浙江农业学报 ›› 2022, Vol. 34 ›› Issue (3): 471-479.DOI: 10.3969/j.issn.1004-1524.2022.03.07
丁燕玲(), 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙(
)
收稿日期:
2021-06-08
出版日期:
2022-03-25
发布日期:
2022-03-30
通讯作者:
康晓龙
作者简介:
康晓龙,E-mail: kangxl9527@126.com基金资助:
DING Yanling(), WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong(
)
Received:
2021-06-08
Online:
2022-03-25
Published:
2022-03-30
Contact:
KANG Xiaolong
摘要:
为研究miR-144的靶基因与miR-144在牛不同组织中的表达规律,预测其对肌肉生长发育的调节机制,对miR-144在各物种间的保守性、潜在靶基因及其富集通路进行分析,通过qRT-PCR方法检测牛不同组织中miR-144的表达。结果表明,miR-144成熟序列在各物种间保守性较高;富集分析发现,靶基因显著富集于血管平滑肌收缩、cGMP-PKG、cAMP等与肌肉发育相关通路中。qRT-PCR结果显示,miR-144在肝中的表达量最高,在皮下脂肪中的表达量最低;miR-144在腿肌和心中的表达差异不显著(P>0.05),但在肝中的表达显著(P<0.05)高于腿肌和心;miR-144在背最长肌中的表达显著(P<0.05)高于瘤胃和皮下脂肪,而瘤胃和皮下脂肪组织间表达差异不显著(P>0.05)。
中图分类号:
丁燕玲, 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙. 牛miR-144靶基因预测与组织表达分析[J]. 浙江农业学报, 2022, 34(3): 471-479.
DING Yanling, WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong. Prediction of target genes and tissue expression analysis of miR-144 in cattle[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 471-479.
数据库名称 Databasename | 功能 Function | 网址 Website |
---|---|---|
miRBase | miRNA序列数据库miRNA sequence database | http://www.mirbase.org/index.shtml/ |
TargetScan | miRNA靶基因预测Prediction of miRNA target genes | http://www.targetscan.org/ |
miRWalk | miRNA靶基因预测Prediction of miRNA target genes | http://mirwalk.umm.uni-heidelberg.de/ |
miRDB | miRNA靶基因预测Prediction of miRNA target genes | http://www.mirdb.org/ |
Veney | 维恩图绘制Drawing of wenn diagram | http//bioinfogp.cnb.csic.es/tools/Venny/index.html |
miRTarbase | miRNA实验验证靶基因数据库 | http://mirtar-base.mbc.nctu.edu.tw/ |
Validation of target genes database by miRNA experiment | ||
DAVID | 功能注释Function notes | https://david.ncifcrf.gov/ |
表1 数据库名称与网址
Table 1 Name of database and website
数据库名称 Databasename | 功能 Function | 网址 Website |
---|---|---|
miRBase | miRNA序列数据库miRNA sequence database | http://www.mirbase.org/index.shtml/ |
TargetScan | miRNA靶基因预测Prediction of miRNA target genes | http://www.targetscan.org/ |
miRWalk | miRNA靶基因预测Prediction of miRNA target genes | http://mirwalk.umm.uni-heidelberg.de/ |
miRDB | miRNA靶基因预测Prediction of miRNA target genes | http://www.mirdb.org/ |
Veney | 维恩图绘制Drawing of wenn diagram | http//bioinfogp.cnb.csic.es/tools/Venny/index.html |
miRTarbase | miRNA实验验证靶基因数据库 | http://mirtar-base.mbc.nctu.edu.tw/ |
Validation of target genes database by miRNA experiment | ||
DAVID | 功能注释Function notes | https://david.ncifcrf.gov/ |
基因 Gene | 引物序列(5'→3') Primer sequence(5'→3') | 引物长度 Primer length/bp |
---|---|---|
miR-144 | RTprimer:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTAGTA | 50 |
F:CGCGCGTACAGTATAGATGATG | 23 | |
R:AGTGCAGGGTCCGAGGTATT | 20 | |
18S RNA | F:GTGGTGTTGAGGAAAGCAGACA | 22 |
R:TGATCACACGTTCCACCTCATC | 22 |
表2 miR-144定量引物信息
Table 2 Information of quantitative primer of miR-144
基因 Gene | 引物序列(5'→3') Primer sequence(5'→3') | 引物长度 Primer length/bp |
---|---|---|
miR-144 | RTprimer:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTAGTA | 50 |
F:CGCGCGTACAGTATAGATGATG | 23 | |
R:AGTGCAGGGTCCGAGGTATT | 20 | |
18S RNA | F:GTGGTGTTGAGGAAAGCAGACA | 22 |
R:TGATCACACGTTCCACCTCATC | 22 |
物种Species | 登录号Accession No. | 序列Sequence(5'~3') |
---|---|---|
牛Bos taurus | MIMAT0009234 | UACAGUAUAGAUGAUGUACUAG |
马Equus caballus | MIMAT0013024 | UACAGUAUAGAUGAUGUACU |
猪Sus scrofa | MIMAT0025364 | UACAGUAUAGAUGAUGUAC |
狗Canis lupus familiaris | MIMAT0006734 | UACAGUAUAGAUGAUGUACUAG |
鸡Gallus | MIMAT0003776 | CUACAGUAUAGAUGAUGUACUC |
小鼠Mus musculus | MIMAT0000156 | UACAGUAUAGAUGAUGUACU |
家鼠Rattus norvegicus | MIMAT0000850 | UACAGUAUAGAUGAUGUACU |
人Homo sapiens | MIMAT0000436 | UACAGUAUAGAUGAUGUACU |
黑猩猩Pan troglodytes | MIMAT0002262 | UACAGUAUAGAUGAUGUACUAG |
斑马鱼Brachydaniorerio var | MIMAT0001841 | UACAGUAUAGAUGAUGUACU |
表3 多个物种miR-144成熟体序列
Table 3 Mature sequence of miR-144 from multiple species
物种Species | 登录号Accession No. | 序列Sequence(5'~3') |
---|---|---|
牛Bos taurus | MIMAT0009234 | UACAGUAUAGAUGAUGUACUAG |
马Equus caballus | MIMAT0013024 | UACAGUAUAGAUGAUGUACU |
猪Sus scrofa | MIMAT0025364 | UACAGUAUAGAUGAUGUAC |
狗Canis lupus familiaris | MIMAT0006734 | UACAGUAUAGAUGAUGUACUAG |
鸡Gallus | MIMAT0003776 | CUACAGUAUAGAUGAUGUACUC |
小鼠Mus musculus | MIMAT0000156 | UACAGUAUAGAUGAUGUACU |
家鼠Rattus norvegicus | MIMAT0000850 | UACAGUAUAGAUGAUGUACU |
人Homo sapiens | MIMAT0000436 | UACAGUAUAGAUGAUGUACU |
黑猩猩Pan troglodytes | MIMAT0002262 | UACAGUAUAGAUGAUGUACUAG |
斑马鱼Brachydaniorerio var | MIMAT0001841 | UACAGUAUAGAUGAUGUACU |
图2 miR-144靶基因交集预测 蓝色表示采用miRWalk软件预测的miR-144靶基因,黄色表示采用TargetScan软件预测的miR-144靶基因,绿色表示采用miRDB软件预测的miR-144靶基因。
Fig.2 Intersection prediction of miR-144 target genes Blue indicated miR-144 target genes predicted by miRWalk software, yellow indicated miR-144 target genes predicted by TargetScan software, and green indicated miR-144 target gene predicted by miRDB software.
图5 miR-144在牛主要部位的表达量 A,miR-144在牛主要部位的表达;B,miR-144在牛不同发育时期主要部位的表达。柱上无相同字母表示差异显著(P<0.05)
Fig.5 Expression of miR-144 in bovine parts A,Expression of miR-144 in main tissues of cattle; B, Expression of miR-144 in main tissues of cattle at different developmental stages.Data marked without the same lowercase letters indicated significant differences at P<0.05.
[1] | MANSOORI B, SHOTORBANI S S, BARADARAN B. RNA interference and its role in cancer therapy[J]. Advanced Pharmaceutical Bulletin, 2014, 4(4): 313-321. |
[2] | WIGMORE P M, STICKLAND N C. Muscle development in large and small pig fetuses[J]. Journal of Anatomy, 1983, 137(Pt 2): 235-245. |
[3] |
CAO X N, TANG S Y, DU F, et al. miR-99a-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting MTMR3 in chicken[J]. Genes, 2020, 11(4): 369.
DOI URL |
[4] |
ELSAEID E I, DONG D, WANG X G, et al. Bta-miR-885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1[J]. Journal of Cellular Physiology, 2020, 235(10): 6625-6636.
DOI URL |
[5] |
WINBANKS C E, WANG B, BEYER C, et al. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4[J]. The Journal of Biological Chemistry, 2011, 286(16): 13805-13814.
DOI URL |
[6] |
WU N Z, GU T T, LU L, et al. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle[J]. Journal of Cellular Physiology, 2019, 234(4): 3490-3499.
DOI URL |
[7] | 张伟, 王世银, 邓双义, 等. oar-miR-133的表达对巴什拜羊骨骼肌细胞增殖和分化的影响[J]. 西北农业学报, 2019, 28(3): 315-322. |
ZHANG W, WANG S Y, DENG S Y, et al. Effect of oar-miR-133 expression on proliferation and differentiation of skeletal muscle satellite cell of bashbay sheep(Ovis aries)[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(3): 315-322. (in Chinese with English abstract) | |
[8] |
TONG H L, JIANG R Y, LIU T T, et al. Bta-miR-378 promote the differentiation of bovine skeletal muscle-derived satellite cells[J]. Gene, 2018, 668: 246-251.
DOI URL |
[9] | ZHANG W R, ZHANG H N, WANG Y M, et al. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5[J]. In Vitro Cellular & Developmental BiologyAnimal, 2017, 53(3): 265-271. |
[10] | 王伟, 滚双宝, 王鹏飞, 等. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
WANG W, GUN S B, WANG P F, et al. Tissue expression and significant target genes analysis of swine miR-204[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1564-1573. (in Chinese with English abstract) | |
[11] | ZHOU J X, TIAN Z G, ZHU L F, et al. MicroRNA-615-3p promotes the osteoarthritis progression by inhibiting chondrogenic differentiation of bone marrow mesenchymal stem cells[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(19): 6212-6220. |
[12] | 陈雯, 张伟伟, 邵淑丽, 等. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793. |
CHEN W, ZHANG W W, SHAO S L, et al. Expression of miR-423-5p in bovine muscle and predicted target genes[J]. Acta AgriculturaeZhejiangensis, 2021, 33(5): 785-793. (in Chinese with English abstract) | |
[13] | 樊赟, 樊纪民, 卞华. miR-144t通过对肝细胞生长因子的调控抑制肝癌细胞MHCC97H的增殖、迁移及延缓肝癌进展[J]. 中国老年学杂志, 2021, 41(10): 2161-2165. |
FAN Y, FAN J M, BIAN H. miR-144t inhibits the proliferation and migration of hepatocellular carcinoma cell MHCC97H and delays the progression of hepatocellular carcinoma by regulating hepatocyte growth factor[J]. Chinese Journal of Gerontology, 2021, 41(10): 2161-2165. (in Chinese) | |
[14] |
XU Q H, LIAO B L, HU S, et al. Circular RNA 0081146 facilitates the progression of gastric cancer by sponging miR-144 and up-regulating HMGB1[J]. Biotechnology Letters, 2021, 43(4): 767-779.
DOI URL |
[15] |
JONES N C, FEDOROV Y V, ROSENTHAL R S, et al. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion[J]. Journal of Cellular Physiology, 2001, 186(1): 104-115.
DOI URL |
[16] |
WEBER C, HAMETNER C, TUCHSCHERER A, et al. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows[J]. Journal of Dairy Science, 2013, 96(1): 165-180.
DOI URL |
[17] |
AMOS L A, MA F Y, TESCH G H, et al. ASK 1 inhibitor treatment suppresses p38/JNK signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis[J]. Journal of Cellular and Molecular Medicine, 2018, 22(9): 4522-4533.
DOI URL |
[18] |
SACLIER M, LAPI M, BONFANTI C, et al. The transcription factor Nfix requires RhoA-ROCK1 dependent phagocytosis to mediate macrophage skewing during skeletal muscle regeneration[J]. Cells, 2020, 9(3):708.
DOI URL |
[19] |
SHIMOKAWA H, KIKUCHI N, SATOH K. Shrinking basic cardiovascular research in Japan: the tip of the iceberg[J]. Circulation Research, 2017, 121(4): 331-334.
DOI URL |
[20] |
CAI S D, CHEN J S, XI Z W, et al. microRNA 144 inhibits migration and proliferation in rectal cancer by downregulating ROCK1[J]. Molecular Medicine Reports, 2015, 12(5): 7396-7402.
DOI URL |
[21] |
SHU L L, HOUGHTON P J. The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts[J]. Molecular and Cellular Biology, 2009, 29(17): 4691-4700.
DOI URL |
[22] | ZHOU W, YE S D, WANG W. miR-217 alleviates high-glucose-induced vascular smooth muscle cell dysfunction via regulating ROCK1[J]. Journal of Biochemical and Molecular Toxicology, 2021, 35(3): e22668. |
[23] |
TAKIMOTO E. Cyclic GMP-dependent signaling in cardiac myocytes[J]. Circulation Journal:Official Journal of the Japanese Circulation Society, 2012, 76(8): 1819-1825.
DOI URL |
[24] |
HAMMOND J, BALLIGAND J L. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling[J]. Journal of Molecular and Cellular Cardiology, 2012, 52(2): 330-340.
DOI URL |
[25] | LEITNER L M, WILSON R J, YAN Z, et al. Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases[J]. Antioxidants & Redox Signaling, 2017, 26(13): 700-717. |
[26] | BERDEAUX R, STEWART R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration[J]. American Journal of Physiology Endocrinology and Metabolism, 2012, 303(1): E1-E17. |
[27] |
PLANCHON P, VEBER N, MAGNIEN V, et al. Alteration of prostaglandin E receptors in advanced breast tumour cell lines[J]. Molecular and Cellular Endocrinology, 1995, 111(2): 219-223.
DOI URL |
[28] | MIGUELANGEL MD, JOHANA M G, KALENIA M F, et al. Morphological changes of physeal cartilage and secondary ossification centres in the developing femur of the house mouse (Mus musculus):amicro-CT based study[J]. Anatomia HistologiaEmbryologia, 2019, 48(2): 117-124. |
[29] |
MIWA M, SAURA R, HIRATA S, et al. Induction of apoptosis in bovine articular chondrocyte by prostaglandin E(2)through cAMP-dependent pathway[J]. Osteoarthritis and Cartilage, 2000, 8(1): 17-24.
DOI URL |
[30] | RAVNSKJAER K, MADIRAJU A, MONTMINY M. Role of the cAMP pathway in glucose and lipid metabolism[J]. Handbook of Experimental Pharmacology, 2016, 233: 29-49. |
[31] |
CELIK O, CELIK N, UGUR K, et al. NppcNpr2cGMP signaling cascade maintains oocyte developmental capacity[J]. Cellular and Molecular Biology (Noisy-le-grand, France), 2019, 65(4): 83-89.
DOI URL |
[32] |
YASUDA M, KAWABATA J, AKIEDA-ASAI S, et al. Guanylyl cyclase C and guanylin reduce fat droplet accumulation in cattle mesenteric adipose tissue[J]. Journal of Veterinary Science, 2017, 18(3): 341-348.
DOI URL |
[33] |
LEE K T, BYUN M J, KANG K S, et al. Neuronal genes for subcutaneous fat thickness in human and pig are identified by local genomic sequencing and combined SNP association study[J]. PLoS One, 2011, 6(2): e16356.
DOI URL |
[34] |
LIU H, PALMER D, JIMMO S L, et al. Expression of phosphodiesterase 4D (PDE4D) is regulated by both the cyclic AMP-dependent protein kinase and mitogen-activated protein kinase signaling pathways:apotential mechanism allowing for the coordinated regulation of PDE4D activity and expression in cells[J]. Journal of Biological Chemistry, 2000, 275(34): 26615-26624.
DOI URL |
[35] |
KANAME T, KI C S, NIIKAWA N, et al. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis[J]. Cellular Signalling, 2014, 26(11): 2446-2459.
DOI URL |
[36] |
SILVA D, FONSECA L, PINHEIRO D G, et al. Prediction of hub genes associated with intramuscular fat content in Nelore cattle[J]. BMC Genomics, 2019, 20(1): 520.
DOI URL |
[1] | 陈雯, 张伟伟, 邵淑丽, 付学鹏, 黄鑫, 李铁. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793. |
[2] | 胡晓丹, 王来娣, 杨婷, 白皓, 江勇, 王志秀, 王莎莎, 陈国宏, 常国斌. 鸭脂肪细胞中circ-FBLN2鉴定与功能预测[J]. 浙江农业学报, 2021, 33(4): 602-609. |
[3] | 冯上乐, 李雪男, 陈一格, 刘瑞琦, 白志毅, 李文娟. 三角帆蚌细胞周期蛋白基因筛选及其表达分析[J]. 浙江农业学报, 2021, 33(11): 2041-2050. |
[4] | 王伟科, 陆娜, 闫静, 宋吉玲, 袁卫东, 周祖法. 秀珍菇S-腺苷甲硫氨酸合成酶基因(PpSAMS)的克隆与表达分析[J]. 浙江农业学报, 2021, 33(1): 62-68. |
[5] | 王伟, 滚双宝, 王鹏飞, 黄晓宇, 谢开会, 雒瑞瑞, 高小莉, 张博, 闫尊强, 杨巧丽, 马艳萍. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
[6] | 孙瑞萍, 王峰, 晁哲, 刘海隆, 邢漫萍, 刘圈炜, 黄丽丽, 郑心力, 魏立民. 屯昌猪PDK4基因克隆及其组织表达分析[J]. 浙江农业学报, 2020, 32(6): 978-985. |
[7] | 徐麒麟, 齐桂兰, 莫桂林, 朱江, 雷春龙, 吴永胜, 许祯莹, 李娟. 蚯蚓提取液对家蚕热激蛋白水平及免疫功能的影响[J]. 浙江农业学报, 2020, 32(4): 593-600. |
[8] | 纪艺, 姜媛媛, 汪小福, 徐晓丽, 徐俊锋, 李玥莹, 陈笑芸. 几种动物生鲜肌肉组织样品DNA提取方法的比较研究[J]. 浙江农业学报, 2019, 31(9): 1471-1477. |
[9] | 陈琳, 周青青, 顾青, 郦萍. 实时定量PCR法快速检测水产品中的副溶血性弧菌[J]. 浙江农业学报, 2019, 31(5): 823-828. |
[10] | 董新星, 李明丽, 崔艺佳, 兰国湘, 王孝义, 严达伟. 撒坝猪MCUR1基因克隆、生物信息学分析及其组织表达量检测[J]. 浙江农业学报, 2019, 31(11): 1825-1833. |
[11] | 吴伟, 冯志娟, 徐盛春, 刘娜, 张古文, 胡齐赞, 龚亚明. 大豆NIP类水孔蛋白基因的鉴定及表达特性分析[J]. 浙江农业学报, 2018, 30(7): 1101-1109. |
[12] | 李向茸, 王兴陇, 李倩, 马瑞仙, 张海霞, 李琼毅, 马忠仁, 冯若飞. 跨膜蛋白39A基因SYBR Green Ⅰ实时荧光定量PCR检测方法的建立及评价[J]. 浙江农业学报, 2018, 30(11): 1958-1964. |
[13] | 许锐光, 贾艳, 胡力文, 翁嘉华, 邓俊良, 胡延春. 黄芩甙对新城疫病毒感染鸡胚成纤维细胞Toll样受体2、3、4、7 mRNA表达的影响[J]. 浙江农业学报, 2017, 29(12): 1986-1993. |
[14] | 常丽娟, 宋君, 张富丽, 刘文娟, 唐春燕, 王东, 尹全. 实时荧光定量PCR方法检测转基因玉米MIR604[J]. 浙江农业学报, 2017, 29(11): 1769-1774. |
[15] | 高建锋, 卢曾奎, 马友记, 李讨讨, 赵兴绪. 绵羊MUSTN1基因的克隆、序列分析及其组织表达[J]. 浙江农业学报, 2017, 29(10): 1661-1668. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 783
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 519
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||