浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 145-158.DOI: 10.3969/j.issn.1004-1524.20231155
李腾飞1,2(), 杨桂玲2, 阮美颖3, 褚田芬2,*(
), 秦华1, 邓美华2
收稿日期:
2023-09-27
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
李腾飞(1998—),男,河南商丘人,硕士研究生,主要从事耕地质量培育与提升研究。E-mail:litf20172021@163.com
通讯作者:
*褚田芬,E-mail: tianfenchu99@163.com
基金资助:
LI Tengfei1,2(), YANG Guiling2, RUAN Meiying3, CHU Tianfen2,*(
), QIN Hua1, DENG Meihua2
Received:
2023-09-27
Online:
2025-01-25
Published:
2025-02-14
摘要:
通过研究不同肥药管理措施对设施番茄生产系统土壤健康、番茄品质与产量的影响,探索设施番茄适宜的肥药管理模式。本研究利用田间试验,设置了2种农药水平(常规施药P1和无农药P0)和5种施肥处理(不施肥CK、常规化肥F1、农家肥配施化肥F2、农家肥和生物菌肥配施化肥F3、易腐垃圾有机肥配施化肥F4),分析了不同处理对设施番茄生产系统土壤基本理化性质、土壤酶活性、番茄品质和产量的影响。结果表明,农药施用对处理的土壤性质和品质都产生了显著影响,其中P1处理的土壤有机质含量、总氮含量、土壤脲酶活性、蔗糖酶活性和过氧化氢酶活性均显著降低,而P1处理的果实维生素C含量、可溶性糖含量、糖酸比和产量均显著高于P0处理。在同一农药水平下,施肥对土壤的酶活性和pH值具有显著性作用,其中与对照相比,P0F1处理下的土壤pH值显著下降,而有机肥配施化肥降低趋势较缓,同时各处理均能增加土壤中养分,但无显著性差异;F2处理均显著增加了土壤脲酶、蔗糖酶和过氧化氢酶活性,其次F3处理对土壤酶活性也有明显改善作用,而F1处理土壤酶活性最低。同时施肥能显著提高维生素C含量、可溶性糖含量和糖酸比,各施肥处理没有显著差异。综合考虑各项指标,各施肥处理中F3处理因减量氮肥施用,而且对土壤质量、番茄品质和产量的提升都不低于其他施肥处理,因此,设施番茄种植宜采用F3处理,即农家肥结合生物菌肥配施少量化肥,同时施用适当的农药,以保障番茄产量和品质。
中图分类号:
李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158.
LI Tengfei, YANG Guiling, RUAN Meiying, CHU Tianfen, QIN Hua, DENG Meihua. Effects of fertilizer and pesticide managements on soil health and tomato qualities in greenhouse tomato cultivation[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 145-158.
处理 Treatment | 各肥料养分含量 Fertilizer nutrient content(N-P2O5-K2O) | 总施用量 Total application | 总养分含量 Total nutrient content (N-P2O5-K2O) | ||
---|---|---|---|---|---|
复合肥 Compound fertilizer | 有机肥 Organic fertilizer | 复合肥 Compound fertilizer | 有机肥 Organic fertilizer | ||
CK | 0-0-0 | 0-0-0 | 0 | 0 | 0-0-0 |
F1 | 300.00-275.00-450.00 | 0-0-0 | 2 500 | 0 | 300.00-275.00-450.00 |
F2 | 189.75-193.91-284.58 | 110.25-53.70-180.30 | 1 581 | 15 000农家肥15 000 farm manure | 30.000-247.61-464.88 |
F3 | 28.80-26.40-43.20 | 122.20-72.06-185.13 | 240 | 15 000农家肥+3 000生物菌肥 15 000 farm manure+ 3 000 biological fertilizer | 150.00-98.46-228.33 |
F4 | 28.80-26.40-43.20 | 271.20-421.50-372.00 | 240 | 15 000易腐垃圾有机肥 Perishable waste organic fertilizer | 300.00-447.90-415.20 |
表1 肥料施用情况
Table 1 Fertilizer application kg·hm-2
处理 Treatment | 各肥料养分含量 Fertilizer nutrient content(N-P2O5-K2O) | 总施用量 Total application | 总养分含量 Total nutrient content (N-P2O5-K2O) | ||
---|---|---|---|---|---|
复合肥 Compound fertilizer | 有机肥 Organic fertilizer | 复合肥 Compound fertilizer | 有机肥 Organic fertilizer | ||
CK | 0-0-0 | 0-0-0 | 0 | 0 | 0-0-0 |
F1 | 300.00-275.00-450.00 | 0-0-0 | 2 500 | 0 | 300.00-275.00-450.00 |
F2 | 189.75-193.91-284.58 | 110.25-53.70-180.30 | 1 581 | 15 000农家肥15 000 farm manure | 30.000-247.61-464.88 |
F3 | 28.80-26.40-43.20 | 122.20-72.06-185.13 | 240 | 15 000农家肥+3 000生物菌肥 15 000 farm manure+ 3 000 biological fertilizer | 150.00-98.46-228.33 |
F4 | 28.80-26.40-43.20 | 271.20-421.50-372.00 | 240 | 15 000易腐垃圾有机肥 Perishable waste organic fertilizer | 300.00-447.90-415.20 |
图1 不同肥药措施对设施番茄土壤理化性质的影响 P1,当地常规农药处理;P0,无农药处理;CK,无施肥;F1,常规化肥;F2,农家肥+化肥;F3,农家肥+生物菌肥+化肥;F4,易腐垃圾有机肥+化肥。小写字母表示同等农药水平下施肥处理间显著性(n=4,P<0.05),大写字母表示不同农药处理间显著性(n=20,P<0.05)。*,P<0.05;**,P<0.01;***,P<0.001。下同。
Fig.1 Effects of different fertilizer and pesticide measures on soil physical and chemical properties of greenhouse tomato P1, Local conventional pesticides treatment; P0, No pesticides treatment; CK, No fertilizer; F1, Conventional fertilizer; F2, Farm manure+chemical fertilizer; F3, Farm manure+biological fertilizer+chemical fertilizer; F4, Perishable waste organic fertilizer+chemical fertilizer. Lowercase letters indicated the significance between fertilization treatments at the same pesticide level (n=4, P<0.05), and uppercase letters indicated the significance between different pesticide treatments (n=20, P<0.05). *, P<0.05; **, P<0.01; ***, P<0.001. The same as below.
处理 Treatment | 横径 Fruit diameter/cm | 纵径 Fruit length/cm | 果形指数 Fruit length index | 单果重 Single fruit weight/g | 产量 Yield/(t·hm-2) | |
---|---|---|---|---|---|---|
P0 | CK | 30.99±0.23 b | 31.21±0.77 b | 1.00±0.02 a | 17.71±0.42 b | 18.96±0.99 b |
F1 | 32.71±0.28 a | 33.10±0.82 a | 1.01±0.03 a | 21.16±0.88 a | 23.19±1.64 a | |
F2 | 32.67±0.42 a | 33.04±1.07 a | 1.01±0.02 a | 20.76±1.63 a | 21.51±1.23 ab | |
F3 | 32.79±0.40 a | 33.68±0.82 a | 1.02±0.02 a | 21.44±1.69 a | 21.75±0.84 a | |
F4 | 32.41±0.60 a | 32.71±0.64 ab | 1.01±0.02 a | 19.74±1.31 ab | 20.48±0.90 ab | |
P1 | CK | 30.74±1.25 b | 31.33±0.55 b | 1.02±0.04 a | 18.33±0.93 b | 19.51±1.67 c |
F1 | 32.84±0.27 a | 32.40±0.83 ab | 0.96±0.04 a | 21.71±0.87 a | 24.33±1.64 a | |
F2 | 32.79±0.32 a | 33.31±0.46 a | 1.00±0.02 a | 22.44±0.54 a | 23.01±1.63 ab | |
F3 | 33.13±0.32 a | 33.54±0.84 a | 1.00±0.02 a | 22.31±1.32 a | 22.26±1.04 ab | |
F4 | 31.35±0.63 b | 32.39±1.23 ab | 1.02±0.03 a | 20.58±0.87 ab | 21.64±1.13 bc | |
双因素方差分析Two-ANOVA analysis | ||||||
P(农药) | 0.70ns | 0.36ns | 0.93ns | 6.61* | 5.50* | |
F(肥料) | 20.01*** | 9.01*** | 1.52ns | 17.17*** | 12.95*** | |
P*F(农药*肥料) | 1.98ns | 0.41ns | 1.77ns | 0.86ns | 0.21ns |
表2 不同肥药措施对果实形态指标和产量的影响
Table 2 Effects of different fertilizer and pesticide measures on fruit morphological indexes
处理 Treatment | 横径 Fruit diameter/cm | 纵径 Fruit length/cm | 果形指数 Fruit length index | 单果重 Single fruit weight/g | 产量 Yield/(t·hm-2) | |
---|---|---|---|---|---|---|
P0 | CK | 30.99±0.23 b | 31.21±0.77 b | 1.00±0.02 a | 17.71±0.42 b | 18.96±0.99 b |
F1 | 32.71±0.28 a | 33.10±0.82 a | 1.01±0.03 a | 21.16±0.88 a | 23.19±1.64 a | |
F2 | 32.67±0.42 a | 33.04±1.07 a | 1.01±0.02 a | 20.76±1.63 a | 21.51±1.23 ab | |
F3 | 32.79±0.40 a | 33.68±0.82 a | 1.02±0.02 a | 21.44±1.69 a | 21.75±0.84 a | |
F4 | 32.41±0.60 a | 32.71±0.64 ab | 1.01±0.02 a | 19.74±1.31 ab | 20.48±0.90 ab | |
P1 | CK | 30.74±1.25 b | 31.33±0.55 b | 1.02±0.04 a | 18.33±0.93 b | 19.51±1.67 c |
F1 | 32.84±0.27 a | 32.40±0.83 ab | 0.96±0.04 a | 21.71±0.87 a | 24.33±1.64 a | |
F2 | 32.79±0.32 a | 33.31±0.46 a | 1.00±0.02 a | 22.44±0.54 a | 23.01±1.63 ab | |
F3 | 33.13±0.32 a | 33.54±0.84 a | 1.00±0.02 a | 22.31±1.32 a | 22.26±1.04 ab | |
F4 | 31.35±0.63 b | 32.39±1.23 ab | 1.02±0.03 a | 20.58±0.87 ab | 21.64±1.13 bc | |
双因素方差分析Two-ANOVA analysis | ||||||
P(农药) | 0.70ns | 0.36ns | 0.93ns | 6.61* | 5.50* | |
F(肥料) | 20.01*** | 9.01*** | 1.52ns | 17.17*** | 12.95*** | |
P*F(农药*肥料) | 1.98ns | 0.41ns | 1.77ns | 0.86ns | 0.21ns |
SOM | TN | TP | TK | SUE | SSC | SCAT | SAKP | SS | VC | TA | SAR | Y | SFW | FSI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 0.07 | -0.09 | 0.05 | -0.21 | -0.29 | -0.49** | -0.28 | -0.08 | 0.12 | -0.12 | -0.03 | 0.09 | -0.33* | -0.33* | 0.16 |
SOM | 0.95*** | 0.62*** | -0.07 | 0.36** | 0.15 | 0.41** | 0.48** | -0.31 | 0.14 | 0.29 | -0.31 | 0.10 | 0.25 | 0.11 | |
TN | 0.58*** | -0.06 | 0.46** | 0.24*** | 0.46** | 0.53*** | -0.36* | 0.12 | 0.33* | -0.37* | 0.10 | 0.24 | 0.15 | ||
TP | 0.04 | 0.20 | 0.13 | 0.21 | 0.10 | -0.13 | 0.12 | 0.17 | -0.14 | -0.07 | 0.08 | -0.01 | |||
TK | -0.01 | 0.01 | 0.01 | 0.13 | 0.13 | 0.32* | 0.01 | 0.10 | 0.33* | 0.21 | -0.23 | ||||
SUE | 0.45** | 0.70*** | 0.38* | -0.52*** | 0.04 | 0.47** | 0.51*** | 0.14 | 0.31 | 0.04 | |||||
SSC | 0.40* | -0.06 | -0.13 | 0.31* | -0.06 | -0.08 | 0.17 | 0.44*** | 0.06 | ||||||
SCAT | 0.17 | -0.31 | 0.35* | 0.19 | -0.27 | 0.46** | 0.51*** | 0.13 | |||||||
SAKP | -0.07 | 0.10 | 0.29 | -0.12 | 0.12 | 0.14 | -0.16 | ||||||||
SS | 0.43** | -0.75*** | 0.98*** | 0.34* | 0.36* | -0.15 | |||||||||
VC | -0.37* | 0.45** | 0.56*** | 0.50 | -0.05 | ||||||||||
TA | -0.84*** | -0.17 | 0.31* | -0.09 | |||||||||||
SAR | 0.33* | 0.39* | -0.11 | ||||||||||||
Y | 0.72*** | -0.30 | |||||||||||||
SFW | -0.01 |
表3 土壤特性与果实形态指数、品质和产量的相关性分析
Table 3 Correlation analysis of soil characteristics with fruit morphological index, quality and yield
SOM | TN | TP | TK | SUE | SSC | SCAT | SAKP | SS | VC | TA | SAR | Y | SFW | FSI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 0.07 | -0.09 | 0.05 | -0.21 | -0.29 | -0.49** | -0.28 | -0.08 | 0.12 | -0.12 | -0.03 | 0.09 | -0.33* | -0.33* | 0.16 |
SOM | 0.95*** | 0.62*** | -0.07 | 0.36** | 0.15 | 0.41** | 0.48** | -0.31 | 0.14 | 0.29 | -0.31 | 0.10 | 0.25 | 0.11 | |
TN | 0.58*** | -0.06 | 0.46** | 0.24*** | 0.46** | 0.53*** | -0.36* | 0.12 | 0.33* | -0.37* | 0.10 | 0.24 | 0.15 | ||
TP | 0.04 | 0.20 | 0.13 | 0.21 | 0.10 | -0.13 | 0.12 | 0.17 | -0.14 | -0.07 | 0.08 | -0.01 | |||
TK | -0.01 | 0.01 | 0.01 | 0.13 | 0.13 | 0.32* | 0.01 | 0.10 | 0.33* | 0.21 | -0.23 | ||||
SUE | 0.45** | 0.70*** | 0.38* | -0.52*** | 0.04 | 0.47** | 0.51*** | 0.14 | 0.31 | 0.04 | |||||
SSC | 0.40* | -0.06 | -0.13 | 0.31* | -0.06 | -0.08 | 0.17 | 0.44*** | 0.06 | ||||||
SCAT | 0.17 | -0.31 | 0.35* | 0.19 | -0.27 | 0.46** | 0.51*** | 0.13 | |||||||
SAKP | -0.07 | 0.10 | 0.29 | -0.12 | 0.12 | 0.14 | -0.16 | ||||||||
SS | 0.43** | -0.75*** | 0.98*** | 0.34* | 0.36* | -0.15 | |||||||||
VC | -0.37* | 0.45** | 0.56*** | 0.50 | -0.05 | ||||||||||
TA | -0.84*** | -0.17 | 0.31* | -0.09 | |||||||||||
SAR | 0.33* | 0.39* | -0.11 | ||||||||||||
Y | 0.72*** | -0.30 | |||||||||||||
SFW | -0.01 |
[1] | 储霞玲, 郑林秀, 叶高松, 等. 我国露地与设施番茄生产的温室气体排放比较[J]. 农业环境科学学报, 2023, 42(8): 1870-1881. |
CHU X L, ZHENG L X, YE G S, et al. Comparison of greenhouse gas emissions of open-field and facility-grown tomato production systems in China[J]. Journal of Agro-Environment Science, 2023, 42(8): 1870-1881. (in Chinese with English abstract) | |
[2] | 赵阳阳, 刘银双, 宋瑶, 等. 设施番茄种植年限对土壤理化性质及微生物群落的影响[J]. 环境科学, 2023, 44(12): 6982-6991. |
ZHAO Y Y, LIU Y S, SONG Y, et al. Effects of tomato planting years on soil physical and chemical properties and microbial communities[J]. Environmental Science, 2023, 44(12): 6982-6991. (in Chinese with English abstract) | |
[3] | 王璐. 不同施肥模式对设施番茄产量、品质及土壤性质的影响[D]. 张家口: 河北北方学院, 2021. |
WANG L. Effects of different fertilization modes on yield, quality and soil properties of facility tomato[D]. Zhangjiakou: Hebei North University, 2021. | |
[4] | 赵婉婷, 雷飘, 刘晓宇, 等. 日光温室番茄不同生育期根围土壤线虫空间分布研究[J]. 沈阳农业大学学报, 2019, 50(1): 34-42. |
ZHAO W T, LEI P, LIU X Y, et al. Diversity and spatial distribution of rhizosphere soil nematodes in a tomato greenhouse during different growing period[J]. Journal of Shenyang Agricultural University, 2019, 50(1): 34-42. (in Chinese with English abstract) | |
[5] | ZHANG J, ZHUANG M H, SHAN N, et al. Substituting organic manure for compound fertilizer increases yield and decreases NH3 and N2O emissions in an intensive vegetable production systems[J]. Science of the Total Environment, 2019, 670: 1184-1189. |
[6] | 曲兆鸣. 优化施肥和灌水对设施番茄生长及土壤环境的影响[D]. 泰安: 山东农业大学, 2022. |
QU Z M. Effects of optimal fertilization and irrigation on tomato growth and soil environment in greenhouse[D]. Tai’an: Shandong Agricultural University, 2022. (in Chinese with English abstract) | |
[7] | 张怀志, 唐继伟, 袁硕, 等. 津冀设施蔬菜施肥调查分析[J]. 中国土壤与肥料, 2018(2): 54-60. |
ZHANG H Z, TANG J W, YUAN S, et al. Investigation and analysis of greenhouse vegetable fertilization in Tianjin and Hebei province[J]. Soil and Fertilizer Sciences in China, 2018(2): 54-60. (in Chinese with English abstract) | |
[8] | 蔡红明, 王士超, 刘岩, 等. 陕西日光温室养分平衡及土壤养分累积特征研究[J]. 西北农林科技大学学报(自然科学版), 2016, 44(9): 83-91. |
CAI H M, WANG S C, LIU Y, et al. Nutrient balance and accumulation in soil of solar greenhouse in Shaanxi[J]. Journal of Northwest A & F University(Natural Science Edition), 2016, 44(9): 83-91. (in Chinese with English abstract) | |
[9] | 姜慧敏, 张建峰, 杨俊诚, 等. 不同施氮模式对日光温室番茄产量、品质及土壤肥力的影响[J]. 植物营养与肥料学报, 2010, 16(1): 158-165. |
JIANG H M, ZHANG J F, YANG J C, et al. Effects of different models of applying nitrogen fertilizer on yield and quality of tomato and soil fertility in greenhouse[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 158-165. (in Chinese with English abstract) | |
[10] | 王莹, 周珺, 孙德龙, 等. 不同量化肥与有机肥配施对设施番茄栽培土壤硝化潜势和pH的影响[J]. 植物营养与肥料学报, 2023, 29(4): 602-613. |
WANG Y, ZHOU J, SUN D L, et al. Combined application of different rates of chemical and organic fertilizer increase soil nitrification potential and pH in greenhouse tomato cultivation[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 602-613. (in Chinese with English abstract) | |
[11] | SONG H, GUO J H, REN T, et al. Increase of soil pH in a solar greenhouse vegetable production system[J]. Soil Science Society of America Journal, 2012, 76(6): 2074-2082. |
[12] | 耿文丛, 马悦, 张玉雪, 等. 设施农业的土壤健康调控技术研究进展[J]. 中国生态农业学报(中英文), 2022, 30(12): 1973-1984. |
GENG W C, MA Y, ZHANG Y X, et al. Research progress in soil health regulation technology for protected agriculture[J]. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1973-1984. (in Chinese with English abstract) | |
[13] | 刘国梁, 李素艳, 孙向阳, 等. 有机无机肥配施对梨园土壤肥力及果实品质的影响[J]. 土壤通报, 2022, 53(1): 181-186. |
LIU G L, LI S Y, SUN X Y, et al. Effect of combined application of organic and inorganic fertilizers on soil fertility and fruit quality of pear orchard[J]. Chinese Journal of Soil Science, 2022, 53(1): 181-186. (in Chinese with English abstract) | |
[14] | YE L, ZHAO X, BAO E C, et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality[J]. Scientific Reports, 2020, 10(1): 177. |
[15] | BASAK N, MANDAL B, DATTA A, et al. Impact of long-term application of organics, biological, and inorganic fertilizers on microbial activities in rice-based cropping system[J]. Communications in Soil Science and Plant Analysis, 2017, 48(20): 2390-2401. |
[16] | 杜为研, 唐杉, 汪洪. 我国有机肥资源及产业发展现状[J]. 中国土壤与肥料, 2020(3): 210-219. |
DU W Y, TANG S, WANG H. The status of organic fertilizer industry and organic fertilizer resources in China[J]. Soil and Fertilizer Sciences in China, 2020(3): 210-219. (in Chinese with English abstract) | |
[17] | 叶雪珠, 肖文丹, 赵首萍, 等. 浙江省商品有机肥中重金属含量变化趋势及风险管控对策[J]. 植物营养与肥料学报, 2020, 26(5): 954-965. |
YE X Z, XIAO W D, ZHAO S P, et al. Variations of heavy metal contents and the risk management of commercial organic fertilizers in Zhejiang Province[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 954-965. (in Chinese with English abstract) | |
[18] | 王胤, 刘玉婷, 王翰霖, 等. 5种杀虫剂对辣椒蓟马的田间防效研究[J]. 安徽农学通报, 2023, 29(8): 140-143. |
WANG Y, LIU Y T, WANG H L, et al. Study on the field efficacy of five insecticides against chili thrips[J]. Anhui Agricultural Science Bulletin, 2023, 29(8): 140-143. (in Chinese) | |
[19] | 彭昌家, 白体坤, 丁攀, 等. 生物农药和生化复配制剂防治设施秋番茄温室白粉虱效果研究[J]. 农学学报, 2016, 6(5): 23-27. |
PENG C J, BAI T K, DING P, et al. Prevention and treatment effect of biopesticide and biochemical compounded preparation on autumn tomato greenhouse whitefly[J]. Journal of Agriculture, 2016, 6(5): 23-27. (in Chinese with English abstract) | |
[20] | GUO X X, ZHAO D, ZHUANG M H, et al. Fertilizer and pesticide reduction in cherry tomato production to achieve multiple environmental benefits in Guangxi, China[J]. Science of the Total Environment, 2021, 793: 148527. |
[21] | 王静, 马新耀, 朱九生. 我国番茄用农药登记现状及存在问题和建议[J]. 安徽农业科学, 2021, 49(4): 234-236. |
WANG J, MA X Y, ZHU J S. Current status, problems and suggestions of pesticide registration in tomato in China[J]. Journal of Anhui Agricultural Sciences, 2021, 49(4): 234-236. (in Chinese with English abstract) | |
[22] | 孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594-604. |
SUN J, GAO H B, TIAN J, et al. Development status and trends of protected horticulture in China[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594-604. (in Chinese with English abstract) | |
[23] | 万盼, 黄小辉, 熊兴政, 等. 农药施用浓度对油桐幼苗生长及土壤酶活性、有效养分含量的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 73-80. |
WAN P, HUANG X H, XIONG X Z, et al. Effects of pesticides on soil enzyme activities, available nutrients and growth of Vernicia fordii seedlings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(1): 73-80. (in Chinese with English abstract) | |
[24] | 李霞, 张小平, 喻晓, 等. 代森锰锌类农药对生姜种植地土壤酶活性及微生物群落结构的影响[J]. 生态环境学报, 2016, 25(9): 1569-1574. |
LI X, ZHANG X P, YU X, et al. Effect of mancozeb on soil enzyme activities and microbial community in ginger fields[J]. Ecology and Environmental Sciences, 2016, 25(9): 1569-1574. (in Chinese with English abstract) | |
[25] | 侯则颖, 何云川, 王新谱, 等. 4种内吸性杀虫剂对番茄幼苗生长的影响[J]. 西北农业学报, 2021, 30(4): 599-609. |
HOU Z Y, HE Y C, WANG X P, et al. Effects of four systemic insecticides on growth of tomato seedlings[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(4): 599-609. (in Chinese with English abstract) | |
[26] | HATAMLEH A A, DANISH M, AL-DOSARY M A, et al. Physiological and oxidative stress responses of Solanum lycopersicum(L.) (tomato) when exposed to different chemical pesticides[J]. RSC Advances, 2022, 12(12): 7237-7252. |
[27] | 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中抗坏血酸的测定: GB 5009.86—2016[S]. 北京: 中国标准出版社, 2017. |
[28] | 中华人民共和国农业部. 蔬菜及其制品中可溶性糖的测定铜还原碘量法: NY/T 1278—2007[S]. 北京: 中国标准出版社, 2007. |
[29] | 国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准食品中总酸的测定: GB 12456—2021[S]. 北京: 中国标准出版社, 2021. |
[30] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[31] | 万盼, 刘芸, 黄小辉, 等. 百草枯对油桐生长及土壤理化性质的影响[J]. 西南师范大学学报(自然科学版), 2014, 39(11): 158-162. |
WAN P, LIU Y, HUANG X H, et al. On effects of paraquat on tung oil tree growth and soil physicochemical properties[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(11): 158-162. (in Chinese with English abstract) | |
[32] | LEHOCZKY E, BUZSAKI K. Effect of preemergent herbicides on the growth and nutrient uptake of different rape cultivars[J]. Magyar Gyomkutatas es Technologia, 2005, 6(1): 39-52. |
[33] | NANDAL T R, DHIMAN N K, SHARMA R. Effect of different herbicides and their combinations on N, P and K uptake by the weeds and cabbage crop[J]. Crop Research Hisar, 2006, 31(2): 283. |
[34] | 万盼, 刘芸, 黄小辉, 等. 农药和菌渣对三峡库区油桐生长及土壤化学性质的影响[J]. 重庆师范大学学报(自然科学版), 2015, 32(2): 44-49. |
WAN P, LIU Y, HUANG X H, et al. Effects of pesticides and mushroom residue on growth and soil physical-chemical properties in tung oil tree of the Three Gorges Reservoir area[J]. Journal of Chongqing Normal University(Natural Science), 2015, 32(2): 44-49. (in Chinese with English abstract) | |
[35] | 肖丽, 冯燕燕, 赵靓, 等. 多菌灵对加工番茄农田土壤酶活性的影响[J]. 土壤通报, 2012, 43(6): 1409-1414. |
XIAO L, FENG Y Y, ZHAO J, et al. Effect of carbendazim on enzyme activities of tomato processing field[J]. Chinese Journal of Soil Science, 2012, 43(6): 1409-1414. (in Chinese with English abstract) | |
[36] | SATAPUTE P, KAMBLE M V, ADHIKARI S S, et al. Influence of triazole pesticides on tillage soil microbial populations and metabolic changes[J]. Science of the Total Environment, 2019, 651: 2334-2344. |
[37] | 和文祥, 郑粉莉, 田海霞. 氧化乐果对土壤酶活性的影响[J]. 中国农业科学, 2009, 42(12): 4282-4287. |
HE W X, ZHENG F L, TIAN H X. Effect of omethoate on soil enzyme activities[J]. Scientia Agricultura Sinica, 2009, 42(12): 4282-4287. (in Chinese with English abstract) | |
[38] | 范昆, 王开运, 王东, 等. 1, 3-二氯丙烯药剂对土壤微生物数量和酶活性的影响[J]. 生态学报, 2008, 28(2): 695-701. |
FAN K, WANG K Y, WANG D, et al. Effects of 1, 3-dichloropropene on soil microbial population and enzyme activities[J]. Acta Ecologica Sinica, 2008, 28(2): 695-701. (in Chinese with English abstract) | |
[39] | 洪文英, 吴燕君, 陈瑞, 等. 肥药减量模式对保护地南瓜病虫害的控制效果及综合效益评价[J]. 中国蔬菜, 2021(11): 81-89. |
HONG W Y, WU Y J, CHEN R, et al. Effect and comprehensive benefit assessment of fertilizer and pesticide reduction mode on pumpkin pests and diseases control in protected fields[J]. China Vegetables, 2021(11): 81-89. (in Chinese with English abstract) | |
[40] | 张志敏, 侯发民, 张绍阳, 等. 植物源农药对刺梨白粉病田间防效及其品质和产量的影响[J]. 植物保护, 2020, 46(5): 276-280. |
ZHANG Z M, HOU F M, ZHANG S Y, et al. Effect of botanical fungicides on powdery mildew, quality and yield of Rosa roxburghii[J]. Plant Protection, 2020, 46(5): 276-280. (in Chinese with English abstract) | |
[41] | 王亚慧. 嘧菌酯对番茄的调控机理研究[D]. 长春: 吉林农业大学, 2015. |
WANG Y H. The regulatory mechanism research of azoxystrobin on tomato[D]. Changchun: Jilin Agricultural University, 2015. (in Chinese with English abstract) | |
[42] | 李晓华, 冯建军, 张玉珠, 等. 喷施农药对不同蔬菜营养品质的影响[J]. 长江蔬菜, 2016(4): 79-81. |
LI X H, FENG J J, ZHANG Y Z, et al. Effects of spraying pesticide on nutrition quality of different vegetables[J]. Journal of Changjiang Vegetables, 2016(4): 79-81. (in Chinese with English abstract) | |
[43] | 赵卫星. 几种有机磷农药对大蒜品质的影响及合理用药的研究[D]. 郑州: 河南农业大学, 2005. |
ZHAO W X. Studies on the effect of quality in irrigated with organophosphorus pesticides on and techniques of optimizing pesticides[D]. Zhengzhou: Henan Agricultural University, 2005. (in Chinese with English abstract) | |
[44] | SHI X P, SONG X, YANG J J, et al. Yield benefits from joint application of manure and inorganic fertilizer in a long-term field pea, wheat and potato crop rotation[J]. Field Crops Research, 2023, 294: 108873. |
[45] | WU W J, LIN Z, ZHU X P, et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers[J]. European Journal of Soil Biology, 2022, 109: 103384. |
[46] | ZHANG X, LI J, SHAO L, et al. Effects of organic fertilizers on yield, soil physico-chemical property, soil microbial community diversity and structure of Brassica rapa var. Chinensis[J]. Frontiers in Microbiology, 2023, 14: 1132853. |
[47] | 叶盛嘉, 郑晨萌, 张影, 等. 氮肥减量配施有机肥对豫中地区冬小麦-夏玉米轮作生产力和土壤性质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(6): 900-912. |
YE S J, ZHENG C M, ZHANG Y, et al. Effects of reduced chemical nitrogen input combined with organic fertilizer application onthe productivity of winter wheat and summer maize rotation and soil properties in central Henan Province[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 900-912. (in Chinese with English abstract) | |
[48] | 叶静, 陈影, 屈爽, 等. 不同微生物菌肥对滨海盐渍土土壤质量及玉米产量的影响[J]. 环境科学, 2024, 45(7):4279-4292. |
YE J, CHEN Y, QU S, et al. Effects of different microbial fertilizers on soil quality and maize yield in coastal saline soil[J]. Environmental Science, 2024, 45(7):4279-4292. (in Chinese with English abstract) | |
[49] | CALDWELL B A. Enzyme activities as a component of soil biodiversity: a review[J]. Pedobiologia, 2005, 49(6): 637-644. |
[50] | SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. |
[51] | 金珊, 刘雪, 陈卓帛, 等. 有机肥配施生物菌肥对设施黄瓜土壤改良效果[J]. 农业环境科学学报, 2023, 42(9): 1995-2003. |
JIN S, LIU X, CHEN Z B, et al. Effects of organic fertilizer containing biofertilizer on soil improvement of vegetables in facilities[J]. Journal of Agro-Environment Science, 2023, 42(9): 1995-2003. (in Chinese with English abstract) | |
[52] | 杨海滨, 李中林, 邓敏, 等. 不同施肥措施对重庆茶园土壤氮转化酶活性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1107-1114. |
YANG H B, LI Z L, DENG M, et al. Effects of the combined application of different fertilizers and urea on nitrogen transformation enzyme activities in tea-garden soil from Chongqing[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(5): 1107-1114. (in Chinese with English abstract) | |
[53] | 卫婷, 韩丽娜, 韩清芳, 等. 有机培肥对旱地土壤养分有效性和酶活性的影响[J]. 植物营养与肥料学报, 2012, 18(3): 611-620. |
WEI T, HAN L N, HAN Q F, et al. Effects of organic fertilization on soil nutrient availability and enzyme activity in arid areas[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 611-620. (in Chinese with English abstract) | |
[54] | 李锋, 池福铃, 阮惠明, 等. 不同施肥模式对小白菜生长及品质的影响[J]. 中国瓜菜, 2019, 32(3): 22-25. |
LI F, CHI F L, RUAN H M, et al. Effects of different fertilization modes on growth and quality in pakchoi[J]. China Cucurbits and Vegetables, 2019, 32(3): 22-25. (in Chinese with English abstract) | |
[55] | 池福铃, 李锋, 阮惠明, 等. 三种肥料混施对小白菜生长、品质和经济效益的影响[J]. 长江蔬菜, 2019(22): 69-72. |
CHI F L, LI F, RUAN H M, et al. Effects of three fertilizers mixed on growth, yield and economic benefit in pakchoi[J]. Journal of Changjiang Vegetables, 2019(22): 69-72. (in Chinese with English abstract) | |
[56] | FENG X, XU Y Q, LIU D, et al. Effects of organic cultivation pattern on tomato production: plant growth characteristics, quality, disease resistance, and soil physical and chemical properties[J]. Acta Scientiarum Polonorum Hortorum Cultus, 2020, 19(1): 71-84. |
[57] | 姜雅爽, 罗华, 李嘉伟. 减氮配施有机肥与生物菌肥对菜心品质的影响分析[J]. 南方农业, 2023, 17(16): 6-8. |
JIANG Y S, LUO H, LI J W. Analysis of the effect of nitrogen reduction combined with organic fertilizer and biomicrobial fertilizer on the quality of cabbage heart[J]. South China Agriculture, 2023, 17(16): 6-8. (in Chinese with English abstract) | |
[58] | HALLMANN E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types[J]. Journal of the Science of Food and Agriculture, 2012, 92(14): 2840-2848. |
[59] | LIU H, LIU M, CHEN K, et al. Fertilization can modify the enantioselective persistence of penthiopyrad in relation to the co-influence on soil ecological health[J]. Environmental Research, 2023, 224: 115514. |
[60] | 岳宗伟, 李嘉骁, 孙向阳, 等. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
YUE Z W, LI J X, SUN X Y, et al. Effects of chemical fertilizer combined with organic fertilizer on soil properties, cherry fruit quality and yield[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2192-2201. (in Chinese with English abstract) | |
[61] | NIVELLE E, VERZEAUX J, CHABOT A, et al. Effects of glyphosate application and nitrogen fertilization on the soil and the consequences on aboveground and belowground interactions[J]. Geoderma, 2018, 311: 45-57. |
[1] | 王晓梅, 骆玉琴, 赵学平, 陆兰菲, 方楠, 王祥云, 蒋金花, 何红梅, 张昌朋, 王强. 氟吡菌酰胺在铁皮石斛中的残留与膳食风险[J]. 浙江农业学报, 2024, 36(7): 1666-1676. |
[2] | 亢龙飞, 徐琳峰, 王诗荣, 江诚涛, 褚贵新. 当前肥料市场不同短链聚磷酸盐肥料关键性状之比较[J]. 浙江农业学报, 2024, 36(5): 1134-1143. |
[3] | 褚田芬, 雷玲, 李勤锋, 吴平, 洪文杰, 郑蔚然. 浙江省西瓜中农药残留风险评估[J]. 浙江农业学报, 2024, 36(5): 1153-1160. |
[4] | 路子琪, 王静, 张震, 王教瑜, 孙国仓, 林福呈. 基于RNAi的生物农药研究进展[J]. 浙江农业学报, 2024, 36(4): 968-977. |
[5] | 刘玉红, 金检生, 陈丽萍, 孙彩霞. 黄桃中4种农药残留动态与风险评估[J]. 浙江农业学报, 2024, 36(2): 432-440. |
[6] | 梁秀美, 张维一, 陈官菊, 夏海涛, 郭秀珠, 何如意, 蒋佳铭, 林定鹏. 温州市杨梅农药残留与重金属污染特征及膳食摄入风险评估[J]. 浙江农业学报, 2024, 36(10): 2347-2357. |
[7] | 王祥云, 王卢燕, 张昌朋, 李艳杰, 赵学平, 蒋金花. 三唑和甲氧基丙烯酸酯类杀菌剂的复配制剂登记现状分析[J]. 浙江农业学报, 2023, 35(9): 2121-2129. |
[8] | 李辉, 胡文兰, 张志恒. 农药水解半衰期的pH值敏感性评价[J]. 浙江农业学报, 2023, 35(9): 2130-2148. |
[9] | 张博, 刘泽慈, 汪洁, 李兆壮, 李录山, 胡琳莉, 郁继华. 不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响[J]. 浙江农业学报, 2023, 35(8): 1782-1792. |
[10] | 叶会, 陈瑜婷, 骆玉琴, 范续艳, 雷圆, 陆兰菲, 郝培培, 程有普, 张昌朋. 两种剂型吡唑醚菌酯在草莓中的残留及消解动态[J]. 浙江农业学报, 2023, 35(7): 1720-1728. |
[11] | 何宇, 吕卫光, 李双喜, 郑宪清, 张翰林, 张娟琴, 张海韵, 白娜玲, 刘善良. γ-聚谷氨酸发酵液对小白菜生长及氮磷肥料利用率的影响[J]. 浙江农业学报, 2023, 35(2): 329-337. |
[12] | 李旺雄, 张洋, 唐中祺, 郁继华. 平衡施肥对设施基质栽培番茄生长、品质、矿质元素含量与产量的影响[J]. 浙江农业学报, 2022, 34(8): 1648-1660. |
[13] | 邵宜添. 信息对称促进农药减量化:理论模型、典型案例与监管策略选择[J]. 浙江农业学报, 2022, 34(6): 1326-1336. |
[14] | 杨继芬, 杨文, 杜伟, 廖鹏飞, 刘永辉, 白红英, 丁志伟, 董占鹏. 秋季桑园喷水对保幼激素类农药影响家蚕原种繁育的效果[J]. 浙江农业学报, 2022, 34(4): 720-726. |
[15] | 唐晓山, 侯小琴, 孙力军, 房志家, 邓旗. 纳豆菌NT-6发酵患病畜禽肉骨粉制备微生物肥料[J]. 浙江农业学报, 2022, 34(3): 574-581. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||