浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2146-2154.DOI: 10.3969/j.issn.1004-1524.20230858

• 生物系统工程 • 上一篇    下一篇

基于深度学习的近地面草原鼠洞识别计数关键问题研究与应用

郭秀明1(), 王大伟2,3,4,*(), 刘升平1,*(), 诸叶平1, 刘晓辉2, 林克剑4, 王佳宇5, 李非5   

  1. 1.中国农业科学院 农业信息研究所,农业农村部农业信息服务技术重点实验室,北京 100081
    2.中国农业科学院 植物保护研究所,植物病虫害综合治理全国重点实验室,北京 100081
    3.中国农业科学院 西部农业研究中心,新疆 昌吉 831100
    4.中国农业科学院 草原研究所,农业农村部人工草地生物灾害监测与绿色防控重点实验室,内蒙古 呼和浩特 010010
    5.锡林郭勒盟草原工作站,内蒙古 锡林浩特 026000
  • 收稿日期:2023-07-10 出版日期:2024-09-25 发布日期:2024-09-30
  • 作者简介:王大伟,E-mail:wangdawei02@caas.cn;
    郭秀明(1981—),女,河北沧州人,博士,副研究员,研究方向为农业智能感知。E-mail:guoxiuming@caas.cn
  • 通讯作者: 王大伟,E-mail:wangdawei02@caas.cn; 刘升平,E-mail:liushengping@caas.cn
  • 基金资助:
    内蒙古自治区科技计划(2022YFSJ0010);内蒙古自治区科技计划(2020GG0112);中国农业科学院平台提质增效项目(Y2021PT03);中国农业科学院创新工程(CAAS-ASTIP-2016-AII);中国农业科学院北方农牧业科技创新中心项目(BFGJ2022007);“天池英才”引进计划

Study on key problems for rat hole recognition and count near ground based on deep learning and its application

GUO Xiuming1(), WANG Dawei2,3,4,*(), LIU Shengping1,*(), ZHU Yeping1, LIU Xiaohui2, LIN Kejian4, WANG Jiayu5, LI Fei5   

  1. 1. Key Laboratory of Agri-Information Service Technology, Ministry of Agriculture and Rural Affairs, Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3. Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China
    4. Key Laboratory of Biohazard Monitoring and Green Prevention and Control in Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, Inner Mongolia, China
    5. Xilingol League Grassland Workstation, Xilinhot 026000, Inner Mongolia, China
  • Received:2023-07-10 Online:2024-09-25 Published:2024-09-30

摘要:

鼠洞密度可用于评估草原鼠害发生程度。在近地面鼠洞图片采集与识别中,图像分辨率和拍摄倾角是影响时效性和识别性能的关键因素。为此,设计了带有倾角传感器的图像采集装置,在锡林郭勒草原采集2 325张鼠洞图片并进行手工标注,对比分析了3种图片输入尺寸(416 pixel×416 pixel、608 pixel×608 pixel、1 024 pixel×1 024 pixel)、4类拍摄倾角(21°、32°、41°、51°)、2种目标识别模型(YOLOv3和YOLOv4)对识别性能的影响。结果表明:YOLOv4模型在输入图片尺寸为416 pixel×416 pixel时能取得最优的性能。当拍摄倾角为41°时,识别性能最优;当拍摄倾角为32°时,识别性能最差。与近3年发表的鼠洞识别方法进行对比分析,验证了本文方法的性能先进性。研究结果可为草原鼠害的智能化监测提供技术支撑。

关键词: 目标检测, 草原生态, 机器视觉, 鼠洞, YOLOv3模型, YOLOv4模型

Abstract:

Rat hole density serves as a significant indicator for assessing the extent of rat damage in grasslands. In the image acquisition for rat hole recognition and count near ground by deep learning, the optimal image input size and shooting angle are crucial. To address these considerations, an image acquisition device equipped with an inclination sensor was designed, and a dataset of 2 325 rat hole images was collected from Xilingol grassland and manually annotated. The recognition performance was compared under 3 image input sizes (416 pixel×416 pixel, 608 pixel×608 pixel, 1 024 pixel×1 024 pixel), 4 shooting angles (21°, 32°, 41°, and 51°), and 2 target recognition models (YOLOv3 and YOLOv4). The findings revealed that YOLOv4 achieved superior performance when the image input size was set as 416 pixel×416 pixel. Furthermore, the recognition performance was optimal at the shooting angle of 41°, while it was the poorest at 32°. The proposed method was validated by comparing it with relevant approaches published within the past three years. These results offered valuable insights to support the development of intelligent monitoring technologies for assessing rat damage in grassland ecosystems.

Key words: object detection, grassland ecosystem, machine vision, rat hole, YOLOv3 model, YOLOv4 model

中图分类号: