浙江农业学报 ›› 2023, Vol. 35 ›› Issue (8): 1864-1875.DOI: 10.3969/j.issn.1004-1524.20221096
收稿日期:
2022-07-25
出版日期:
2023-08-25
发布日期:
2023-08-29
作者简介:
斯林林(1987—),男,安徽安庆人,博士,助理研究员,主要从事绿肥利用与养分循环研究。E-mail: sillinlin@zaas.ac.cn
通讯作者:
*王建红,E-mail: jianhong1203@sina.com
基金资助:
SI Linlin(), XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong*(
)
Received:
2022-07-25
Online:
2023-08-25
Published:
2023-08-29
摘要:
为探究红壤旱地生土种植绿肥对土壤细菌群落结构的影响,在浙江省遂昌县和景宁畲族自治县的新垦旱地设置不种植绿肥的对照,以及种植大绿豆和种植高丹草的处理,利用高通量测序技术研究不同处理表层土壤细菌多样性和群落结构的差异,并分析细菌群落与环境因子的相关性。结果表明,与对照相比,种植绿肥显著(P<0.05)提高了土壤微生物生物量碳、氮含量,且高丹草的效果优于大绿豆。种植两种绿肥作物对细菌群落多样性无显著影响。不同处理下的优势细菌门类为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、放线菌门(Actinobacteriota)、酸杆菌门(Acidobacteriota)、浮霉菌门(Planctomycetota)、黏球菌门(Myxococcota)、疣微菌门(Verrucomicrobiota),相对丰度共占84%以上。与对照相比,种植绿肥降低了差异标志物的数量,尤其是种植大绿豆的处理。在门水平上,种植大绿豆较高丹草大幅提高了根际土壤中拟杆菌门(Bacteroidota)的相对丰度;在属水平上,种植大绿豆处理的罗河杆菌属(Rhodanobacter)和孤岛杆菌属(Dokdonella)的相对丰度较种植高丹草的显著(P<0.05)提高5~6倍。冗余分析和相关分析发现,影响土壤细菌髌骨细菌门(Patescibacteria)、拟杆菌门、放线菌门、芽单孢菌门(Gemmatimonadota)、厚壁菌门(Firmicutes)、黏球菌门、绿弯菌门和变形菌门分布的主要环境因子是pH值、速效钾和微生物生物量碳含量。综上,在红壤旱地生土上种植绿肥作物有助于改善土壤环境条件,促进土壤细菌群落参与土壤养分循环。
中图分类号:
斯林林, 徐静, 曹凯, 张贤, 王建红. 绿肥种植对红壤旱地生土细菌群落结构的影响[J]. 浙江农业学报, 2023, 35(8): 1864-1875.
SI Linlin, XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong. Response of bacterial community to planting cover crops in virgin upland red soil[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875.
处理 Treatment | 地上部 Shoot | 根系 Root | 总生物量 Total |
---|---|---|---|
SC_bean | 3.9 bc | 0.5 c | 4.4 c |
SC_ssh | 5.6 a | 2.6 a | 8.2 a |
JN_bean | 2.4 c | 0.7 c | 3.1 c |
JN_ssh | 4.5 ab | 1.9 b | 6.4 b |
表1 不同处理的绿肥作物生物量
Table 1 Biomass of cover crops under different treatments t·hm-2
处理 Treatment | 地上部 Shoot | 根系 Root | 总生物量 Total |
---|---|---|---|
SC_bean | 3.9 bc | 0.5 c | 4.4 c |
SC_ssh | 5.6 a | 2.6 a | 8.2 a |
JN_bean | 2.4 c | 0.7 c | 3.1 c |
JN_ssh | 4.5 ab | 1.9 b | 6.4 b |
处理 Treatment | pH | SOC/ (g·kg-1) | POC/ (g·kg-1) | SMBC/ (mg·kg-1) | TN/ (g·kg-1) | PON/ (g·kg-1) | SMBN/ (mg·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SC_CK | 5.06 b | 2.90 d | 0.53 d | 60.51 d | 0.12 d | 0.04 bc | 3.38 d | 26.25 c | 4.83 de | 112.50 e |
SC_bean | 5.08 b | 7.97 a | 1.98 a | 244.39 b | 0.66 a | 0.13 a | 14.02 b | 61.95 a | 42.15 a | 158.40 cd |
SC_ssh | 5.04 b | 6.50 b | 1.94 a | 364.81 a | 0.47 b | 0.11 a | 24.59 a | 64.40 a | 17.63 c | 232.00 b |
JN_CK | 5.30 b | 5.25 c | 0.95 cd | 42.51 d | 0.33 c | 0.03 c | 10.10 c | 30.33 c | 3.47 e | 131.00 de |
JN_bean | 5.27 b | 5.76 c | 1.48 b | 150.08 c | 0.37 c | 0.08 b | 17.26 b | 50.40 b | 37.24 b | 275.75 a |
JN_ssh | 5.58 a | 5.86 c | 1.03 bc | 116.55 c | 0.28 c | 0.03 c | 17.56 b | 29.40 c | 8.68 d | 178.10 c |
表2 不同处理旱地的土壤理化性质
Table 2 Soil properties in dryland under different treatments
处理 Treatment | pH | SOC/ (g·kg-1) | POC/ (g·kg-1) | SMBC/ (mg·kg-1) | TN/ (g·kg-1) | PON/ (g·kg-1) | SMBN/ (mg·kg-1) | AN/ (mg·kg-1) | AP/ (mg·kg-1) | AK/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
SC_CK | 5.06 b | 2.90 d | 0.53 d | 60.51 d | 0.12 d | 0.04 bc | 3.38 d | 26.25 c | 4.83 de | 112.50 e |
SC_bean | 5.08 b | 7.97 a | 1.98 a | 244.39 b | 0.66 a | 0.13 a | 14.02 b | 61.95 a | 42.15 a | 158.40 cd |
SC_ssh | 5.04 b | 6.50 b | 1.94 a | 364.81 a | 0.47 b | 0.11 a | 24.59 a | 64.40 a | 17.63 c | 232.00 b |
JN_CK | 5.30 b | 5.25 c | 0.95 cd | 42.51 d | 0.33 c | 0.03 c | 10.10 c | 30.33 c | 3.47 e | 131.00 de |
JN_bean | 5.27 b | 5.76 c | 1.48 b | 150.08 c | 0.37 c | 0.08 b | 17.26 b | 50.40 b | 37.24 b | 275.75 a |
JN_ssh | 5.58 a | 5.86 c | 1.03 bc | 116.55 c | 0.28 c | 0.03 c | 17.56 b | 29.40 c | 8.68 d | 178.10 c |
图1 土壤细菌群落的α多样性指数 “*”和“**”分别表示差异显著(P<0.05)和极显著(P<0.01)。
Fig.1 Alpha diversity index of soil bacterial community “*” and “**” indicate signficant differnce at P<0.05 and P<0.01, respectively.
图4 土壤细菌群落LEfSe分析(LDA>4.0)的进化分支 a,酸杆菌目未知科未知属;b,酸杆菌目未知科;c,酸杆菌目;d,Subgroup_2门未知科未知属;e,Subgroup_2门未知科;f,Subgroup_2目;g,酸栖热菌属;h,酸栖热菌科;i,Frankiales目;j,微球菌目;k,Gaiellales目未知科未知属;l,Gaiellales目未知科;m,Gaiellales目;n,束缚菌属;o,土壤红色杆形菌科;p,Solirubrobacterales目;q,嗜热油菌纲;r,放线菌门;s,拟杆菌纲;t,拟杆菌门;u,AD3纲未知目未知科未知属;v,AD3纲未知目未知科;w,AD3纲未知目;x,AD3纲;y,绿弯菌纲;z,JG30-KF-AS9科未知属;a0,JG30-KF-AS9科;a1,HSB_OF53-F07属;a2,Ktedonobacteraceae科未分类属;a3,Ktedonobacteraceae科;a4,细枝菌目;a5,细枝菌纲;a6,绿弯菌门;a7,Bacillaceae科;a8,芽孢杆菌目;a9,Bacilli纲;b0,厚壁菌门;b1,厌氧黏杆菌属;b2,厌氧黏杆菌科;b3,黏球菌目;b4,Myxococcia纲;b5,出芽菌科未知属;b6,出芽菌科;b7,Gemmatales目;b8,Elsterales目未知科未知属;b9,Elsterales目未知科;c0,Elsterales目;c1,黄色杆菌科未知属;c2,黄色杆菌科;c3,Rhizobiales目;c4,α-变形菌纲;c5,Burkholderia-Caballeronia-Paraburkholderia属;c6,伯克霍尔德氏菌科;c7,亚硝化单胞菌科;c8,Burkholderiales目;c9,罗河杆菌属;d0,罗河杆菌科;d1,黄单胞菌目;d2,伽玛变形菌纲;d3,变形菌门;d4,WPS-2门未知纲未知目未知科未知属;d5,WPS-2门未知纲未知目未知科;d6,WPS-2门未知纲未知目;d7,WPS-2门未知纲;d8,WPS-2门。
Fig.4 Evolutionary cladistic graph based on LEfSe analysis (LDA>4.0) for soil bacterial community
图6 基于OTU水平的主成分分析(PCoA)和不同处理在PC1轴上的分布离散情况 PC1,主成分1;PC2,主成分2。
Fig.6 Principal co-ordinates analysis (PcoA) based on OTU levels and distribution and dispersion of different treatments based on the PC1 (principle component 1) axis PC1, Principal component 1; PC2, Principle component 2.
图7 基于OTU水平的细菌群落与土壤环境因子的冗余分析(RDA)排序图 SOC,土壤有机碳;POC,颗粒态有机碳;SMBC,土壤微生物生物量碳;TN,全氮;PON,颗粒态有机氮;SMBN,土壤微生物量生物氮;AN,碱解氮;AP,有效磷;AK,速效钾。下同。
Fig.7 Redundancy analysis (RDA) ordination diagram of relationships within soil environmental factors and bacterial community based on OTU levels SOC, Soil organic carbon; POC, Particulate organic carbon; SMBC, Soil microbial biomass carbon; TN, Total nitrogen; PON, Particulate organic nitrogen; SMBN, Soil microbial biomass nitrogen; AN, Alkaline hydrolysis nitrogen; AP, Available phosphorus; AK, Available potassium. The same as below.
环境因子 Environmental factors | RDA1 | RDA2 | R2 | P |
---|---|---|---|---|
pH | 0.897 9 | -0.440 3 | 0.401 2 | 0.020 |
SOC | -0.095 4 | 0.995 4 | 0.340 2 | 0.038 |
POC | 0.208 8 | 0.978 0 | 0.251 0 | 0.102 |
SMBC | 0.082 5 | 0.996 6 | 0.480 9 | 0.008 |
TN | -0.153 8 | 0.988 1 | 0.297 0 | 0.057 |
PON | -0.068 9 | 0.997 6 | 0.432 4 | 0.016 |
SMBN | 0.882 4 | 0.470 5 | 0.227 9 | 0.146 |
AN | 0.218 0 | 0.975 9 | 0.384 2 | 0.025 |
AP | 0.549 5 | 0.835 5 | 0.257 8 | 0.105 |
AK | 0.995 5 | 0.094 6 | 0.358 5 | 0.040 |
表3 环境因子对RDA结果的解释权重
Table 3 Explanatory weights of environmental factors for RDA results
环境因子 Environmental factors | RDA1 | RDA2 | R2 | P |
---|---|---|---|---|
pH | 0.897 9 | -0.440 3 | 0.401 2 | 0.020 |
SOC | -0.095 4 | 0.995 4 | 0.340 2 | 0.038 |
POC | 0.208 8 | 0.978 0 | 0.251 0 | 0.102 |
SMBC | 0.082 5 | 0.996 6 | 0.480 9 | 0.008 |
TN | -0.153 8 | 0.988 1 | 0.297 0 | 0.057 |
PON | -0.068 9 | 0.997 6 | 0.432 4 | 0.016 |
SMBN | 0.882 4 | 0.470 5 | 0.227 9 | 0.146 |
AN | 0.218 0 | 0.975 9 | 0.384 2 | 0.025 |
AP | 0.549 5 | 0.835 5 | 0.257 8 | 0.105 |
AK | 0.995 5 | 0.094 6 | 0.358 5 | 0.040 |
图8 门水平上细菌种类与环境因子的相关性热图 “*”“**”“***”分别表示P<0.05、P<0.01、P<0.001。
Fig.8 Heatmap of correlation within environmental factors and bacterial taxa at phylum level “*” “**” “***” represent significance of P<0.05, P<0.01, P<0.001, respectively.
[1] | CHEN W, TENG Y, LI Z G, et al. Mechanisms by which organic fertilizer and effective microbes mitigate peanut continuous cropping yield constraints in a red soil of South China[J]. Applied Soil Ecology, 2018, 128: 23-34. |
[2] | JIN Z W, CHEN C, CHEN X M, et al. The crucial factors of soil fertility and rapeseed yield: a five year field trial with biochar addition in upland red soil, China[J]. Science of the Total Environment, 2019, 649: 1467-1480. |
[3] | 黄国勤, 赵其国. 红壤生态学[J]. 生态学报, 2014, 34(18): 5173-5181. |
HUANG G Q, ZHAO Q G. Initial exploration of red soil ecology[J]. Acta Ecologica Sinica, 2014, 34(18): 5173-5181. (in Chinese with English abstract) | |
[4] | 黄国勤, 周丽华, 杨滨娟, 等. 红壤旱地不同复种方式养地效果[J]. 生态学报, 2014, 34(18): 5191-5199. |
HUANG G Q, ZHOU L H, YANG B J, et al. Improving soil fertility with different multiple cropping patterns in upland red soil[J]. Acta Ecologica Sinica, 2014, 34(18): 5191-5199. (in Chinese with English abstract) | |
[5] | HALLAMA M, PEKRUN C, LAMBERS H, et al. Hidden miners: the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems[J]. Plant and Soil, 2019, 434(1): 7-45. |
[6] | 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450-1461. |
CAO W D, BAO X G, XU C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450-1461. (in Chinese with English abstract) | |
[7] | 樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用[J]. 应用生态学报, 2020, 31(4): 1389-1402. |
FAN Z L, CHAI Q, CAO W D, et al. Ecosystem service function of green manure and its application in dryland agriculture of China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1389-1402. (in Chinese with English abstract) | |
[8] | 丁钰珮, 杜宇佳, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤细菌群落结构与功能预测[J]. 生态学报, 2021, 41(10): 4131-4139. |
DING Y P, DU Y J, GAO G L, et al. Soil bacterial community structure and functional prediction of Pinus sylvestris var. mongolica plantations in the Hulun Buir Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(10): 4131-4139. (in Chinese with English abstract) | |
[9] | 刘佳, 陈晓芬, 刘明, 等. 长期施肥对旱地红壤细菌群落的影响[J]. 土壤学报, 2020, 57(2): 468-478. |
LIU J, CHEN X F, LIU M, et al. Effects of long-term fertilization on bacterial community in upland red soil[J]. Acta Pedologica Sinica, 2020, 57(2): 468-478. (in Chinese with English abstract) | |
[10] | CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
[11] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[12] | PEREIRA L B, VICENTINI R, OTTOBONI L M M. Changes in the bacterial community of soil from a neutral mine drainage channel[J]. PLoS One, 2014, 9(5): e96605. |
[13] | 陈安磊, 王凯荣, 谢小立. 施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J]. 农业环境科学学报, 2005, 24(6): 1094-1099. |
CHEN A L, WANG K R, XIE X L. Effects of fertilization systems and nutrient recycling on microbial biomass C, N and P in a reddish paddy soil[J]. Journal of Agro-Environmental Science, 2005, 24(6): 1094-1099. (in Chinese with English abstract) | |
[14] | 李红燕, 胡铁成, 曹群虎, 等. 旱地不同绿肥品种和种植方式提高土壤肥力的效果[J]. 植物营养与肥料学报, 2016, 22(5): 1310-1318. |
LI H Y, HU T C, CAO Q H, et al. Effect of improving soil fertility by planting different green manures in different patterns in dryland[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1310-1318. (in Chinese with English abstract) | |
[15] | PIOTROWSKA-DŁUGOSZ A, WILCZEWSKI E. Assessment of soil nitrogen and related enzymes as influenced by the incorporation time of field pea cultivated as a catch crop in Alfisol[J]. Environmental Monitoring and Assessment, 2014, 186(12): 8425-8441. |
[16] | 杨山, 李小彬, 王汝振, 等. 氮水添加对中国北方草原土壤细菌多样性和群落结构的影响[J]. 应用生态学报, 2015, 26(3): 739-746. |
YANG S, LI X B, WANG R Z, et al. Effects of nitrogen and water addition on soil bacterial diversity and community structure in temperate grasslands in Northern China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 739-746. (in Chinese with English abstract) | |
[17] | 雷利国, 江长胜, 郝庆菊. 缙云山土地利用方式对土壤轻组及颗粒态有机碳氮的影响[J]. 环境科学, 2015, 36(7): 2669-2677. |
LEI L G, JIANG C S, HAO Q J. Impacts of land use changes on soil light fraction and particulate organic carbon and nitrogen in Jinyun Mountain[J]. Environmental Science, 2015, 36(7): 2669-2677. (in Chinese with English abstract) | |
[18] | TIAN J, WANG J Y, DIPPOLD M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of the Total Environment, 2016, 556: 89-97. |
[19] | LU M, REN Y L, WANG S J, et al. Contribution of soil variables to bacterial community composition following land use change in Napahai Plateau wetlands[J]. Journal of Environmental Management, 2019, 246: 77-84. |
[20] | ZHAO Y, YAN C B, HU F C, et al. Intercropping pinto peanut in litchi orchard effectively improved soil available potassium content, optimized soil bacterial community structure, and advanced bacterial community diversity[J]. Frontiers in Microbiology, 2022, 13: 868312. |
[21] | 黄志强, 邱景璇, 李杰, 等. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 2021, 61(5): 1044-1063. |
HUANG Z Q, QIU J X, LI J, et al. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 2021, 61(5): 1044-1063. (in Chinese with English abstract) | |
[22] | BRYANT J A, LAMANNA C, MORLON H, et al. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(supplement 1): 11505-11511. |
[23] | 王金平, 黄荣珍, 朱丽琴, 等. 肥力提升措施对林地红壤生物结皮层微生物群落结构的影响[J]. 土壤学报, 2023, 60(1): 292-303. |
WANG J P, HUANG R Z, ZHU L Q, et al. Effects of different fertility improvement measures on microbial community structures in biological red soil crusts of woodland[J]. Acta Pedologica Sinica, 2023, 60(1): 292-303. (in Chinese with English abstract) | |
[24] | HARTMAN W H, RICHARDSON C J, VILGALYS R, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(46): 17842-17847. |
[25] | 周灵芝, 劳承英, 申章佑, 等. 定向栽培连作淮山根际土壤细菌群落的多样性分析[J]. 西南农业学报, 2021, 34(8): 1601-1607. |
ZHOU L Z, LAO C Y, SHEN Z Y, et al. Analysis of diversity of rhizosphere soil bacterial community of yam in directional cultivation in continuous cropping[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1601-1607. (in Chinese with English abstract) | |
[26] | SHEN C C, NI Y Y, LIANG W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582. |
[27] | BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266. |
[28] | SÁNCHEZ-CAÑIZARES C, JORRÍN B, POOLE P S, et al. Understanding the holobiont: the interdependence of plants and their microbiome[J]. Current Opinion in Microbiology, 2017, 38: 188-196. |
[29] | YANG Y J, LIU H X, DAI Y C, et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments[J]. Science of the Total Environment, 2021, 750: 141719. |
[30] | 李欣雨, 刘函亦, 薛少琪, 等. 几种绿肥的根系分泌物对土壤锌的活化效应[J]. 中国土壤与肥料, 2022(1): 81-89. |
LI X Y, LIU H Y, XUE S Q, et al. Zinc mobilization effect by root exudates of different green manure[J]. Soil and Fertilizer Sciences in China, 2022(1): 81-89. (in Chinese with English abstract) | |
[31] | LADYGINA N, HEDLUND K. Plant species influence microbial diversity and carbon allocation in the rhizosphere[J]. Soil Biology and Biochemistry, 2010, 42(2): 162-168. |
[32] | KOBAYASHI K. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis[J]. Environmental Microbiology, 2015, 17(4): 1365-1376. |
[33] | 赵娟, 刘涛, 潘磊, 等. 元阳梯田地方水稻品种根部内生菌及根际微生物的分离与鉴定[J]. 应用生态学报, 2015, 26(12): 3737-3745. |
ZHAO J, LIU T, PAN L, et al. Isolation and identification of root endophytic and rhizosphere bacteria of rice landraces in Yuanyang Terrace, China[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3737-3745. (in Chinese with English abstract) | |
[34] | 肖健, 陈思宇, 孙妍, 等. 甘蔗间作不同豆科作物对甘蔗植株内生细菌多样性的影响[J]. 热带作物学报, 2021, 42(11): 3188-3198. |
XIAO J, CHEN S Y, SUN Y, et al. Effect of intercropping with different legume crops on endophytic bacterial diversity of sugarcanes[J]. Chinese Journal of Tropical Crops, 2021, 42(11): 3188-3198. (in Chinese with English abstract) | |
[35] | GREEN S J, PRAKASH O, JASROTIA P, et al. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site[J]. Applied and Environmental Microbiology, 2012, 78(4): 1039-1047. |
[36] | WANG J, LEI Z, WANG L X, et al. Insight into using up-flow anaerobic sludge blanket-anammox to remove nitrogen from an anaerobic membrane reactor during mainstream wastewater treatment[J]. Bioresource Technology, 2020, 314: 123710. |
[37] | PISHGAR R, DOMINIC J A, SHENG Z Y, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology, 2019, 281: 72-83. |
[38] | WANG D P, LI T, HUANG K L, et al. Roles and correlations of functional bacteria and genes in the start-up of simultaneous anammox and denitrification system for enhanced nitrogen removal[J]. Science of the Total Environment, 2019, 655: 1355-1363. |
[39] | 严君, 韩晓增, 王守宇, 等. 不同形态氮对大豆根瘤生长及固氮的影响[J]. 大豆科学, 2009, 28(4): 674-677. |
YAN J, HAN X Z, WANG S Y, et al. Effect of different forms nitrogen on nodule growth and nitrogen fixation in soybean (Glycine max L.)[J]. Soybean Science, 2009, 28(4): 674-677. (in Chinese with English abstract) |
[1] | 朱诗君, 王丽丽, 金树权, 周金波, 汪峰, 卢晓红. 不同土壤消毒方式对土壤真菌多样性和群落结构的影响[J]. 浙江农业学报, 2023, 35(3): 639-646. |
[2] | 王静鸽, 吉小凤, 吴静, 杨华, 唐标, 丁保安. 磺胺间甲氧嘧啶对蛋鸡粪便菌群结构的影响[J]. 浙江农业学报, 2022, 34(2): 284-292. |
[3] | 张亮, 李玉婷, 许晓风. 锰离子胁迫下外生菌根真菌对土壤钾释放的影响[J]. 浙江农业学报, 2020, 32(7): 1215-1222. |
[4] | 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析[J]. 浙江农业学报, 2020, 32(6): 1019-1028. |
[5] | 夏文建, 秦文婧, 刘佳, 陈晓芬, 张丽芳, 曹卫东, 徐昌旭, 陈静蕊. 长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J]. 浙江农业学报, 2020, 32(5): 878-885. |
[6] | 罗熳丽, 兰琴, 王戈, 魏洪, 肖玖金, 张健. 施肥对农田土壤动物群落结构的影响[J]. 浙江农业学报, 2019, 31(6): 946-954. |
[7] | 苟丽琼, 姚恒, 王戈, 黄如成, 段均华, 肖玖金, 张健. 稻草不同还田方式对土壤动物群落结构的影响[J]. 浙江农业学报, 2019, 31(3): 450-457. |
[8] | 陈小娟, 陈煜林, 林净净, 杨依彬, 胡克纬, 张承林. 不同聚合度的聚磷酸铵对土壤磷动态转化及有效性的影响[J]. 浙江农业学报, 2019, 31(10): 1681-1688. |
[9] | 张茜, 杨东旭, 钟永德, 周国英, 李文明. 黄石寨景区旅游活动对典型植物群落的影响[J]. 浙江农业学报, 2017, 29(7): 1158-1165. |
[10] | 罗熳丽, 黄婷婷, 肖玖金, 黄进平, 张健, 彭彩云. 城市草坪不同管理方式下土壤动物群落结构特征与差异[J]. 浙江农业学报, 2017, 29(11): 1835-1843. |
[11] | 王信, 程亮. 青藏高原5种类型土壤细菌群落结构差异[J]. 浙江农业学报, 2017, 29(11): 1882-1889. |
[12] | 单颖, 赵凤亮, 邹刚华, 李玮, 何振立. 蚯蚓粪对海南甘蔗园砖红壤氮素矿化和硝化的影响[J]. 浙江农业学报, 2017, 29(11): 1890-1896. |
[13] | 李媛媛, 石凯, 德力格尔. 内蒙古草盲蝽复合组昆虫群落结构及区系[J]. 浙江农业学报, 2016, 28(9): 1558-1563. |
[14] | 张爱菊1,2,3,刘金殿1,2,3,*,杨元杰1,2,3,郭爱环1,2,3,顾志敏1,2,3,*. 钱塘江桐庐渔业资源增殖放流区底栖动物群落结构特征分析[J]. 浙江农业学报, 2016, 28(8): 1323-. |
[15] | 刘丹, 吴凤芝. 转Pal基因拟南芥对根际土壤细菌群落的影响[J]. 浙江农业学报, 2016, 28(12): 2068-2075. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||