[1] |
黄智. 肉鸭规模化生态养殖关键技术[J]. 畜牧兽医科技信息, 2025(1): 211-213.
|
|
HUANG Z. Key technologies of large-scale ecological breeding of meat ducks[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2025(1): 211-213. (in Chinese)
|
[2] |
徐佳. 鸭传染性浆膜炎的临床症状及防治措施[J]. 家禽科学, 2024(2): 78-80.
|
|
XU J. Clinical symptoms and preventive measures of duck infectious serositis[J]. China Poultry Science, 2024(2): 78-80. (in Chinese)
|
[3] |
刘芝美. 肉鸭养殖中存在的问题及对策[J]. 养禽与禽病防治, 2013(9): 32-33.
|
|
LIU Z M. Problems and countermeasures in meat duck breeding[J]. Poultry Husbandry and Disease Control, 2013(9): 32-33. (in Chinese)
|
[4] |
刘又夫, 肖德琴, 周家鑫, 等. 水禽智能化养殖研究现状及发展趋势[J]. 智慧农业(中英文), 2023, 5(1): 99-110.
|
|
LIU Y F, XIAO D Q, ZHOU J X, et al. Status quo of waterfowl intelligent farming research review and development trend analysis[J]. Smart Agriculture, 2023, 5(1): 99-110. (in Chinese with English abstract)
|
[5] |
付友, 王成森, 郭瑞萍, 等. 肉鸭养殖环控智能化管理技术探讨[J]. 家禽科学, 2023(8): 59-61.
|
|
FU Y, WANG C S, GUO R P, et al. Discussion on intelligent management technology of environmental control for meat duck breeding[J]. China Poultry Science, 2023(8): 59-61. (in Chinese)
|
[6] |
唐瑜嵘, 沈明霞, 薛鸿翔, 等. 人工智能技术在畜禽养殖业的发展现状与展望[J]. 智能化农业装备学报(中英文), 2023(1): 1-16.
|
|
TANG Y R, SHEN M X, XUE H X, et al. Development status and prospect of artificial intelligence technology in livestock and poultry breeding[J]. Journal of Intelligent Agricultural Mechanization, 2023(1): 1-16. (in Chinese with English abstract)
|
[7] |
赵春江, 梁雪文, 于合龙, 等. 基于改进YOLO v7的笼养鸡/蛋自动识别与计数方法[J]. 农业机械学报, 2023, 54(7): 300-312.
|
|
ZHAO C J, LIANG X W, YU H L, et al. Automatic identification and counting method of caged hens and eggs based on improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 300-312. (in Chinese with English abstract)
|
[8] |
刘啸虎, 肖德琴, 刘又夫, 等. 基于Faster R-CNN和时序统计的肉鸭行为节律分析[J]. 中国家禽, 2023, 45(11): 95-104.
|
|
LIU X H, XIAO D Q, LIU Y F, et al. Analysis on rhythmic behavior of meat ducks based on faster R-CNN and time-series statistics[J]. China Poultry, 2023, 45(11): 95-104. (in Chinese with English abstract)
|
[9] |
马肄恒. 面向笼养肉鸭行为与死亡识别的自主巡检装备创制[D]. 杭州: 浙江科技大学, 2024.
|
|
MA Y H. Development of autonomous inspection equipment for behavior and mortality detection in captive broiler ducks[D]. Hangzhou, 2024. (in Chinese with English abstract)
|
[10] |
姜来, 王文娣, 霍晓静, 等. 死鸡识别机器人系统设计与试验[J]. 中国农机化学报, 2023, 44(8): 81-87.
|
|
JIANG L, WANG W D, HUO X J, et al. Design and experiment of dead chicken recognition robot system[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 81-87. (in Chinese with English abstract)
|
[11] |
LIU H W, CHEN C H, TSAI Y C, et al. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm[J]. Sensors, 2021, 21(11): 3579.
|
[12] |
贾雁琳, 薛皓, 周子轩, 等. 基于红外热成像技术的笼内死鸡自动识别方法[J]. 河北农业大学学报, 2023, 46(3): 105-112.
|
|
JIA Y L, XUE H, ZHOU Z X, et al. Automatic identification method for dead chicken in cage based on infrared thermal imaging technology[J]. Journal of Hebei Agricultural University, 2023, 46(3): 105-112. (in Chinese with English abstract)
|
[13] |
YANG C C, CHAO K, CHEN Y R, et al. Simple multispectral image analysis for systemically diseased chicken identification[J]. Transactions of the ASABE, 2006, 49(1): 245-257.
|
[14] |
JIANG P Y, ERGU D J, LIU F Y, et al. A review of yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
|
[15] |
HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677.
|
[16] |
WANG H, ZHANG F, WANG L. Fruit classification model based on improved Darknet 53 convolutional neural network[C]// 2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). January 11-12, 2020, Vientiane, Laos. IEEE, 2020: 881-884.
|
[17] |
WATANABE N. Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries[J]. Solid State Ionics, 1980, 1(1/2): 87-110.
|
[18] |
MAHAREK A, ABOZEID A, ORBAN R, et al. SwinVid: enhancing video object detection using swin transformer[J]. Computer Systems Science and Engineering, 2024, 48(2): 305-320.
|
[19] |
LI J P, YAN Y C, LIAO S C, et al. Local-to-global self-attention in vision transformers[EB/OL]. (2021-07-10)[2024-08-04]. https://arxiv.org/abs/2107.04735v1.
|
[20] |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 9992-10002.
|
[21] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
|
[22] |
GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25)[2024-08-04]. https://arxiv.org/abs/2205.12740v1.
|
[23] |
ZHANG Z L, SABUNCU M R. Generalized cross entropy loss for training deep neural networks with noisy labels[J]. Advances in Neural Information Processing Systems, 2018, 32: 8792-8802.
|