浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1876-1887.DOI: 10.3969/j.issn.1004-1524.20221004
宁文楷1,2(), 李静1,2, 沈晓东1,2, 吴鑫1, 李臻锋1,2,*(
)
收稿日期:
2022-07-06
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
宁文楷(1997—),男,吉林辽源人,硕士研究生,研究方向为食品无损检测。E-mail:17766480325@163.com
通讯作者:
*李臻锋,E-mail:1736691239@qq.com
基金资助:
NING Wenkai1,2(), LI Jing1,2, SHEN Xiaodong1,2, WU Xin1, LI Zhenfeng1,2,*(
)
Received:
2022-07-06
Online:
2023-08-25
Published:
2023-08-29
摘要:
β-胡萝卜素是南瓜品质的重要指标,传统检测方法周期长且过程复杂。为实现南瓜微波干燥过程中的β-胡萝卜素含量预测,本研究搭建了包含含水率检测单元、机器视觉单元和电子鼻单元的微波干燥系统,在线检测60、70、80 ℃不同温度下南瓜干燥过程中的含水率、外观形态(表面皱缩率、色差)和气味特征,同时检测β-胡萝卜素含量。结果表明,南瓜干燥过程中β-胡萝卜素含量与外观形态和气味特征间呈现显著相关。通过建立单源(机器视觉或电子鼻)和多源融合(机器视觉融合电子鼻)极限学习机模型,对南瓜干燥过程中β-胡萝卜素含量进行预测,预测结果表明,单源模型中机器视觉模型比电子鼻模型有更好的预测效果,且多源融合模型预测精度最高,
中图分类号:
宁文楷, 李静, 沈晓东, 吴鑫, 李臻锋. 南瓜干燥过程中β-胡萝卜素的多源融合预测[J]. 浙江农业学报, 2023, 35(8): 1876-1887.
NING Wenkai, LI Jing, SHEN Xiaodong, WU Xin, LI Zhenfeng. Prediction of multi-source fusion of β-carotene during pumpkin drying[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1876-1887.
传感器 Sensor | 传感器型号 Sensor type | 敏感气体类型 Sensitive gas type |
---|---|---|
1 | W1C | 对芳香物族化合物灵敏Sensitive to aromatic compounds |
2 | W5S | 对含氮氧类物质灵敏Sensitive to nitrogen and oxygen containing substances |
3 | W3C | 对氨等芳香物族化合物灵敏Sensitive to aromatic compounds such as ammonia |
4 | W6S | 对氢气灵敏Sensitive to hydrogen gas |
5 | W5C | 对烷烃、芳香族化合物灵敏Sensitive to alkanes and aromatic compounds |
6 | W1S | 对甲基类物质灵敏Sensitive to methyl substances |
7 | W1W | 对有机硫化物灵敏Sensitive to organic sulfides |
8 | W2S | 对含有芳香族化合物的醇类灵敏Sensitive to alcohols containing aromatic compounds |
9 | W2W | 对芳香成分灵敏Sensitive to aromatic components |
10 | W3S | 对高浓度烷烃-脂肪族物质灵敏Sensitive to high concentrations of alkanes and aliphatic substances |
表1 PEN3电子鼻传感器及其性能描述
Table 1 PEN3 electronic nose sensor and its performance description
传感器 Sensor | 传感器型号 Sensor type | 敏感气体类型 Sensitive gas type |
---|---|---|
1 | W1C | 对芳香物族化合物灵敏Sensitive to aromatic compounds |
2 | W5S | 对含氮氧类物质灵敏Sensitive to nitrogen and oxygen containing substances |
3 | W3C | 对氨等芳香物族化合物灵敏Sensitive to aromatic compounds such as ammonia |
4 | W6S | 对氢气灵敏Sensitive to hydrogen gas |
5 | W5C | 对烷烃、芳香族化合物灵敏Sensitive to alkanes and aromatic compounds |
6 | W1S | 对甲基类物质灵敏Sensitive to methyl substances |
7 | W1W | 对有机硫化物灵敏Sensitive to organic sulfides |
8 | W2S | 对含有芳香族化合物的醇类灵敏Sensitive to alcohols containing aromatic compounds |
9 | W2W | 对芳香成分灵敏Sensitive to aromatic components |
10 | W3S | 对高浓度烷烃-脂肪族物质灵敏Sensitive to high concentrations of alkanes and aliphatic substances |
图5 不同干燥温度对南瓜表面皱缩的影响 a,纵截面;b,横截面。
Fig.5 Effect of different drying temperatures on surface shrinkage of pumpkin a, Longitudinal section; b, Cross section.
图9 不同干燥温度对电子鼻传感器响应值影响 a, 传感器2;b,传感器6;c,传感器7;d,传感器9。
Fig.9 Influence of different drying temperatures on response value of electronic nose sensor a, Sensor 2; b, Sensor 6; c, Sensor 7; d, Sensor 9.
图10 β-胡萝卜素动力学拟合图 a,一级动力学;b, 二级动力学;c,三级动力学。
Fig.10 Kinetic fitting of β-carotene a; First-order dynamics; b, Second-order dynamics; c, Third-order dynamics.
温度 Temperature/ ℃ | 一级动力学First-order dynamics | 二级动力学Second-order dynamics | 三级动力学Third-order dynamics | ||||||
---|---|---|---|---|---|---|---|---|---|
k/min-1 | R2 | RMSE | k/(mg· kg-1)-1·min-1 | R2 | RMSE | k/(mg· kg-1)-2·min-1 | R2 | RMSE | |
60 | 0.005 83 | 0.858 74 | 0.020 29 | 2.55×10-4 | 0.901 23 | 2.39×10-5 | 1.189×10-5 | 0.940 91 | 2.975×10-8 |
70 | 0.006 69 | 0.891 46 | 0.010 33 | 2.48×10-4 | 0.917 25 | 1.049×10-5 | 9.533×10-6 | 0.932 85 | 1.240×10-8 |
80 | 0.011 73 | 0.957 69 | 0.006 27 | 5.15×10-4 | 0.985 39 | 4.060×10-6 | 2.409×10-6 | 0.980 99 | 1.160×10-8 |
表2 β-胡萝卜素动力学相关系数
Table 2 Kinetic correlation coefficient of β-carotene
温度 Temperature/ ℃ | 一级动力学First-order dynamics | 二级动力学Second-order dynamics | 三级动力学Third-order dynamics | ||||||
---|---|---|---|---|---|---|---|---|---|
k/min-1 | R2 | RMSE | k/(mg· kg-1)-1·min-1 | R2 | RMSE | k/(mg· kg-1)-2·min-1 | R2 | RMSE | |
60 | 0.005 83 | 0.858 74 | 0.020 29 | 2.55×10-4 | 0.901 23 | 2.39×10-5 | 1.189×10-5 | 0.940 91 | 2.975×10-8 |
70 | 0.006 69 | 0.891 46 | 0.010 33 | 2.48×10-4 | 0.917 25 | 1.049×10-5 | 9.533×10-6 | 0.932 85 | 1.240×10-8 |
80 | 0.011 73 | 0.957 69 | 0.006 27 | 5.15×10-4 | 0.985 39 | 4.060×10-6 | 2.409×10-6 | 0.980 99 | 1.160×10-8 |
温度 Temperature/ ℃ | 品质指标 Quality index | 横截面皱缩率 Cross section shrinkage rate | 纵截面皱缩率 Longitudinal section shrinkage rate | 色差 Chromatism | 传感器2 Sensor 2 | 传感器6 Sensor 6 | 传感器7 Sensor 7 | 传感器9 Sensor 9 |
---|---|---|---|---|---|---|---|---|
60 | β-胡萝卜素含量β-Carotene content | -0.948 | -0.959 | -0.904 | 0.915 | 0.923 | 0.870 | 0.894 |
70 | β-胡萝卜素含量β-Carotene content | -0.933 | -0.936 | -0.979 | 0.742 | 0.977 | 0.952 | 0.769 |
80 | β-胡萝卜素含量β-Carotene content | -0.973 | -0.973 | -0.984 | 0.933 | 0.919 | 0.888 | 0.938 |
表3 β-胡萝卜素含量与特征间相关性
Table 3 Correlation between β-carotene content and characteristics
温度 Temperature/ ℃ | 品质指标 Quality index | 横截面皱缩率 Cross section shrinkage rate | 纵截面皱缩率 Longitudinal section shrinkage rate | 色差 Chromatism | 传感器2 Sensor 2 | 传感器6 Sensor 6 | 传感器7 Sensor 7 | 传感器9 Sensor 9 |
---|---|---|---|---|---|---|---|---|
60 | β-胡萝卜素含量β-Carotene content | -0.948 | -0.959 | -0.904 | 0.915 | 0.923 | 0.870 | 0.894 |
70 | β-胡萝卜素含量β-Carotene content | -0.933 | -0.936 | -0.979 | 0.742 | 0.977 | 0.952 | 0.769 |
80 | β-胡萝卜素含量β-Carotene content | -0.973 | -0.973 | -0.984 | 0.933 | 0.919 | 0.888 | 0.938 |
模型 Model | 60 ℃ | 70 ℃ | 80 ℃ | |||
---|---|---|---|---|---|---|
预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | |
机器视觉Machine vision | 0.966 7 | 0.981 2 | 0.978 5 | 0.962 3 | 0.961 2 | 0.956 8 |
电子鼻Electronic nose | 0.938 1 | 0.904 3 | 0.915 4 | 1.395 2 | 0.905 0 | 1.016 6 |
多源融合Multi-source fusion | 0.981 3 | 0.942 3 | 0.985 2 | 0.854 7 | 0.979 5 | 0.924 2 |
表4 不同模型对β-胡萝卜素含量预测结果
Table 4 Prediction results of β-carotene content in different models
模型 Model | 60 ℃ | 70 ℃ | 80 ℃ | |||
---|---|---|---|---|---|---|
预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | 预测集 | 预测集根均方差 RMSEP | |
机器视觉Machine vision | 0.966 7 | 0.981 2 | 0.978 5 | 0.962 3 | 0.961 2 | 0.956 8 |
电子鼻Electronic nose | 0.938 1 | 0.904 3 | 0.915 4 | 1.395 2 | 0.905 0 | 1.016 6 |
多源融合Multi-source fusion | 0.981 3 | 0.942 3 | 0.985 2 | 0.854 7 | 0.979 5 | 0.924 2 |
[1] | 白竣文, 周存山, 蔡健荣, 等. 南瓜片真空脉动干燥特性及含水率预测[J]. 农业工程学报, 2017, 33(17): 290-297. |
BAI J W, ZHOU C S, CAI J R, et al. Vacuum pulse drying characteristics and moisture content prediction of pumpkin slices[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 290-297. (in Chinese with English abstract) | |
[2] | LI J, LI Z F, RAGHAVAN G S V, et al. Fuzzy logic control of relative humidity in microwave drying of hawthorn[J]. Journal of Food Engineering, 2021, 310: 110706. |
[3] | 袁越锦, 洪晨, 徐英英, 等. 组合干燥方式下胡萝卜真空脉动蒸汽烫漂工艺优化[J]. 浙江农业学报, 2022, 34(1):163-172. |
YUAN Y J, HONG C, XU Y Y, et al. Optimization of carrot vacuum pulsating steam blanching process under combined drying method[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1):163-172. (in Chinese with English abstract) | |
[4] | DE CARVALHO L M J, GOMES P B, DE OLIVEIRA GODOY R L, et al. Total carotenoid content, α-carotene and β-carotene, of Landrace pumpkins (Cucurbita moschata Duch): a preliminary study[J]. Food Research International, 2012, 47(2): 337-340. |
[5] | LI C Y, CAO Q X, GUO F. A method for color classification of fruits based on machine vision[J]. WSEAS Transactions on Systems, 2009, 8(2): 312-321. |
[6] | ZHU H K, YE Y, HE H F, et al. Evaluation of green tea sensory quality via process characteristics and image information[J]. Food and Bioproducts Processing, 2017, 102: 116-122. |
[7] | CHEN C, LIU B Y, SONG F H, et al. An adaptive fuzzy logic control of green tea fixation process based on image processing technology[J]. Biosystems Engineering, 2022, 215: 1-20. |
[8] | YADAV S P, IBARAKI Y, GUPTA S D. Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis[J]. Plant Cell, Tissue and Organ Culture, 2010, 100(2): 183-188. |
[9] | GUPTA S D, IBARAKI Y, PATTANAYAK A K. Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants[J]. Plant Biotechnology Reports, 2013, 7(1): 91-97. |
[10] | SIMKIN A J, UNDERWOOD B A, AULDRIDGE M, et al. Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of β-ionone, a fragrance volatile of Petunia flowers[J]. Plant Physiology, 2004, 136(3): 3504-3514. |
[11] | 徐海霞. 基于机器视觉和电子鼻技术的菠菜新鲜度无损检测研究[D]. 镇江: 江苏大学, 2016. |
XU H X. Nondestructive detection of spinach freshness based on machine vision and electronic nose technology[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract) | |
[12] | 王钊, 李长滨, 王源, 等. 多种蔬菜中β-胡萝卜素含量测定及油脂烹制作用[J]. 中国调味品, 2021, 46(2): 61-64. |
WANG Z, LI C B, WANG Y, et al. Determination of β-carotene content in various vegetables and its oil cooking effect[J]. China Condiment, 2021, 46(2): 61-64. (in Chinese) | |
[13] | SHAHABI M, RAFIEE S, MOHTASEBI S S, et al. Image analysis and green tea color change kinetics during thin-layer drying[J]. Food Science and Technology International, 2014, 20(6): 465-476. |
[14] | LI X Y, LIU Y H, GAO Z J, et al. Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control[J]. Journal of Food Engineering, 2021, 292: 110253. |
[15] | DAI J W, RAO J Q, WANG D, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(3): 365-376. |
[16] | RAGHAVAN G S V, LI Z F, WANG N, et al. Control of microwave drying process through aroma monitoring[J]. Drying Technology, 2010, 28(5): 591-599. |
[17] | SUVARNAKUTA P, DEVAHASTIN S, MUJUMDAR A S. Drying kinetics and β-carotene degradation in carrot undergoing different drying processes[J]. Journal of Food Science, 2005, 70(8): s520-s526. |
[18] | 于海明, 李海源, 张欣悦, 等. 水稻秸秆营养穴盘微波热风耦合干燥动力学模型研究[J]. 农业机械学报, 2020, 51(5):339-348. |
YU H M, LI H Y, ZHANG X Y, et al. Drying kinetic model of microwave coupled with hot air drying of straw-based nutrient seedling-growing bowl tray[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5):339-348. (in Chinese with English abstract) | |
[19] | PESEK C A, WARTHESEN J J. Photodegradation of carotenoids in a vegetable juice system[J]. Journal of Food Science, 1987, 52(3): 744-746. |
[20] | GOLDMAN M, HOREV B, SAGUY I. Decolorization of β-carotene in model systems simulating dehydrated foods. mechanism and kinetic principles[J]. Journal of Food Science, 1983, 48(3): 751-754. |
[21] | DAVEY M W, MELLIDOU I, KEULEMANS W. Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in Musa[J]. Journal of Chromatography A, 2009, 1216(30): 5759-5762. |
[22] | CHANDLER L A, SCHWARTZ S J. Isomerization and losses of trans-.beta.-carotene in sweet potatoes as affected by processing treatments[J]. Journal of Agricultural and Food Chemistry, 1988, 36(1): 129-133. |
[23] | ACHIR N, RANDRIANATOANDRO V A, BOHUON P, et al. Kinetic study of β-carotene and lutein degradation in oils during heat treatment[J]. European Journal of Lipid Science and Technology, 2010, 112(3): 349-361. |
[24] | HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501. |
[25] | 吴鑫, 宋飞虎, 裴永胜, 等. 基于机器视觉的茶叶微波杀青中品质变化与预测研究[J]. 茶叶科学, 2021, 41(6): 854-864. |
WU X, SONG F H, PEI Y S, et al. Study on the tea quality changes and predictions during the microwave fixation process by machine vision[J]. Journal of Tea Science, 2021, 41(6): 854-864. (in Chinese with English abstract) |
[1] | 熊兴伟, 王艺琴, 田怀志, 张素勤, 耿广东. 基于转录组测序解析南瓜子叶黄化的分子机理[J]. 浙江农业学报, 2023, 35(1): 90-102. |
[2] | 丁燕玲, 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙. 牛miR-144靶基因预测与组织表达分析[J]. 浙江农业学报, 2022, 34(3): 471-479. |
[3] | 闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598. |
[4] | 吴燕君, 洪文英, 章忠梅, 吴耀, 缪强. 设施黄瓜白粉病流行动态与预测模型[J]. 浙江农业学报, 2022, 34(1): 104-111. |
[5] | 吉训生, 姜晓卫, 夏圣奎. 基于LSTM-Kalman模型的蛋鸡产蛋率预测方法[J]. 浙江农业学报, 2021, 33(9): 1730-1739. |
[6] | 陈雯, 张伟伟, 邵淑丽, 付学鹏, 黄鑫, 李铁. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793. |
[7] | 龙鸣, 张棚, 刘元林, 摆小琴, 张福梅, 田晓静, 曹竑, 周雪雁, 马忠仁, 罗丽, 宋礼, Nurul Izza NORDIN. 基于小鼠粪便气味信息的牛乳清蛋白功能效果的鉴别区分[J]. 浙江农业学报, 2021, 33(4): 714-723. |
[8] | 孟司奇, 丁高蓝, 肖兴宁, 肖英平, 杨华, 汪雯. 巴氏杀菌乳中金黄色葡萄球菌的生长预测模型构建[J]. 浙江农业学报, 2020, 32(7): 1281-1288. |
[9] | 樊慧丽, 付文阁. 基于局部均衡模型的中国羊肉市场供需变动分析[J]. 浙江农业学报, 2020, 32(6): 1123-1132. |
[10] | 郭富城, 金丽, 苏强, 粟雨芯, 李方琳, 陈士恩, 马晓霞. PEDV N蛋白的原核表达纯化及B细胞抗原表位预测分析[J]. 浙江农业学报, 2020, 32(5): 762-769. |
[11] | 包晓敏, 盛家文. 粘虫板害虫自动识别计数研究[J]. 浙江农业学报, 2019, 31(9): 1516-1522. |
[12] | 马露, 孔维洲, 王丽萍, 张喜康, 王聪, 李佩佩, 刘敦华. 响应面法优化发酵鹿肉干工艺及其货架期预测[J]. 浙江农业学报, 2019, 31(12): 2109-2119. |
[13] | 田晓静, 龙鸣, 王俊, 马忠仁, 韦真博, 陈士恩, 高丹丹, 丁波. 基于电子鼻气味信息和多元统计分析的枸杞子产地溯源研究[J]. 浙江农业学报, 2018, 30(9): 1604-1611. |
[14] | 杨煜岑, 杨联安, 任丽, 李聪莉, 朱群娥, 王天泰, 李新尧. 基于随机森林的农耕区土壤有机质空间分布预测[J]. 浙江农业学报, 2018, 30(7): 1211-1217. |
[15] | 江叶枫, 郭熙. 基于辅助变量和回归径向基函数神经网络(R-RBFNN)的土壤有机质空间分布模拟[J]. 浙江农业学报, 2018, 30(4): 640-648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||