浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 159-168.DOI: 10.3969/j.issn.1004-1524.20231248
朱小梅1(), 邢锦城1,*(
), 洪立洲1, 王建红2, 刘冲1, 董静1, 孙果丽1, 何苏南1
收稿日期:
2023-11-03
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
朱小梅(1982—)女,江苏盐城人,硕士,副研究员,主要从事植物营养与土壤改良利用技术研究。E-mail: xiaomeizhu301@163.com
通讯作者:
*邢锦城,E-mail: sdauxxx@163.com
基金资助:
ZHU Xiaomei1(), XING Jincheng1,*(
), HONG Lizhou1, WANG Jianhong2, LIU Chong1, DONG Jing1, SUN Guoli1, HE Sunan1
Received:
2023-11-03
Online:
2025-01-25
Published:
2025-02-14
摘要: 为揭示不同施氮处理下黑麦草作绿肥翻压还田对滩涂盐渍土的改良效果,通过田间小区试验研究了0、90、150、210、270 kg·hm-2施氮量(依次简记为CK、LN1、LN2、LN3、LN4)下黑麦草翻压还田对土壤碳氮和细菌群落结构的影响。结果表明:黑麦草生物量随施氮量的增加而增加,以LN4处理最高,为64 227 kg·hm-2,植株碳、氮含量均以LN2处理较高,各处理的植株碳氮比无显著差异。黑麦草翻压还田后,与不施氮的对照相比,施氮处理的土壤pH值显著(P<0.05)降低,水溶性盐总量、有机碳含量、全氮含量、微生物生物量碳含量、微生物生物量氮含量显著提升。各处理相比,LN2的微生物熵最高,显著高于其他处理。在土壤微生物群落中,变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)等菌群的相对丰度较高。各处理的土壤细菌香农(Shannon)指数和辛普森(Simpson)指数无显著差异,但Chao1指数和Ace指数均以LN2处理较高。总的来看,LN2处理下黑麦草翻压还田对降低滩涂盐渍土的pH值,提升土壤碳、氮含量,及改善土壤微生态环境的综合效应最佳。
中图分类号:
朱小梅, 邢锦城, 洪立洲, 王建红, 刘冲, 董静, 孙果丽, 何苏南. 不同施氮处理下黑麦草翻压还田对滩涂盐渍土碳氮与细菌群落结构的影响[J]. 浙江农业学报, 2025, 37(1): 159-168.
ZHU Xiaomei, XING Jincheng, HONG Lizhou, WANG Jianhong, LIU Chong, DONG Jing, SUN Guoli, HE Sunan. Effects of overturning Lolium perenne under different nitrogen rates on carbon, nitrogen and bacterial community structure in saline soil of coastal area[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 159-168.
处理 Treatments | 生物量 Biomass/(kg·hm-2) | 碳含量 Carbon content/(g·kg-1) | 氮含量 Nitrogen content/(g·kg-1) | 碳氮比 C/N ratio |
---|---|---|---|---|
CK | 36 991±3 923 d | 499±7 c | 15.3±0.3 d | 32.7±1.8 a |
LN1 | 46 418±1 703 c | 514±9 b | 17.0±0.1 b | 30.3±2.8 a |
LN2 | 52 498±2 292 b | 523±9 a | 18.1±0.4 a | 28.9±2.5 a |
LN3 | 54 444±3 113 b | 510±5 b | 17.6±0.2 a | 29.0±2.1 a |
LN4 | 64 227±897 a | 507±3 b | 16.3±0.2 c | 31.1±1.7 a |
表1 不同处理下黑麦草的生物量、碳含量、氮含量和碳氮比
Table 1 The biomass, carbon content, nitrogen content and C/N ratio of Lolium perenne under treatments
处理 Treatments | 生物量 Biomass/(kg·hm-2) | 碳含量 Carbon content/(g·kg-1) | 氮含量 Nitrogen content/(g·kg-1) | 碳氮比 C/N ratio |
---|---|---|---|---|
CK | 36 991±3 923 d | 499±7 c | 15.3±0.3 d | 32.7±1.8 a |
LN1 | 46 418±1 703 c | 514±9 b | 17.0±0.1 b | 30.3±2.8 a |
LN2 | 52 498±2 292 b | 523±9 a | 18.1±0.4 a | 28.9±2.5 a |
LN3 | 54 444±3 113 b | 510±5 b | 17.6±0.2 a | 29.0±2.1 a |
LN4 | 64 227±897 a | 507±3 b | 16.3±0.2 c | 31.1±1.7 a |
图1 不同处理的土壤pH值 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Soil pH value under treatments Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
处理 Treatment | 有机碳含量 Organic carbon content/(g·kg-1) | 全氮含量 Total nitrogen content/(g·kg-1) | 微生物生物量碳含量 Microbial biomass carbon content/(mg·kg-1) | 微生物生物量氮含量 Microbial biomass nitrogen content/(mg·kg-1) | 微生物熵 Microbial quotient/% |
---|---|---|---|---|---|
CK | 5.74±0.07 e | 0.424±0.007 d | 220±5 c | 30.7±0.9 c | 3.80±0.11 c |
LN1 | 6.07±0.05 d | 0.493±0.008 c | 239±4 b | 35.7±1.2 b | 3.94±0.10 b |
LN2 | 6.30±0.04 c | 0.539±0.003 b | 254±9 a | 38.2±0.8 ab | 4.03±0.17 a |
LN3 | 6.51±0.03 b | 0.588±0.007 a | 258±8 a | 39.0±0.7 a | 3.97±0.13 b |
LN4 | 6.85±0.02 a | 0.506±0.009 c | 263±7 a | 36.5±1.3 b | 3.84±0.11 c |
表2 不同处理对土壤碳、氮含量和微生物熵的影响
Table 2 Effects of treatments on soil carbon, nitrogen content and microbial quotient
处理 Treatment | 有机碳含量 Organic carbon content/(g·kg-1) | 全氮含量 Total nitrogen content/(g·kg-1) | 微生物生物量碳含量 Microbial biomass carbon content/(mg·kg-1) | 微生物生物量氮含量 Microbial biomass nitrogen content/(mg·kg-1) | 微生物熵 Microbial quotient/% |
---|---|---|---|---|---|
CK | 5.74±0.07 e | 0.424±0.007 d | 220±5 c | 30.7±0.9 c | 3.80±0.11 c |
LN1 | 6.07±0.05 d | 0.493±0.008 c | 239±4 b | 35.7±1.2 b | 3.94±0.10 b |
LN2 | 6.30±0.04 c | 0.539±0.003 b | 254±9 a | 38.2±0.8 ab | 4.03±0.17 a |
LN3 | 6.51±0.03 b | 0.588±0.007 a | 258±8 a | 39.0±0.7 a | 3.97±0.13 b |
LN4 | 6.85±0.02 a | 0.506±0.009 c | 263±7 a | 36.5±1.3 b | 3.84±0.11 c |
处理Treatment | 香农指数Shannon index | 辛普森指数Simpson index | Ace指数Ace index | Chao1指数Chao1 index |
---|---|---|---|---|
CK | 10.1±0.1 a | 0.997±0.033 a | 5 881±83 d | 5 965±74 c |
LN1 | 10.5±0.4 a | 0.997±0.014 a | 5 985±26 c | 6 027±67 b |
LN2 | 10.4±0.2 a | 0.997±0.012 a | 6 583±61 a | 6 530±47 a |
LN3 | 10.4±0.4 a | 0.997±0.006 a | 6 413±53 b | 6 463±46 a |
LN4 | 10.1±0.3 a | 0.996±0.024 a | 6 043±14 c | 6 025±31 b |
表3 不同处理的土壤细菌群落多样性指数
Table 3 Soil bacteria community diversity index under treatments
处理Treatment | 香农指数Shannon index | 辛普森指数Simpson index | Ace指数Ace index | Chao1指数Chao1 index |
---|---|---|---|---|
CK | 10.1±0.1 a | 0.997±0.033 a | 5 881±83 d | 5 965±74 c |
LN1 | 10.5±0.4 a | 0.997±0.014 a | 5 985±26 c | 6 027±67 b |
LN2 | 10.4±0.2 a | 0.997±0.012 a | 6 583±61 a | 6 530±47 a |
LN3 | 10.4±0.4 a | 0.997±0.006 a | 6 413±53 b | 6 463±46 a |
LN4 | 10.1±0.3 a | 0.996±0.024 a | 6 043±14 c | 6 025±31 b |
图5 不同处理的土壤细菌群落结构组成(门水平) Pro,变形菌门;Aci,酸杆菌门;Bac,拟杆菌门;Act,放线菌门;Chl,绿弯菌门;Gem,芽单胞菌门;Fir,厚壁菌门;Pat,髌骨细菌门;Nit,硝化螺旋菌门;Ver,疣微菌门;Rok,己科河菌门;Cya,蓝菌门;Oth,其他。
Fig.5 Bacteira community structure of soil bacteria at phylum level under treatments Pro, Proteobacteria; Aci, Acidobacteria; Bac, Bacteroidetes; Act, Actinobacteria; Chl, Chloroflexi; Gem, Gemmatimonadetes; Fir, Firmicutes; Pat, Patescibacteria; Nit, Nitrospirae; Ver, Verrucomicrobia; Rok, Rokubacteria; Cya, Cyanobacteria; Oth, Others.
图6 不同处理的土壤细菌群落结构组成(属水平) UU,未知分类菌属;Sph,鞘氨醇单胞菌属;Mas,马赛菌属;fGU,芽单胞菌科未识别属;fuU,未纯培养未知分类属;fBuU,伯克氏菌科未知分类属;fBlU,Blastocatellaceae科未知分类属;Fla,黄色土源菌属;Pse,假节杆菌属;Ste,类固醇杆菌属;Oth,其他。
Fig.6 Bacteira community structure of soil bacteria at genus level under treatments UU, Unclassified_unclassified; Sph, Sphingomonas; Mas, Massilia; fGU, f_Gemmatimonadaceae_Unclassified; fuU, f_uncultured_Unclassified; fBuU, f_Burkholderiaceae_Unclassified; fBlU, f_Blastocatellaceae_Unclassified; Fla, Flavisolibacter; Pse, Pseudarthrobacter; Ste, Steroidobacter; Oth, Others.
优势菌门 Dominant phylum | 优势菌门与各土壤性状的相关系数Correlation coefficient of dominant phylum with soil proporties | |||||
---|---|---|---|---|---|---|
pH | 有机碳含量 Organic carbon content | 全氮含量 Total nitrogen content | 微生物生物量碳含量 Microbial biomass carbon content | 微生物生物量氮含量 Microbial biomass nitrogen content | 水溶性盐总量 Total water-soluble salt content | |
Pro | -0.026 | 0.141 | 0.017 | 0.008 | -0.157 | 0.413 |
Aci | -0.275 | -0.149 | 0.171 | 0.311 | 0.608 | -0.342 |
Bac | -0.077 | 0.480 | 0.192 | 0.046 | -0.252 | 0.523 |
Act | 0.257 | 0.139 | -0.126 | -0.290 | -0.513 | 0.163 |
Chl | -0.502 | 0.150 | 0.419 | 0.539 | 0.762 | -0.107 |
Gem | 0.667 | -0.915* | -0.729 | -0.645 | -0.358 | -0.928* |
Fir | 0.213 | 0.174 | -0.107 | -0.262 | -0.540 | 0.408 |
Pat | -0.613 | 0.300 | 0.520 | 0.657 | 0.817 | 0.052 |
Nit | -0.292 | -0.062 | 0.129 | 0.352 | 0.510 | -0.109 |
Ver | 0.939* | -0.898* | -0.944* | -0.918* | -0.811 | -0.889* |
Rok | 0.035 | -0.339 | -0.203 | 0.033 | 0.187 | -0.344 |
Cya | -0.863 | 0.789 | 0.908* | 0.837 | 0.832 | 0.617 |
表4 土壤细菌群落(门水平)与土壤部分性状的相关性
Table 4 Correlations within soil bacterial community (at phylum level) and soil properties
优势菌门 Dominant phylum | 优势菌门与各土壤性状的相关系数Correlation coefficient of dominant phylum with soil proporties | |||||
---|---|---|---|---|---|---|
pH | 有机碳含量 Organic carbon content | 全氮含量 Total nitrogen content | 微生物生物量碳含量 Microbial biomass carbon content | 微生物生物量氮含量 Microbial biomass nitrogen content | 水溶性盐总量 Total water-soluble salt content | |
Pro | -0.026 | 0.141 | 0.017 | 0.008 | -0.157 | 0.413 |
Aci | -0.275 | -0.149 | 0.171 | 0.311 | 0.608 | -0.342 |
Bac | -0.077 | 0.480 | 0.192 | 0.046 | -0.252 | 0.523 |
Act | 0.257 | 0.139 | -0.126 | -0.290 | -0.513 | 0.163 |
Chl | -0.502 | 0.150 | 0.419 | 0.539 | 0.762 | -0.107 |
Gem | 0.667 | -0.915* | -0.729 | -0.645 | -0.358 | -0.928* |
Fir | 0.213 | 0.174 | -0.107 | -0.262 | -0.540 | 0.408 |
Pat | -0.613 | 0.300 | 0.520 | 0.657 | 0.817 | 0.052 |
Nit | -0.292 | -0.062 | 0.129 | 0.352 | 0.510 | -0.109 |
Ver | 0.939* | -0.898* | -0.944* | -0.918* | -0.811 | -0.889* |
Rok | 0.035 | -0.339 | -0.203 | 0.033 | 0.187 | -0.344 |
Cya | -0.863 | 0.789 | 0.908* | 0.837 | 0.832 | 0.617 |
[1] | 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993. |
[2] | 黄晶, 孔亚丽, 徐青山, 等. 盐渍土壤特征及改良措施研究进展[J]. 土壤, 2022, 54(1): 18-23. |
HUANG J, KONG Y L, XU Q S, et al. Progresses for characteristics and amelioration measures of saline soil[J]. Soils, 2022, 54(1): 18-23. (in Chinese with English abstract) | |
[3] | MATSUOKA T, ASAGI N, KOMATSUZAKI M. Response of weeds and rice yield to Italian ryegrass as a cover crop and planting density in organic farming[J]. Agronomy Journal, 2022, 114(1): 689-699. |
[4] | 许能祥, 董臣飞, 丁成龙, 等. 盐土和非盐土施氮对多花黑麦草增产改质效果差异的比较[J]. 草业学报, 2016, 25(11): 115-123. |
XU N X, DONG C F, DING C L, et al. Comparison of the effects of nitrogen fertilizer on the yield and feeding quality of Italian ryegrass (Lolium multiflorum) in saline and non-saline soil[J]. Acta Prataculturae Sinica, 2016, 25(11): 115-123. (in Chinese with English abstract) | |
[5] | 张武舜, 蔡茂德, 胡浩. 苏北沿海地区牧草品种的选择及应用模式[J]. 草与畜杂志, 1988, 8(6): 13-15. |
ZHANG W S, CAI M D, HU H. Selection and application model of forage varieties in coastal areas of northern Jiangsu[J]. China Herbivore Science, 1988, 8(6): 13-15. (in Chinese) | |
[6] | 王敬宽, 高枫舒, 张楷悦, 等. 禾本科绿肥还田对盐碱地棉田土壤碳氮及微生物量碳氮的影响[J]. 中国生态农业学报(中英文), 2023, 31(3): 396-404. |
WANG J K, GAO F S, ZHANG K Y, et al. Effects of returning gramineous green manure to cotton field on soil carbon and nitrogen in saline alkali soil[J]. Chinese Journal of Eco-Agriculture, 2023, 31(3): 396-404. (in Chinese with English abstract) | |
[7] | 郭耀东, 程曼, 赵秀峰, 等. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量及品质的影响[J]. 中国生态农业学报, 2018, 26(6): 856-864. |
GUO Y D, CHENG M, ZHAO X F, et al. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 856-864. (in Chinese with English abstract) | |
[8] | 李孔晨, 卢欣石, 王铁梅. 盐胁迫下施氮水平对黑麦草氮素吸收的影响[J]. 草地学报, 2011, 19(3): 487-491. |
LI K C, LU X S, WANG T M. Effects of different nitrogen fertilizer rates on nitrogen absorption by ryegrass (Lolium muliiflorum) under salt stress[J]. Acta Agrestia Sinica, 2011, 19(3): 487-491. (in Chinese with English abstract) | |
[9] | 沈振国, 沈其荣, 管红英, 等. NaCl胁迫下氮素营养与大麦幼苗生长和离子平衡的关系[J]. 南京农业大学学报, 1994, 17(1): 22-26. |
SHEN Z G, SHEN Q R, GUAN H Y, et al. Relationship between nitrogen nutrition and growth of barley seedlings as well as ion balance under NaCl stress[J]. Journal of Nanjing Agricultural University, 1994, 17(1): 22-26. (in Chinese) | |
[10] | 朱小梅, 王建红, 赵宝泉, 等. 不同盐分土壤环境下绿肥腐解及养分释放动态研究[J]. 水土保持学报, 2018, 32(6): 309-314. |
ZHU X M, WANG J H, ZHAO B Q, et al. Dynamics of decomposition and nutrient release of green manure under different saline soils[J]. Journal of Soil and Water Conservation, 2018, 32(6): 309-314. (in Chinese with English abstract) | |
[11] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[12] | BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837-842. |
[13] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. |
[14] | 马想, 黄晶, 赵惠丽, 等. 秸秆与氮肥不同配比对红壤微生物量碳氮的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1574-1580. |
MA X, HUANG J, ZHAO H L, et al. Straw and nitrogen fertilizer ratios influence microbial biomass carbon and nitrogen in red soil[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1574-1580. (in Chinese with English abstract) | |
[15] | 唐红琴, 李忠义, 曾成城, 等. 不同绿肥种类和还田量对柑橘园土壤养分的动态影响[J]. 江苏农业科学, 2021, 49(16): 214-219. |
TANG H Q, LI Z Y, ZENG C C, et al. Dynamic impact of different green manure types and returning amounts on soil nutrients in citrus orchard[J]. Jiangsu Agricultural Sciences, 2021, 49(16): 214-219. (in Chinese with English abstract) | |
[16] | 王娟娟, 胡珈玮, 狄霖, 等. 秸秆还田与氮肥运筹对水稻不同生育期土壤细菌群落结构的影响[J]. 江苏农业学报, 2021, 37(6): 1460-1470. |
WANG J J, HU J W, DI L, et al. Effects of straw returning and nitrogen management on soil microbial community structure at different rice growth stages[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(6): 1460-1470. (in Chinese with English abstract) | |
[17] | 刘慧, 李子玉, 白志贵, 等. 油菜绿肥翻压还田对新疆盐碱土壤的改良效果研究[J]. 农业资源与环境学报, 2020, 37(6): 914-923. |
LIU H, LI Z Y, BAI Z G, et al. Effects of rape green manure returned to field on saline alkali soil improvement in Xinjiang[J]. Journal of Agricultural Resources and Environment, 2020, 37(6): 914-923. (in Chinese with English abstract) | |
[18] | 黄海洋. 北方半干旱地区盐碱地上高丹草利用方式的应用研究[D]. 呼和浩特: 内蒙古农业大学, 2017. |
HUANG H Y. The study on the utilization of sorghum-sudangrass hybrid and its application semi-arid saline area in northern China[D]. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese with English abstract) | |
[19] | 牟云芳, 史海滨, 闫建文, 等. 秸秆和氮肥耦合管控对盐渍化土壤地力综合效应影响研究[J]. 农业环境科学学报, 2024, 43(1):1672-1680. |
MU Y F, SHI H B, YAN J W, et al. Study on the comprehensive effect of straw and nitrogen fertilizer coupling control on soil fertility in salinized soil[J]. Journal of Agro-Environment Science, 2024, 43(1): 1672-1680. (in Chinese with English abstract) | |
[20] | 张明杰. 连续翻压黑麦草对连作植烟土壤特性和烟株生长发育的影响[D]. 郑州: 河南农业大学, 2022. |
ZHANG M J. Effects of continuous rolling ryegrass on characteristics of continuous tobacco planting soil and tobacco growth and development[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese with English abstract) | |
[21] | 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902-910. |
GAO S J, CAO W D, BAI J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902-910. (in Chinese with English abstract) | |
[22] | 汤宏, 沈健林, 张杨珠, 等. 秸秆还田与水分管理对稻田土壤微生物量碳、氮及溶解性有机碳、氮的影响[J]. 水土保持学报, 2013, 27(1): 240-246. |
TANG H, SHEN J L, ZHANG Y Z, et al. Effect of rice straw incorporation and water management on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in a rice paddy field[J]. Journal of Soil and Water Conservation, 2013, 27(1): 240-246. (in Chinese with English abstract) | |
[23] | LIU L, DING M J, ZHOU L K, et al. Effects of different rice straw on soil microbial community structure[J]. Agronomy Journal, 2021, 113(2): 794-805. |
[24] | 解雪峰, 项琦, 吴涛, 等. 滨海湿地生态系统土壤微生物及其影响因素研究综述[J]. 生态学报, 2021, 41(1): 1-12. |
XIE X F, XIANG Q, WU T, et al. Progress and prospect of soil microorganisms and their influencing factors in coastal wetland ecosystem[J]. Acta Ecologica Sinica, 2021, 41(1): 1-12. (in Chinese with English abstract) | |
[25] | 郑敏娜, 梁秀芝, 韩志顺, 等. 不同改良措施对盐碱土土壤细菌群落多样性的影响[J]. 草地学报, 2021, 29(6): 1200-1209. |
ZHENG M N, LIANG X Z, HAN Z S, et al. Effects of different improvement measures on the diversity of soil bacteria communities in salt-alkali soil[J]. Acta Agrestia Sinica, 2021, 29(6): 1200-1209. (in Chinese with English abstract) | |
[26] | TIAN W, ZHANG Z H, HU X F, et al. Short-term changes in total heavy metal concentration and bacterial community composition after replicated and heavy application of pig manure-based compost in an organic vegetable production system[J]. Biology and Fertility of Soils, 2015, 51(5): 593-603. |
[27] | FIERER N, LAUBER C L, RAMIREZ K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 2012, 6(5): 1007-1017. |
[28] | YAN S S, SONG J M, FAN J S, et al. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China[J]. Global Ecology and Conservation, 2020, 22: e00962. |
[29] | 杨思, 杨文平, 景豆豆, 等. 麦后复种苜蓿压青还田改善土壤微生物群落结构[J]. 应用与环境生物学报, 2021, 27(4): 978-987. |
YANG S, YANG W P, JING D D, et al. Improvement of soil microbial community structure by multiple cropping alfalfa after wheat[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(4): 978-987. (in Chinese with English abstract) | |
[30] | SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88: 9-18. |
[1] | 刘如, 董畅茹, 张祎雯, 屈铭慧, 张伟, 洒海洋, 陈海燕, 叶文玲, 樊霆. 镉胁迫下黑曲霉TL-F2的促生特征及其对黑麦草种子萌发、幼苗生长和镉含量的影响[J]. 浙江农业学报, 2021, 33(2): 326-334. |
[2] | 王亚琴;蒋永清;徐宁迎;董路;章哲明;郑会超. 不同牧草日粮对浙东白鹅肉鹅的饲喂效果[J]. , 2008, 20(3): 0-171. |
[3] | 马美蓉;周伟军;徐苏凌;张树生;楼月琴. 金衢盆地黑麦草引种研究[J]. , 2005, 17(3): 0-146. |
[4] | 黄新;周卫东;蒋永清;周永华. 四倍体黑麦草在浙江红壤地区引种栽培试验[J]. , 2003, 15(2): 0-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||