浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1876-1887.DOI: 10.3969/j.issn.1004-1524.20221004

• 食品科学 • 上一篇    下一篇

南瓜干燥过程中β-胡萝卜素的多源融合预测

宁文楷1,2(), 李静1,2, 沈晓东1,2, 吴鑫1, 李臻锋1,2,*()   

  1. 1.江南大学 机械工程学院,江苏 无锡 214122
    2.江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122
  • 收稿日期:2022-07-06 出版日期:2023-08-25 发布日期:2023-08-29
  • 作者简介:宁文楷(1997—),男,吉林辽源人,硕士研究生,研究方向为食品无损检测。E-mail:17766480325@163.com
  • 通讯作者: *李臻锋,E-mail:1736691239@qq.com
  • 基金资助:
    国家自然科学基金(51508229);江苏省普通高校自然科学研究计划项目(KYCX19_1862)

Prediction of multi-source fusion of β-carotene during pumpkin drying

NING Wenkai1,2(), LI Jing1,2, SHEN Xiaodong1,2, WU Xin1, LI Zhenfeng1,2,*()   

  1. 1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, Jiangsu, China
  • Received:2022-07-06 Online:2023-08-25 Published:2023-08-29

摘要:

β-胡萝卜素是南瓜品质的重要指标,传统检测方法周期长且过程复杂。为实现南瓜微波干燥过程中的β-胡萝卜素含量预测,本研究搭建了包含含水率检测单元、机器视觉单元和电子鼻单元的微波干燥系统,在线检测60、70、80 ℃不同温度下南瓜干燥过程中的含水率、外观形态(表面皱缩率、色差)和气味特征,同时检测β-胡萝卜素含量。结果表明,南瓜干燥过程中β-胡萝卜素含量与外观形态和气味特征间呈现显著相关。通过建立单源(机器视觉或电子鼻)和多源融合(机器视觉融合电子鼻)极限学习机模型,对南瓜干燥过程中β-胡萝卜素含量进行预测,预测结果表明,单源模型中机器视觉模型比电子鼻模型有更好的预测效果,且多源融合模型预测精度最高, R p 2>0.97。基于多源融合的极限学习机模型可以有效预测南瓜微波干燥过程中β-胡萝卜素含量,在南瓜自动化加工及品质快速监测方面具有良好的应用前景。

关键词: 南瓜, 机器视觉, 电子鼻, β-胡萝卜素, 预测

Abstract:

β-carotene is an important index of pumpkin quality. The traditional method has a long period and a complicated process. To achieve the prediction of β-carotene content in pumpkin in the process of microwave drying, this study built a microwave drying system containing moisture content detection unit, machine vision and electronic nose units, the moisture content and appearance shape (surface shrinkage rate, and color difference) and odor characteristics of pumpkin under different temperatures of 60, 70, 80 ℃ in the drying process were on-line detected, meanwhile, the content of β-carotene was detected. The results showed that there was a significant correlation between the content of β-carotene and the appearance and flavor characteristics of pumpkin during drying. By establishing a monophyletic (machine vision or electronic nose) and multi-source fusion extreme learning machine (machine vision fusion electronic nose) model, the β-carotene content of pumpkin in the process of drying was predicted, and the results showed that the monophyletic model in machine vision had better prediction effect than electronic nose model, and the prediction accuracy of multi-source fusion model was the highest, R p 2>0.97. The extreme learning machine model based on multi-source fusion can effectively predict the content of β-carotene in microwave drying of pumpkin, which has a good application prospect in automatic processing and quality monitoring of pumpkin.

Key words: pumpkin, machine vision, electronic nose, β-carotene, prediction

中图分类号: