农业科学, 2020, 59(17): 5-10. |
ZHANG N, ZHANG G Z. Research status and prospect of rice planting mechanization[J]. Hubei Agricultural Sciences, 2020, 59(17): 5-10. (in Chinese with English abstract) | |
[11] | 依红杰, 魏天路, 赵春龙, 等. 水稻种植机械化研究进展[J]. 中国科技信息, 2017(S1): 118-119. |
YI H J, WEI T L, ZHAO C L, et al. Research progress of rice planting mechanization[J]. China Science and Technology Information, 2017(S1): 118-119. (in Chinese) | |
[12] | 虞佳佳, 李玉, 周延锁, 等. 基于改进YOLO v5n的工厂化育秧田间铺盘装置设计与试验[J]. 农业机械学报, 2024, 55(8): 71-80, 116. |
YU J J, LI Y, ZHOU Y S, et al. Design and testing of field disk spreading device based on improved YOLO v5n[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(8): 71-80, 116. (in Chinese with English abstract) | |
[13] | 鈴木鍛工株式会社. 播種裝置の育苗箱供给裝置:昭61-58507[P]. 1986-03-25. |
[14] | 马旭, 魏宇豪, 曹秀龙, 等. 水稻秧盘自动码垛机的设计与试验[J]. 农业工程学报, 2022, 38(3): 1-10. |
MA X, WEI Y H, CAO X L, et al. Design and experiment of an automatic rice seedling tray palletizer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 1-10. (in Chinese with English abstract) | |
[15] | 孙振雨. 水稻育秧播种机秧盘运送摆放装置设计[J]. 农机使用与维修, 2022(8): 41-43. |
SUN Z Y. Design of conveying and placing device for seedling tray of rice seedling seeder[J]. Agricultural Machinery Using & Maintenance, 2022(8): 41-43. (in Chinese) | |
[16] | 夏旭东, 王健, 周乔君, 等. 双凸轮控制的水稻工厂化育秧有序铺盘机构设计与试验[J]. 农业机械学报, 2021, 52(5): 44-51. |
XIA X D, WANG J, ZHOU Q J, et al. Design and experiment of sequential seedling trays laying mechanism controlled by double cams[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 44-51. (in Chinese with English abstract) | |
[17] | 吴龙国, 张瑶, 张祎洋, 等. 育苗秧盘双向收放输送装置: CN116040218A[P]. 2023-05-02. |
[18] | 陈佳峰, 齐飞, 应理乾. 一种层叠育秧盘分盘机: CN221058776U[P]. 2024-06-04. |
[19] | 刘春义. 机械化插秧及水稻盘育苗技术要点[J]. 农机质量与监督, 2022(8): 32. |
LIU C Y. Technical points of mechanized transplanting and tray seedling raising of rice[J]. Agricultural Machinery Quality & Supervision, 2022(8): 32. (in Chinese) | |
[20] | 杨天海. 水稻机械化育插秧高产栽培技术研究[J]. 南方农机, 2022, 53(11): 79-82. |
YANG T H. Study on high-yield cultivation techniques of mechanized rice transplanting[J]. China Southern Agricultural Machinery, 2022, 53(11): 79-82. (in Chinese) |
[1] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
[2] | 魏政, 曹光乔. 城市化有利于农业机械化吗?——基于中国县域面板数据的实证分析[J]. 浙江农业学报, 2022, 34(12): 2778-2788. |
[3] | 许慧, 童俊皓, 陈光燕, 庄天慧. 农业女性化促进了农业机械服务外包吗?[J]. 浙江农业学报, 2022, 34(1): 173-183. |
[4] | 何晓东, 朱德泉, 朱健军, 廖娟, 张顺, 李镜发. 双速毛刷辊式水果清洗机设计与试验[J]. 浙江农业学报, 2020, 32(9): 1702-1710. |
[5] | 张雄一, 徐新良, 张正, 庄大春, 曾钦, 毕仁贵, 严灿. 2000—2017年中国农业机械总动力水平空间演变特征[J]. 浙江农业学报, 2020, 32(4): 714-722. |
[6] | 张顺, 杨继涛, 李勇, 廖娟, 李兆东, 朱德泉. 水稻内充气力式精量穴直播排种器吸种性能试验[J]. 浙江农业学报, 2019, 31(8): 1379-1387. |
[7] | 吴磊琦, 谌凯, 赵志娟, 应向伟. 农业机械动力装置燃油喷射技术专利竞争态势分析[J]. 浙江农业学报, 2017, 29(6): 1037-1042. |
[8] | 魏丽娟,戴飞,韩正晟*,李兴凯,高爱民. 小区小麦育种联合收获机试验研究[J]. 浙江农业学报, 2016, 28(6): 1082-. |
[9] | 胡敏娟;尹文庆*. 穴盘苗变形滑针式取苗器的研究[J]. , 2011, 23(1): 154-158. |
[10] | 马广;周建忠. 基于灰色关联度的农机作业水平影响因素分析[J]. , 2007, 19(2): 0-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||