浙江农业学报 ›› 2024, Vol. 36 ›› Issue (2): 432-440.DOI: 10.3969/j.issn.1004-1524.20230085
收稿日期:
2023-01-31
出版日期:
2024-02-25
发布日期:
2024-03-05
作者简介:
刘玉红(1993—),女,安徽池州人,硕士,助理研究员,研究方向为农产品质量安全。E-mail:1608811490@qq.com
通讯作者:
*孙彩霞,E-mail:suncaixia0571@126.com
基金资助:
LIU Yuhong1(), JIN Jiansheng2, CHEN Liping3, SUN Caixia1,*(
)
Received:
2023-01-31
Online:
2024-02-25
Published:
2024-03-05
摘要:
为探明4种未登记农药(腐霉利、氯虫苯甲酰胺、甲维盐和多效唑)在黄桃上的安全性和消解特性,在施药后套袋和施药后不套袋2种处理方法下,开展了这4种农药在黄桃中的消解动态与膳食风险评估研究。建立了液相色谱-串联质谱联用(LC-MS/MS)分析方法同时测定黄桃中4种未登记农药残留量。结果表明,在0.05~5.0 mg·kg-1(腐霉利、氯虫苯甲酰胺和多效唑)和0.001~0.05 mg·kg-1(甲维盐)添加水平下,4种农药的平均回收率为75.6%~111.3%,相对标准偏差(RSD)为0.9%~5.2%。4种农药在黄桃中的降解均符合一级动力学方程。根据农药残留和风险评估结果,在推荐剂量下甲维盐和多效唑建议在黄桃上设置14 d的安全间隔期(PHI),氯虫苯甲酰胺建议设置3 d的PHI;腐霉利因降解比较缓慢,不建议在黄桃生产上使用。
中图分类号:
刘玉红, 金检生, 陈丽萍, 孙彩霞. 黄桃中4种农药残留动态与风险评估[J]. 浙江农业学报, 2024, 36(2): 432-440.
LIU Yuhong, JIN Jiansheng, CHEN Liping, SUN Caixia. Residue dynamics and risk assessment of four pesticides in yellow peach[J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 432-440.
农药名称 Pesticide | 线性范围 Range of linearity/ (mg·L-1) | 溶剂标准曲线 Solvent standard curve | 基质标准曲线 Matrix standard curve | 基质效应 Matrix effect/% |
---|---|---|---|---|
腐霉利 Procymidone | 0.01~1.00 | y=2.67×107x+2.79×105 R2=0.999 7 | y=3.05×107x+3.74×105 R2=0.999 8 | 14.2 |
氯虫苯甲酰胺 Chlorantraniliprole | 0.01~1.00 | y=2.36×107x+7.71×104 R2=0.999 5 | y=2.75×107x+1.01×105 R2=0.999 8 | 16.5 |
甲维盐 Emamectin benzoate | 0.005~0.50 | y=1.76×108x+5.72×104 R2=0.999 3 | y=1.89×108x+3.23×104 R2=0.999 5 | 7.4 |
多效唑 Paclobutrazol | 0.01~1.00 | y=3.23×107x-4.35×104 R2=0.999 5 | y=3.80×107x-1.32×105 R2=0.999 2 | 17.6 |
表1 试验农药的溶剂校准曲线和基质标准曲线
Table 1 Standard curves of solvent and matrix of tested pesticides
农药名称 Pesticide | 线性范围 Range of linearity/ (mg·L-1) | 溶剂标准曲线 Solvent standard curve | 基质标准曲线 Matrix standard curve | 基质效应 Matrix effect/% |
---|---|---|---|---|
腐霉利 Procymidone | 0.01~1.00 | y=2.67×107x+2.79×105 R2=0.999 7 | y=3.05×107x+3.74×105 R2=0.999 8 | 14.2 |
氯虫苯甲酰胺 Chlorantraniliprole | 0.01~1.00 | y=2.36×107x+7.71×104 R2=0.999 5 | y=2.75×107x+1.01×105 R2=0.999 8 | 16.5 |
甲维盐 Emamectin benzoate | 0.005~0.50 | y=1.76×108x+5.72×104 R2=0.999 3 | y=1.89×108x+3.23×104 R2=0.999 5 | 7.4 |
多效唑 Paclobutrazol | 0.01~1.00 | y=3.23×107x-4.35×104 R2=0.999 5 | y=3.80×107x-1.32×105 R2=0.999 2 | 17.6 |
农药 Pesticide | 质量分数 Mass fraction/(mg·kg-1) | 平均回收率 Average recovery/% | 相对标准偏差 Relative standard deviation/% |
---|---|---|---|
腐霉利Procymidone | 0.05 | 78.3 | 2.1 |
2.0 | 108.9 | 2.8 | |
5.0 | 102.3 | 5.2 | |
氯虫苯甲酰Chlorantraniliprole | 0.05 | 93.7 | 1.8 |
2.0 | 79.2 | 2.1 | |
5.0 | 75.6 | 2.7 | |
甲维盐Emamectin benzoate | 0.001 | 84.9 | 1.2 |
0.02 | 84.1 | 1.5 | |
0.05 | 80.6 | 0.9 | |
多效唑Paclobutrazol | 0.05 | 111.3 | 1.8 |
2.0 | 102.1 | 2.6 | |
5.0 | 100.3 | 1.1 |
表2 试验农药的平均添加回收率、相对标准偏差(n=6)
Table 2 Average recovery rate and relative standard deviation of tested pesticides (n=6)
农药 Pesticide | 质量分数 Mass fraction/(mg·kg-1) | 平均回收率 Average recovery/% | 相对标准偏差 Relative standard deviation/% |
---|---|---|---|
腐霉利Procymidone | 0.05 | 78.3 | 2.1 |
2.0 | 108.9 | 2.8 | |
5.0 | 102.3 | 5.2 | |
氯虫苯甲酰Chlorantraniliprole | 0.05 | 93.7 | 1.8 |
2.0 | 79.2 | 2.1 | |
5.0 | 75.6 | 2.7 | |
甲维盐Emamectin benzoate | 0.001 | 84.9 | 1.2 |
0.02 | 84.1 | 1.5 | |
0.05 | 80.6 | 0.9 | |
多效唑Paclobutrazol | 0.05 | 111.3 | 1.8 |
2.0 | 102.1 | 2.6 | |
5.0 | 100.3 | 1.1 |
农药 Pesticide | 处理 Treatment | 不同时间的农药残留量Pesticide residues at different time | ||||||
---|---|---|---|---|---|---|---|---|
0 d(2 h) | 1 d | 3 d | 5 d | 7 d | 14 d | 21 d | ||
腐霉利 | 不套袋Non-bagged | 2.890 | 1.650 | 1.420 | 1.320 | 1.030 | 0.900 | 0.730 |
Procymidone | 套袋Bagged | 2.890 | 2.170 | 1.815 | 1.525 | 1.460 | 1.220 | 1.030 |
氯虫苯甲酰胺 | 不套袋Non-bagged | 0.257 | 0.123 | 0.104 | 0.090 | 0.069 | 0.054 | 0.049 |
Chlorantraniliprole | 套袋Bagged | 0.257 | 0.178 | 0.145 | 0.102 | 0.095 | 0.090 | 0.072 |
甲维盐 | 不套袋Non-bagged | 0.037 | 0.011 9 | 0.008 1 | 0.002 9 | 0.002 4 | 0.001 1 | 0.000 9 |
Emamectin benzoate | 套袋Bagged | 0.037 | 0.022 2 | 0.016 5 | 0.009 4 | 0.006 4 | 0.004 0 | 0.001 8 |
多效唑 | 不套袋Non-bagged | 1.680 | 1.237 | 0.959 | 0.475 | 0.287 | 0.221 | 0.204 |
Paclobutrazol | 套袋 Bagged | 1.680 | 1.620 | 1.202 | 0.997 | 0.745 | 0.489 | 0.373 |
表3 黄桃中4种农药残留试验结果
Table 3 Test results of four pesticide residues in yellow peach mg·kg-1
农药 Pesticide | 处理 Treatment | 不同时间的农药残留量Pesticide residues at different time | ||||||
---|---|---|---|---|---|---|---|---|
0 d(2 h) | 1 d | 3 d | 5 d | 7 d | 14 d | 21 d | ||
腐霉利 | 不套袋Non-bagged | 2.890 | 1.650 | 1.420 | 1.320 | 1.030 | 0.900 | 0.730 |
Procymidone | 套袋Bagged | 2.890 | 2.170 | 1.815 | 1.525 | 1.460 | 1.220 | 1.030 |
氯虫苯甲酰胺 | 不套袋Non-bagged | 0.257 | 0.123 | 0.104 | 0.090 | 0.069 | 0.054 | 0.049 |
Chlorantraniliprole | 套袋Bagged | 0.257 | 0.178 | 0.145 | 0.102 | 0.095 | 0.090 | 0.072 |
甲维盐 | 不套袋Non-bagged | 0.037 | 0.011 9 | 0.008 1 | 0.002 9 | 0.002 4 | 0.001 1 | 0.000 9 |
Emamectin benzoate | 套袋Bagged | 0.037 | 0.022 2 | 0.016 5 | 0.009 4 | 0.006 4 | 0.004 0 | 0.001 8 |
多效唑 | 不套袋Non-bagged | 1.680 | 1.237 | 0.959 | 0.475 | 0.287 | 0.221 | 0.204 |
Paclobutrazol | 套袋 Bagged | 1.680 | 1.620 | 1.202 | 0.997 | 0.745 | 0.489 | 0.373 |
图1 四种农药在黄桃中的残留动态曲线 A,腐霉利;B,氯虫苯甲酰胺;C,甲维盐;D,多效唑。
Fig.1 Residual dynamic curve of four pesticides in yellow peach A, Procymidone; B, Chlorantraniliprole; C, Emamectin benzoate; D, Paclobutrazol.
农药Pesticide | 指标Index | 处理Treatment | 1 d | 3 d | 5 d | 7 d | 14 d | 21 d |
---|---|---|---|---|---|---|---|---|
腐霉利 | 日均膳食暴露量 | 不套袋Non-bagged | 0.160 | 0.137 | 0.128 | 0.100 | 0.087 | 0.071 |
Procymidone | Average daily dietary exposure | 套袋Bagged | 0.210 | 0.175 | 0.147 | 0.141 | 0.118 | 0.100 |
风险商Risk quotient | 不套袋Non-bagged | 1.595 | 1.373 | 1.276 | 0.996 | 0.870 | 0.706 | |
套袋 Bagged | 2.098 | 1.755 | 1.474 | 1.411 | 1.179 | 0.996 | ||
氯虫苯甲酰胺 | 日均膳食暴露量 | 不套袋Non-bagged | 0.012 | 0.010 | 0.009 | 0.007 | 0.005 | 0.005 |
Chlorantraniliprole | Average daily dietary exposure | 套袋Bagged | 0.017 | 0.014 | 0.010 | 0.009 | 0.009 | 0.007 |
风险商Risk quotient | 不套袋Non-bagged | 0.006 | 0.005 | 0.004 | 0.003 | 0.003 | 0.002 | |
套袋Bagged | 0.009 | 0.007 | 0.005 | 0.005 | 0.004 | 0.003 | ||
甲维盐 | 日均膳食暴露量 | 不套袋Non-bagged | 0.001 2 | 0.000 8 | 0.000 3 | 0.000 2 | 0.000 1 | 0.000 1 |
Emamectin benzoate | Average daily dietary exposure | 套袋 Bagged | 0.002 1 | 0.001 6 | 0.000 9 | 0.000 6 | 0.000 4 | 0.000 2 |
风险商Risk quotient | 不套袋Non-bagged | 2.300 7 | 1.566 0 | 0.560 7 | 0.464 0 | 0.212 7 | 0.200 0 | |
套袋Bagged | 4.292 0 | 3.190 0 | 1.817 3 | 1.237 3 | 0.773 3 | 0.348 0 | ||
多效唑 | 日均膳食暴露量 | 不套袋Non-bagged | 0.120 | 0.093 | 0.046 | 0.028 | 0.021 | 0.020 |
Paclobutrazol | Average daily dietary exposure | 套袋Bagged | 0.157 | 0.116 | 0.096 | 0.072 | 0.047 | 0.036 |
风险商Risk quotient | 不套袋Non-bagged | 1.196 | 0.927 | 0.459 | 0.277 | 0.214 | 0.197 | |
套袋Bagged | 1.566 | 1.162 | 0.964 | 0.720 | 0.473 | 0.361 |
表4 黄桃中4种农药的日均膳食暴露量和风险商
Table 4 Average daily dietary exposure and risk quotient of four pesticides in yellow peach
农药Pesticide | 指标Index | 处理Treatment | 1 d | 3 d | 5 d | 7 d | 14 d | 21 d |
---|---|---|---|---|---|---|---|---|
腐霉利 | 日均膳食暴露量 | 不套袋Non-bagged | 0.160 | 0.137 | 0.128 | 0.100 | 0.087 | 0.071 |
Procymidone | Average daily dietary exposure | 套袋Bagged | 0.210 | 0.175 | 0.147 | 0.141 | 0.118 | 0.100 |
风险商Risk quotient | 不套袋Non-bagged | 1.595 | 1.373 | 1.276 | 0.996 | 0.870 | 0.706 | |
套袋 Bagged | 2.098 | 1.755 | 1.474 | 1.411 | 1.179 | 0.996 | ||
氯虫苯甲酰胺 | 日均膳食暴露量 | 不套袋Non-bagged | 0.012 | 0.010 | 0.009 | 0.007 | 0.005 | 0.005 |
Chlorantraniliprole | Average daily dietary exposure | 套袋Bagged | 0.017 | 0.014 | 0.010 | 0.009 | 0.009 | 0.007 |
风险商Risk quotient | 不套袋Non-bagged | 0.006 | 0.005 | 0.004 | 0.003 | 0.003 | 0.002 | |
套袋Bagged | 0.009 | 0.007 | 0.005 | 0.005 | 0.004 | 0.003 | ||
甲维盐 | 日均膳食暴露量 | 不套袋Non-bagged | 0.001 2 | 0.000 8 | 0.000 3 | 0.000 2 | 0.000 1 | 0.000 1 |
Emamectin benzoate | Average daily dietary exposure | 套袋 Bagged | 0.002 1 | 0.001 6 | 0.000 9 | 0.000 6 | 0.000 4 | 0.000 2 |
风险商Risk quotient | 不套袋Non-bagged | 2.300 7 | 1.566 0 | 0.560 7 | 0.464 0 | 0.212 7 | 0.200 0 | |
套袋Bagged | 4.292 0 | 3.190 0 | 1.817 3 | 1.237 3 | 0.773 3 | 0.348 0 | ||
多效唑 | 日均膳食暴露量 | 不套袋Non-bagged | 0.120 | 0.093 | 0.046 | 0.028 | 0.021 | 0.020 |
Paclobutrazol | Average daily dietary exposure | 套袋Bagged | 0.157 | 0.116 | 0.096 | 0.072 | 0.047 | 0.036 |
风险商Risk quotient | 不套袋Non-bagged | 1.196 | 0.927 | 0.459 | 0.277 | 0.214 | 0.197 | |
套袋Bagged | 1.566 | 1.162 | 0.964 | 0.720 | 0.473 | 0.361 |
农药 Pesticide | 中国 China | 欧盟 European Union | 日本 Japan | 韩国 Korea | CAC |
---|---|---|---|---|---|
腐霉利 | — | 0.01* | 0.2 | 0.5 | — |
Procymidone | |||||
氯虫苯甲酰胺 | 2* | 1.0 | 0.4 | — | — |
Chlorantraniliprole | |||||
甲维盐 | 0.03 | 0.15 | 0.1 | 0.2 | 0.03 |
Emamectin benzoate | |||||
多效唑 | — | 0.15 | 0.2 | 0.05T | — |
Paclobutrazol |
表5 不同国家和地区在桃上4种农药最大残留限量标准对比
Table 5 Comparison of MRLs of four pesticides in peaches in different countries and regions mg·kg-1
农药 Pesticide | 中国 China | 欧盟 European Union | 日本 Japan | 韩国 Korea | CAC |
---|---|---|---|---|---|
腐霉利 | — | 0.01* | 0.2 | 0.5 | — |
Procymidone | |||||
氯虫苯甲酰胺 | 2* | 1.0 | 0.4 | — | — |
Chlorantraniliprole | |||||
甲维盐 | 0.03 | 0.15 | 0.1 | 0.2 | 0.03 |
Emamectin benzoate | |||||
多效唑 | — | 0.15 | 0.2 | 0.05T | — |
Paclobutrazol |
[1] | CEVALLOS-CASALS B A, BYRNE D, OKIE W R, et al. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties[J]. Food Chemistry, 2006, 96(2): 273-280. |
[2] | 陈小龙, 王亚, 程金金, 等. 啶虫脒在桃上的残留消解规律与膳食风险评估[J]. 农药学学报, 2021, 23(3): 545-551. |
CHEN X L, WANG Y, CHENG J J, et al. Dissipation rules and dietary risk assessment of acetamiprid residues in peach[J]. Chinese Journal of Pesticide Science, 2021, 23(3): 545-551. (in Chinese with English abstract) | |
[3] | VIZZOTTO M, CISNEROS-ZEVALLOS L, BYRNE D H, et al. Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm[J]. Journal of the American Society for Horticultural Science, 2007, 132(3): 334-340. |
[4] | GIL M I, TOMÁS-BARBERÁN F A, HESS-PIERCE B, et al. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California[J]. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4976-4982. |
[5] | WU Q Y, SHEN C Y, LI J K, et al. Application of indirect plasma-processed air on microbial inactivation and quality of yellow peaches during storage[J]. Innovative Food Science & Emerging Technologies, 2022, 79: 103044. |
[6] | 金检生, 杨丽丽, 陈雷, 等. 湖州市吴兴妙西黄桃产业现状与高质量发展对策探讨[J]. 浙江农业科学, 2022, 63(7): 1411-1414. |
JIN J S, YANG L L, CHEN L, et al. Current status and high-quality development strategies for yellow peach industry in Huzhou[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(7): 1411-1414. (in Chinese) | |
[7] | LI Z X, NIE J Y, YAN Z, et al. A monitoring survey and dietary risk assessment for pesticide residues on peaches in China[J]. Regulatory Toxicology and Pharmacology, 2018, 97: 152-162. |
[8] | 李红锐. 曲靖市红地球葡萄套袋技术推广应用研究[D]. 杨凌: 西北农林科技大学, 2017. |
LI H R. Study on popularization and application of red grape bagging technology in Qujing city[D]. Yangling: Northwest A & F University, 2017. (in Chinese with English abstract) | |
[9] | 李翠红, 张永茂, 陈大鹏, 等. 套袋和不套袋对“红富士” 苹果耐贮性和安全性的影响[J]. 北方园艺, 2014(22): 143-146. |
LI C H, ZHANG Y M, CHEN D P, et al. Effect of storability and safety in ‘Red fuji’ apple fruits by bagging and non-bagging[J]. Northern Horticulture, 2014(22): 143-146. (in Chinese with English abstract) | |
[10] | 李刚波, 樊继德, 赵林, 等. 五种套袋对早熟梨果实糖酸和毒死蜱农药残留的影响[J]. 浙江农业学报, 2018, 30(8): 1363-1368. |
LI G B, FAN J D, ZHAO L, et al. Effects of 5 bagging treatments on sugar and acid content and chlorpyrifos pesticide residues in early maturing pears[J]. Acta Agriculturae Zhejiangensis, 2018, 30(8): 1363-1368. (in Chinese with English abstract) | |
[11] | 陈茜茜, 王晓珊, 赵洋洋, 等. 桃果套袋对6种典型农药沉积分布和残留的影响[J]. 农药学学报, 2021, 23(6): 1205-1212. |
CHEN X X, WANG X S, ZHAO Y Y, et al. Effect of peach bagging on deposition, distribution and residues of six typical pesticides[J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1205-1212. (in Chinese with English abstract) | |
[12] | 陈勇达, 张少军. 梨果套袋及常用清洗方式对农药残留去除效果研究[J]. 食品安全质量检测学报, 2019, 10(20): 6944-6949. |
CHEN Y D, ZHANG S J. Removal effect of pesticide residue in pear by bagging and different rinsing modes[J]. Journal of Food Safety & Quality, 2019, 10(20): 6944-6949. (in Chinese with English abstract) | |
[13] | WANG Z W, CANG T, QI P P, et al. Dissipation of four fungicides on greenhouse strawberries and an assessment of their risks[J]. Food Control, 2015, 55: 215-220. |
[14] | 李海飞, 聂继云, 徐国锋, 等. 桃中农药残留分析及膳食暴露评估研究[J]. 分析测试学报, 2019, 38(9): 1066-1072. |
LI H F, NIE J Y, XU G F, et al. Analysis of pesticide residues in peaches and their dietary exposure risk assessments[J]. Journal of Instrumental Analysis, 2019, 38(9): 1066-1072. (in Chinese with English abstract) | |
[15] | European Commission. EU-Pesticides database[DB/OL]. [2023-01-25]. https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en. |
[16] | Japanese positive list system[DB/OL]. [2023-01-25]. http://db.ffcr.or.jp/front/. |
[17] | 浙江省农业科学院. 韩国“肯定列表” 制度(农产品中农药最大残留限量)研究[M]. 北京: 中国农业出版社, 2020. |
[18] | Codex alimentarius. pesticides database[DB/OL]. [2023-01-25]. https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/commodities/en/. |
[19] | 王建武, 陈厚彬, 周强, 等. 套袋对荔枝果实质量和农药残留的影响[J]. 应用生态学报, 2003, 14(5): 710-712. |
WANG J W, CHEN H B, ZHOU Q, et al. Effects of bagging on the fruit quality in Litchi chinensis fruit and pesticide residues in it[J]. Chinese Journal of Applied Ecology, 2003, 14(5): 710-712. (in Chinese with English abstract) | |
[20] | 李胤均, 钱程, 谢德芳. 芒果套袋前后喷施吡虫啉·噻嗪酮农药的消解动态研究[J]. 江苏农业科学, 2016, 44(3): 276-278. |
LI Y J, QIAN C, XIE D F. Study on degradation dynamics of imidacloprid and buprofezin pesticide before and after bagging mango[J]. Jiangsu Agricultural Sciences, 2016, 44(3): 276-278. (in Chinese) | |
[21] | 侯丽娜. 腐霉利的环境行为及在油菜种植体系中的残留动态分布研究[D]. 南京: 南京农业大学, 2018. |
HOU L N. The environmental behavior and residual dynamic distribution of procymidone in rape planting system[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract) | |
[22] | 赵小云, 谢德芳. 套袋对水果中农药残留的影响研究进展[J]. 农业资源与环境学报, 2018, 35(2): 104-110. |
ZHAO X Y, XIE D F. Review on the influences of bagging treatment on pesticide residue in fruits[J]. Journal of Agricultural Resources and Environment, 2018, 35(2): 104-110. (in Chinese with English abstract) | |
[23] | 樊晓青, 陆贻通, 汪传炳. 腐霉利在生菜和土壤中的残留动态研究[J]. 上海交通大学学报(农业科学版), 2007, 25(6): 570-573. |
FAN X Q, LU Y T, WANG C B. Residue dynamics of procymidone in lettuce and soil[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2007, 25(6): 570-573. (in Chinese with English abstract) | |
[24] | 赵尔成, 朱晓丹, 郑尊涛, 等. 醚菌酯和腐霉利在温室草莓中的残留行为及其膳食摄入风险评估[J]. 农药学学报, 2015, 17(1): 75-82. |
ZHAO E C, ZHU X D, ZHENG Z T, et al. Residue behavior and dietary intake risk assessment of kresoxim-methyl and procymidone in strawberry under greenhouse conditions[J]. Chinese Journal of Pesticide Science, 2015, 17(1): 75-82. (in Chinese with English abstract) | |
[25] | 陈锦永. 多效唑在桃中的残留与安全使用技术研究[D]. 北京: 中国农业科学院, 2012. |
CHEN J Y. Research on residue of paclobutrazol in peach and its safe application[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese with English abstract) | |
[26] | 付岩, 王全胜, 张亮, 等. 氯虫苯甲酰胺在山楂中的残留行为及膳食暴露风险评估[J]. 食品安全质量检测学报, 2021, 12(12): 4735-4741. |
FU Y, WANG Q S, ZHANG L, et al. Residue behaviours and dietary exposure risk assessment of chlorantraniliprole in hawthorn[J]. Journal of Food Safety & Quality, 2021, 12(12): 4735-4741. (in Chinese with English abstract) | |
[27] | 秦冬梅, 秦旭, 徐应明, 等. 土壤和番茄中氯虫苯甲酰胺的残留检测与消解动态研究[J]. 农业环境科学学报, 2010, 29(5): 858-863. |
QIN D M, QIN X, XU Y M, et al. Residue determination and degradation of chlorantraniliprole in soil and tomato[J]. Journal of Agro-Environment Science, 2010, 29(5): 858-863. (in Chinese with English abstract) | |
[28] | 赵民娟, 王猛强, 邵华, 等. 氯虫苯甲酰胺在菜薹中的残留及消解动态研究[J]. 农产品质量与安全, 2019(1): 35-38. |
ZHAO M J, WANG M Q, SHAO H, et al. Residue and degradation of chlorantraniliprole in flowering Chinese cabbage[J]. Quality and Safety of Agro-Products, 2019(1): 35-38. (in Chinese) | |
[29] | 许振岚, 陈丽萍, 徐明飞, 等. 氯虫苯甲酰胺和吡唑醚菌酯在铁皮石斛中的残留及消解动态[J]. 农药学学报, 2018, 20(2): 223-231. |
XU Z L, CHEN L P, XU M F, et al. Residues and dissipation dynamics of chlorantraniliprole and pyraclostrobin in Dendrobium officinale[J]. Chinese Journal of Pesticide Science, 2018, 20(2): 223-231. (in Chinese with English abstract) | |
[30] | 孙淑媛, 侯丽娜, 杨桂玲, 等. 葡萄中几种常用防治绿盲蝽农药的残留动态与风险评估[J]. 浙江农业学报, 2022, 34(7): 1513-1518. |
SUN S Y, HOU L N, YANG G L, et al. Residue dynamics and risk assessment of several pesticides commonly used for the control of Apolygus lucorum in grapes[J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1513-1518. (in Chinese with English abstract) | |
[31] | 包媛媛, 张新永, 邵金良, 等. 多效唑在番茄和土壤中的残留与降解动态研究[J]. 生态环境学报, 2014, 23(5): 864-869. |
BAO Y Y, ZHANG X Y, SHAO J L, et al. Dynamics of the residue and degradation of paclobutrazol in tomato and soil[J]. Ecology and Environmental Sciences, 2014, 23(5): 864-869. (in Chinese with English abstract) | |
[32] | DI S S, WANG Y H, XU H, et al. Comparison the dissipation behaviors and exposure risk of carbendazim and procymidone in greenhouse strawberries under different application method: individual and joint applications[J]. Food Chemistry, 2021, 354: 129502. |
[33] | LI Z X, ZHANG Y H, ZHAO Q Y, et al. Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China[J]. Chemosphere, 2020, 258: 127381. |
[34] | QUIJANO L, YUSÀ V, FONT G, et al. Chronic cumulative risk assessment of the exposure to organophosphorus, carbamate and pyrethroid and pyrethrin pesticides through fruit and vegetables consumption in the region of Valencia(Spain)[J]. Food and Chemical Toxicology, 2016, 89: 39-46. |
[35] | 刘玉红, 孙彩霞, 胡美华. 蔬菜中腐霉利残留的膳食暴露风险评估[J]. 浙江农业科学, 2020, 61(11): 2330-2332. |
LIU Y H, SUN C X, HU M H. Dietary exposure assessment of procymidone residues in vegetables[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(11): 2330-2332. (in Chinese) | |
[36] | 刘宇, 宋瑞, 刘凤娇, 等. 腐霉利在菠菜中的残留行为及使用安全性评价[J]. 农药, 2022, 61(10): 751-755. |
LIU Y, SONG R, LIU F J, et al. Residue behaviors and safety evaluation of procymidone in spinach[J]. Agrochemicals, 2022, 61(10): 751-755. (in Chinese with English abstract) |
[1] | 张春荣, 郭钤, 孔丽萍, 吴园园, 林琴, 许振岚, 赵学平, 汤涛. 嘧菌酯在杨梅中的残留行为及膳食暴露风险评估[J]. 浙江农业学报, 2023, 35(4): 942-951. |
[2] | 刘贵阁, 乔勇进, 陈冰洁, 王晓, 张怡, 钟耀广. 不同干燥方式对黄桃果粉品质的影响[J]. 浙江农业学报, 2023, 35(10): 2456-2464. |
[3] | 孙淑媛, 侯丽娜, 杨桂玲, 杜雨婷, 赵芸. 葡萄中几种常用防治绿盲蝽农药的残留动态与风险评估[J]. 浙江农业学报, 2022, 34(7): 1513-1518. |
[4] | 吕露, 吴声敢, 王强, 赵学平, 徐明飞. 几种杀菌剂对葡萄园典型陆生生物的初级风险评估[J]. 浙江农业学报, 2022, 34(11): 2512-2521. |
[5] | 孙彩霞, 欧阳志周, 刘玉红, 于国光. 西兰花中3种杀菌剂的残留动态与风险评估[J]. 浙江农业学报, 2021, 33(7): 1292-1299. |
[6] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌, 章程辉. 豇豆不同生长时期施用毒死蜱的膳食风险[J]. 浙江农业学报, 2021, 33(6): 1104-1109. |
[7] | 田培, 赵慧宇, 刘之炜, 王娇, 狄珊珊, 徐浩, 汪志威, 王新全, 齐沛沛. 杨梅中灭蝇胺及其代谢物检测方法与风险评估[J]. 浙江农业学报, 2021, 33(3): 534-540. |
[8] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌. 丁硫克百威在豇豆不同时期施用的降解代谢研究[J]. 浙江农业学报, 2020, 32(11): 2050-2058. |
[9] | 李刚波, 樊继德, 赵林, 张婷, 张梅, 杨艳, 杨峰. 五种套袋对早熟梨果实糖酸和毒死蜱农药残留的影响[J]. 浙江农业学报, 2018, 30(8): 1363-1368. |
[10] | 刘熔熔, 吴利红, 王增武. 浙江省油菜花期降水量风险评估[J]. 浙江农业学报, 2018, 30(10): 1624-1629. |
[11] | 刘新迎, 秦浩然, 袁玉伟, 姜风涛, 于国光, 娄德龙, 王士强, 张艳, 尹旭升. 山东省蜂蜜中铅含量调查与风险评估[J]. 浙江农业学报, 2017, 29(9): 1570-1574. |
[12] | 章豪, 张宜文, 凌淑萍, 张亮, 陈若霞, 吴银良, 朱勇. 抑霉唑对葡萄的保鲜效果及其风险评估[J]. 浙江农业学报, 2017, 29(5): 840-844. |
[13] | 于国光,张志恒,杨桂玲,汪雯,蔡铮,郑蔚然,徐丽红. 茭白的焦亚硫酸钠浸泡试验及其风险评估[J]. 浙江农业学报, 2015, 27(11): 2011-. |
[14] | 胡选祥1,邵美红1,洪文英2,吴燕君2,柯汉云1,赵帅锋1. 丁氟螨酯在草莓中的残留消解动态及安全性评价 [J]. 浙江农业学报, 2014, 26(6): 1558-. |
[15] | 周桂英;陈卿然;王四清*. 套袋对大花蕙兰花箭高度的影响[J]. , 2014, 26(2): 0-325329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||