浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 1-8.DOI: 10.3969/j.issn.1004-1524.20230079
杨西帆1,2(), 郭彬2, 裘高扬2, 刘俊丽2, 童文彬3,*(
), 杨海峻3, 祝伟东3, 毛聪妍3
收稿日期:
2023-01-19
出版日期:
2024-01-25
发布日期:
2024-02-18
作者简介:
杨西帆(1998—),男,山东聊城人,硕士,主要从事受污染耕地安全利用研究。E-mail: 2112027172@zjut.edu.cn
通讯作者:
* 童文彬,E-mail:zjqztwb@163.com
基金资助:
YANG Xifan1,2(), GUO Bin2, QIU Gaoyang2, LIU Junli2, TONG Wenbin3,*(
), YANG Haijun3, ZHU Weidong3, MAO Congyan3
Received:
2023-01-19
Online:
2024-01-25
Published:
2024-02-18
摘要:
采用田间试验,持续2年(2021—2022年)研究了市售6种钝化剂不同施用量(0、2 250、4 500、6 750 kg·hm-2)对土壤中镉(Cd)、铅(Pb)、砷(As)有效态含量,土壤pH值,及稻米Cd、Pb、As含量的影响。结果表明,选择适宜用量的钝化剂可显著(P<0.05)提高土壤pH值,降低土壤有效态Cd、Pb、As含量。其中,施用6 750 kg·hm-2长效型钝化剂的效果在2021年最优,土壤pH值由5.00提高至6.98,土壤有效态Cd、Pb含量分别显著降低82.2%和98.6%。此外,长效型钝化剂在4 500 kg·hm-2用量下,第二年的稻米镉含量仍可显著降低90.8%。综上,在对比的6种钝化剂中,长效型钝化剂阻控水稻籽粒Cd富集的效果和持效性最优,推测与其碳酸钙含量较高有关。
中图分类号:
杨西帆, 郭彬, 裘高扬, 刘俊丽, 童文彬, 杨海峻, 祝伟东, 毛聪妍. 不同钝化产品对水稻生产中镉、铅、砷的钝化效果[J]. 浙江农业学报, 2024, 36(1): 1-8.
YANG Xifan, GUO Bin, QIU Gaoyang, LIU Junli, TONG Wenbin, YANG Haijun, ZHU Weidong, MAO Congyan. Inhibiting effects of immobilization agents on cadmium, lead and arsenic in rice production[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 1-8.
图1 不同钝化剂对土壤有效态Cd含量的影响 A,日宏超能型;B,丰瑜高钙型;C,丰瑜钙镁型;D,丰瑜调理剂;E,中地调理剂;F,长效型钝化剂。柱上无相同字母的表示同一钝化剂不同施用量水平间差异显著(P<0.05)。下同。
Fig.1 Effect of immobilization agents on soil available Cd content A, Rihong super type; B, Fengyu high-calcium type; C, Fengyu calcium-magnesium type; D, Fengyu conditioner; E, Zhongdi conditioner; F, long-acting passivator. Bars marked without the same letters indicate significant (P<0.05) difference within different application rates of the same immobilization agent. The same as below.
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的土壤有效态As含量 Soil available As content under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.081±0.008 a | 0.074±0.012 ab | 0.065±0.009 b | 0.060±0.009 b |
B | 0.053±0.010 a | 0.032±0.004 b | 0.013±0.004 c | 0.024±0.006 b | |
C | 0.039±0.006 a | 0.037±0.001 a | 0.022±0.002 b | 0.010±0.003 c | |
D | 0.066±0.002 a | 0.009±0.005 d | 0.034±0.002 b | 0.024±0.003 c | |
E | 0.082±0.003 a | 0.041±0.002 c | 0.024±0.004 d | 0.075±0.003 b | |
F | 0.112±0.003 a | 0.080±0.007 b | 0.078±0.004 bc | 0.067±0.009 c | |
2022 | A | 0.067±0.028 a | 0.083±0.035 a | 0.068±0.025 a | 0.102±0.081 a |
B | 0.038±0.083 a | 0.001±0.024 b | 0.089±0.034 a | 0.118±0.050 a | |
C | 0.150±0.031 a | 0.122±0.066 a | 0.039±0.036 b | 0.093±0.057 a | |
D | 0.135±0.001 a | 0.055±0.025 ab | 0.005±0.045 b | 0.027±0.048 ab | |
E | 0.229±0.007 a | 0.052±0.042 b | 0.063±0.045 b | 0.084±0.034 b | |
F | 0.076±0.087 a | 0.030±0.061 a | 0.087±0.045 a | 0.053±0.033 a |
表1 不同处理对土壤有效态As含量的影响
Table 1 Effect of different treatments on soil available As contents mg·kg-1
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的土壤有效态As含量 Soil available As content under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.081±0.008 a | 0.074±0.012 ab | 0.065±0.009 b | 0.060±0.009 b |
B | 0.053±0.010 a | 0.032±0.004 b | 0.013±0.004 c | 0.024±0.006 b | |
C | 0.039±0.006 a | 0.037±0.001 a | 0.022±0.002 b | 0.010±0.003 c | |
D | 0.066±0.002 a | 0.009±0.005 d | 0.034±0.002 b | 0.024±0.003 c | |
E | 0.082±0.003 a | 0.041±0.002 c | 0.024±0.004 d | 0.075±0.003 b | |
F | 0.112±0.003 a | 0.080±0.007 b | 0.078±0.004 bc | 0.067±0.009 c | |
2022 | A | 0.067±0.028 a | 0.083±0.035 a | 0.068±0.025 a | 0.102±0.081 a |
B | 0.038±0.083 a | 0.001±0.024 b | 0.089±0.034 a | 0.118±0.050 a | |
C | 0.150±0.031 a | 0.122±0.066 a | 0.039±0.036 b | 0.093±0.057 a | |
D | 0.135±0.001 a | 0.055±0.025 ab | 0.005±0.045 b | 0.027±0.048 ab | |
E | 0.229±0.007 a | 0.052±0.042 b | 0.063±0.045 b | 0.084±0.034 b | |
F | 0.076±0.087 a | 0.030±0.061 a | 0.087±0.045 a | 0.053±0.033 a |
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的稻米As含量 As content in rice grains under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.046±0.072 a | 0.097±0.065 a | 0.001±0.070 a | 0.048±0.042 a |
B | 0.120±0.041 a | 0.087±0.049 a | 0.029±0.012 b | 0.065±0.063 ab | |
C | 0.167±0.072 a | 0.109±0.053 a | 0.125±0.062 a | 0.179±0.036 a | |
D | 0.085±0.052 b | 0.081±0.077 b | 0.066±0.077 b | 0.199±0.078 a | |
E | 0.110±0.02 a | 0.105±0.076 a | 0.110±0.040 a | 0.011±0.038 b | |
F | 0.050±0.076 c | 0.065±0.045 bc | 0.142±0.043 ab | 0.197±0.045 a | |
2022 | A | 0.531±0.043 a | ND | 0.207±0.091 a | ND |
B | 0.546±0.147 a | 0.465±0.001 a | ND | 0.129±0.129 b | |
C | 0.103±0.103 b | 0.436±0.075 a | 0.179±0.130 b | 0.385±0.122 a | |
D | 0.248±0.120 a | 0.457±0.151 a | 0.403±0.143 a | 0.258±0.356 a | |
E | 0.592±0.238 a | 0.296±0.014 a | 0.508±0.259 a | 0.407±0.289 a | |
F | 0.189±0.001 a | 0.524±0.249 b | ND | 0.236±0.001 a |
表2 不同处理对稻米As含量的影响
Table 2 Effect of different treatments on As content in rice grains mg·kg-1
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的稻米As含量 As content in rice grains under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.046±0.072 a | 0.097±0.065 a | 0.001±0.070 a | 0.048±0.042 a |
B | 0.120±0.041 a | 0.087±0.049 a | 0.029±0.012 b | 0.065±0.063 ab | |
C | 0.167±0.072 a | 0.109±0.053 a | 0.125±0.062 a | 0.179±0.036 a | |
D | 0.085±0.052 b | 0.081±0.077 b | 0.066±0.077 b | 0.199±0.078 a | |
E | 0.110±0.02 a | 0.105±0.076 a | 0.110±0.040 a | 0.011±0.038 b | |
F | 0.050±0.076 c | 0.065±0.045 bc | 0.142±0.043 ab | 0.197±0.045 a | |
2022 | A | 0.531±0.043 a | ND | 0.207±0.091 a | ND |
B | 0.546±0.147 a | 0.465±0.001 a | ND | 0.129±0.129 b | |
C | 0.103±0.103 b | 0.436±0.075 a | 0.179±0.130 b | 0.385±0.122 a | |
D | 0.248±0.120 a | 0.457±0.151 a | 0.403±0.143 a | 0.258±0.356 a | |
E | 0.592±0.238 a | 0.296±0.014 a | 0.508±0.259 a | 0.407±0.289 a | |
F | 0.189±0.001 a | 0.524±0.249 b | ND | 0.236±0.001 a |
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的土壤有效态Pb含量 Soil available Pb contents under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.520±0.073 a | 0.430±0.054 a | 0.407±0.076 a | 0.301±0.060 a |
B | 0.381±0.151 a | 0.197±0.125 b | 0.077±0.062 c | 0.232±0.024 ab | |
C | 0.338±0.072 a | 0.118±0.092 b | 0.107±0.046 b | 0.090±0.080 b | |
D | 0.312±0.093 a | 0.133±0.020 b | 0.156±0.055 b | 0.108±0.040 b | |
E | 0.234±0.047 a | 0.086±0.056 bc | 0.034±0.041 c | 0.110±0.053 b | |
F | 0.368±0.050 a | 0.044±0.024 b | 0.042±0.048 b | 0.005±0.002 c | |
2022 | A | 0.323±0.003 a | 0.288±0.015 a | 0.302±0.009 a | 0.318±0.035 a |
B | 0.115±0.031 b | 0.211±0.042 a | 0.093±0.065 b | 0.062±0.051 b | |
C | 0.106±0.040 a | 0.120±0.006 a | 0.089±0.068 a | 0.112±0.014 a | |
D | 0.071±0.001 a | 0.064±0.032 a | 0.047±0.020 a | 0.051±0.033 a | |
E | 0.092±0.065 a | 0.072±0.050 a | 0.090±0.101 a | 0.093±0.061 a | |
F | 0.023±0.030 a | 0.025±0.049 a | 0.003±0.101 a | 0.023±0.023 a |
表3 不同处理对土壤有效态Pb含量的影响
Table 3 Effect of different treatments on soil available Pb content mg·kg-1
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的土壤有效态Pb含量 Soil available Pb contents under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.520±0.073 a | 0.430±0.054 a | 0.407±0.076 a | 0.301±0.060 a |
B | 0.381±0.151 a | 0.197±0.125 b | 0.077±0.062 c | 0.232±0.024 ab | |
C | 0.338±0.072 a | 0.118±0.092 b | 0.107±0.046 b | 0.090±0.080 b | |
D | 0.312±0.093 a | 0.133±0.020 b | 0.156±0.055 b | 0.108±0.040 b | |
E | 0.234±0.047 a | 0.086±0.056 bc | 0.034±0.041 c | 0.110±0.053 b | |
F | 0.368±0.050 a | 0.044±0.024 b | 0.042±0.048 b | 0.005±0.002 c | |
2022 | A | 0.323±0.003 a | 0.288±0.015 a | 0.302±0.009 a | 0.318±0.035 a |
B | 0.115±0.031 b | 0.211±0.042 a | 0.093±0.065 b | 0.062±0.051 b | |
C | 0.106±0.040 a | 0.120±0.006 a | 0.089±0.068 a | 0.112±0.014 a | |
D | 0.071±0.001 a | 0.064±0.032 a | 0.047±0.020 a | 0.051±0.033 a | |
E | 0.092±0.065 a | 0.072±0.050 a | 0.090±0.101 a | 0.093±0.061 a | |
F | 0.023±0.030 a | 0.025±0.049 a | 0.003±0.101 a | 0.023±0.023 a |
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的稻米Pb含量 Pb contents in rice grains under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.012±0.022 a | 0.038±0.069 a | 0.169±0.207 a | 0.124±0.170 a |
B | 0.152±0.220 a | 0.110±0.150 a | 0.184±0.062 a | 0.013±0.008 b | |
C | 0.111±0.104 a | 0.204±0.146 a | 0.380±0.183 a | 0.004±0.007 b | |
D | 0.001±0.004 a | 0.081±0.073 a | 0.321±0.402 a | 0.015±0.020 b | |
E | 0.084±0.033 a | 0.072±0.045 a | 0.030±0.040 b | 0.001±0.009 c | |
F | 0.128±0.126 a | 0.016±0.014 b | 0.070±0.068 b | 0.174±0.157 a | |
2022 | A | 0.268±0.268 b | ND | ND | 0.804±0.001 a |
B | ND | 1.489±0.001 a | 1.341±0.246 a | 0.825±0.042 b | |
C | 0.727±0.118 a | 0.027±0.027 c | ND | 0.384±0.384 b | |
D | 0.091±0.091 b | 0.223±0.109 a | 0.011±0.016 c | 0.487±0.256 a | |
E | 0.619±0.406 a | ND | 0.439±0.285 a | 0.257±0.163 a | |
F | ND | 0.556±0.281 a | 0.001±0.024 b | 0.048±0.001 b |
表4 不同处理对稻米Pb含量的影响
Table 4 Effect of different treatments on Pb content in rice grains mg·kg-1
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的稻米Pb含量 Pb contents in rice grains under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 0.012±0.022 a | 0.038±0.069 a | 0.169±0.207 a | 0.124±0.170 a |
B | 0.152±0.220 a | 0.110±0.150 a | 0.184±0.062 a | 0.013±0.008 b | |
C | 0.111±0.104 a | 0.204±0.146 a | 0.380±0.183 a | 0.004±0.007 b | |
D | 0.001±0.004 a | 0.081±0.073 a | 0.321±0.402 a | 0.015±0.020 b | |
E | 0.084±0.033 a | 0.072±0.045 a | 0.030±0.040 b | 0.001±0.009 c | |
F | 0.128±0.126 a | 0.016±0.014 b | 0.070±0.068 b | 0.174±0.157 a | |
2022 | A | 0.268±0.268 b | ND | ND | 0.804±0.001 a |
B | ND | 1.489±0.001 a | 1.341±0.246 a | 0.825±0.042 b | |
C | 0.727±0.118 a | 0.027±0.027 c | ND | 0.384±0.384 b | |
D | 0.091±0.091 b | 0.223±0.109 a | 0.011±0.016 c | 0.487±0.256 a | |
E | 0.619±0.406 a | ND | 0.439±0.285 a | 0.257±0.163 a | |
F | ND | 0.556±0.281 a | 0.001±0.024 b | 0.048±0.001 b |
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的土壤pH值 Soil pH value under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 4.94±0.07 a | 5.03±0.22 a | 5.67±0.94 a | 5.15±0.06 a |
B | 5.05±0.36 a | 5.36±0.26 a | 5.86±0.39 a | 5.29±0.22 a | |
C | 5.06±0.06 b | 5.36±0.35 a | 5.41±0.11 a | 5.65±0.25 a | |
D | 5.01±0.04 b | 5.98±0.67 a | 5.39±0.14 ab | 5.64±0.14 a | |
E | 4.97±0.15 b | 5.42±0.52 ab | 6.08±0.63 a | 5.56±0.17 ab | |
F | 5.00±0.07 c | 5.89±0.53 bc | 6.56±1.01 ab | 6.98±0.58 a | |
2022 | A | 5.66±0.64 a | 5.55±0.05 a | 5.44±0.12 a | 5.33±0.22 a |
B | 5.69±0.21 a | 5.84±0.26 a | 5.47±0.17 a | 5.67±0.11 a | |
C | 5.68±0.12 a | 6.12±0.36 a | 5.55±0.06 b | 5.82±0.34 a | |
D | 5.60±0.13 a | 5.76±0.04 a | 5.63±0.25 a | 5.70±0.09 a | |
E | 5.70±0.18 a | 5.55±0.26 ab | 5.39±0.09 b | 5.89±0.22 a | |
F | 5.77±0.14 b | 5.60±0.22 b | 6.30±0.39 a | 6.31±0.53 a |
表5 不同处理对土壤pH值的影响
Table 5 Effect of different treatments on soil pH value
年份 Year | 钝化剂 Immobilization agent | 不同钝化剂施用量水平下的土壤pH值 Soil pH value under diiferent application rates of immobilization agents | |||
---|---|---|---|---|---|
L0 | L1 | L2 | L3 | ||
2021 | A | 4.94±0.07 a | 5.03±0.22 a | 5.67±0.94 a | 5.15±0.06 a |
B | 5.05±0.36 a | 5.36±0.26 a | 5.86±0.39 a | 5.29±0.22 a | |
C | 5.06±0.06 b | 5.36±0.35 a | 5.41±0.11 a | 5.65±0.25 a | |
D | 5.01±0.04 b | 5.98±0.67 a | 5.39±0.14 ab | 5.64±0.14 a | |
E | 4.97±0.15 b | 5.42±0.52 ab | 6.08±0.63 a | 5.56±0.17 ab | |
F | 5.00±0.07 c | 5.89±0.53 bc | 6.56±1.01 ab | 6.98±0.58 a | |
2022 | A | 5.66±0.64 a | 5.55±0.05 a | 5.44±0.12 a | 5.33±0.22 a |
B | 5.69±0.21 a | 5.84±0.26 a | 5.47±0.17 a | 5.67±0.11 a | |
C | 5.68±0.12 a | 6.12±0.36 a | 5.55±0.06 b | 5.82±0.34 a | |
D | 5.60±0.13 a | 5.76±0.04 a | 5.63±0.25 a | 5.70±0.09 a | |
E | 5.70±0.18 a | 5.55±0.26 ab | 5.39±0.09 b | 5.89±0.22 a | |
F | 5.77±0.14 b | 5.60±0.22 b | 6.30±0.39 a | 6.31±0.53 a |
[1] | 李剑睿, 徐应明, 林大松, 等. 农田重金属污染原位钝化修复研究进展[J]. 生态环境学报, 2014, 23(4): 721-728. |
LI J R, XU Y M, LIN D S, et al. In situ immobilization remediation of heavy metals in contaminated soils: a review[J]. Ecology and Environmental Sciences, 2014, 23(4): 721-728. (in Chinese with English abstract) | |
[2] | 汪涛, 高国龙, 王庆, 等. 无机有机复合材料对重金属污染土壤的修复效应[J]. 环境科技, 2018, 31(5): 29-34. |
WANG T, GAO G L, WANG Q, et al. Inorganic-organic amendments for immobilization of heavy metal contaminants in soil[J]. Environmental Science and Technology, 2018, 31(5): 29-34. (in Chinese with English abstract) | |
[3] | 王雷, 刘常升, 安成强. 镀锌层无机物与有机物复合无铬钝化研究进展[J]. 电镀与精饰, 2011, 33(3): 22-26. |
WANG L, LIU C S, AN C Q. Progress of chromium-free passivation for zinc plating[J]. Plating & Finishing, 2011, 33(3): 22-26. (in Chinese with English abstract) | |
[4] | 王荐, 吴运金, 王梦杰, 等. 凹凸棒石-稻秸复合材料的制备及其对污染土壤中镉钝化效果的研究[J]. 土壤, 2022, 54(4): 802-809. |
WANG J, WU Y J, WANG M J, et al. Preparation of attapulgite-rice straw composite and its effect on passivation of Cd in contaminated soil[J]. Soils, 2022, 54(4): 802-809. (in Chinese with English abstract) | |
[5] | 郭彬, 刘琛, 傅庆林, 等. 有机-无机型钝化剂对水稻土镉钝化效果研究[J]. 核农学报, 2017, 31(6): 1173-1178. |
GUO B, LIU C, FU Q L, et al. Study on the effect of organic-inorganic passivant on cadmium passivation in paddy soils[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(6): 1173-1178. (in Chinese with English abstract) | |
[6] | 王凯荣, 张玉烛, 胡荣桂. 不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J]. 农业环境科学学报, 2007, 26(2): 476-481. |
WANG K R, ZHANG Y Z, HU R G. Effects of different types of soil amelioration materials on reducing concentrations of Pb and Cd in brown rice in heavy metal polluted paddy soils[J]. Journal of Agro-Environment Science, 2007, 26(2): 476-481. (in Chinese with English abstract) | |
[7] | 徐隆华, 王佳盟, 韩研科, 等. 轻中度污染耕地安全利用与治理修复技术措施探讨[J]. 农业开发与装备, 2022(3): 121-123. |
XU L H, WANG J M, HAN Y K, et al. Discussion on technical measures for safe utilization, treatment and restoration of lightly and moderately polluted cultivated land[J]. Agricultural Development & Equipments, 2022(3): 121-123. (in Chinese) | |
[8] | 张振兴, 纪雄辉, 谢运河, 等. 水稻不同生育期施用生石灰对稻米镉含量的影响[J]. 农业环境科学学报, 2016, 35(10): 1867-1872. |
ZHANG Z X, JI X H, XIE Y H, et al. Effects of quicklime application at different rice growing stage on the cadmium contents in rice grain[J]. Journal of Agro-Environment Science, 2016, 35(10): 1867-1872. (in Chinese with English abstract) | |
[9] | 朱国武, 胡平, 符明金, 等. 氢氧化钙对土壤中有效镉的时效性[J]. 四川有色金属, 2020(3): 46-47. |
ZHU G W, HU P, FU M J, et al. Time effect of calcium hydroxide on available cadmium in soil[J]. Sichuan Nonferrous Metals, 2020(3): 46-47. (in Chinese with English abstract) | |
[10] | 焦常锋, 常会庆, 王启震, 等. 碳酸钙和壳聚糖联用对高pH值石灰性土壤砷污染的钝化[J]. 农业工程学报, 2020, 36(11): 234-240. |
JIAO C F, CHANG H Q, WANG Q Z, et al. Passivation effects of calcium carbonate and chitosan on arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 234-240. (in Chinese with English abstract) | |
[11] | 王孝堂. 土壤酸度对重金属形态分配的影响[J]. 土壤学报, 1991, 28(1): 103-107. |
WANG X T. Effect of soil acidity on distribution and chemical forms of heavy metals in soil[J]. Acta Pedologica Sinica, 1991, 28(1): 103-107. (in Chinese) | |
[12] | 蔡美芳, 李开明, 谢丹平, 等. 我国耕地土壤重金属污染现状与防治对策研究[J]. 环境科学与技术, 2014, 37(S2): 223-230. |
CAI M F, LI K M, XIE D P, et al. The status and protection strategy of farmland soils polluted by heavy metals[J]. Environmental Science & Technology, 2014, 37(S2): 223-230. (in Chinese with English abstract) | |
[13] | 邵学新, 吴明, 蒋科毅. 土壤重金属污染来源及其解析研究进展[J]. 广东微量元素科学, 2007, 14(4): 1-6. |
SHAO X X, WU M, JIANG K Y. Research progress in sources identification of soil heavy metal pollution[J]. Guangdong Trace Elements Science, 2007, 14(4): 1-6. (in Chinese with English abstract) | |
[14] | 贾然然. 土壤调理剂通用标准有望今年出台[J]. 中国农资, 2016(17): 6. |
JIA R R. The general standard of soil conditioner is expected to be introduced this year[J]. China Agri-Production News, 2016(17): 6. (in Chinese) | |
[15] | 张传琦. 土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究[D]. 合肥: 安徽农业大学, 2011. |
ZHANG C Q. Heavy metals in soil arsenic, cadmium, lead, chromium, mercury extraction agents available[D]. Hefei: Anhui Agricultural University, 2011. (in Chinese with English abstract) | |
[16] | 韩春梅, 王林山, 巩宗强, 等. 土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005, 24(12): 1499-1502. |
HAN C M, WANG L S, GONG Z Q, et al. Chemical forms of soil heavy metals and their environmental significance[J]. Chinese Journal of Ecology, 2005, 24(12): 1499-1502. (in Chinese with English abstract) | |
[17] | 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692-703. |
ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 2014, 35(2): 692-703. (in Chinese with English abstract) |
[1] | 董爱琴, 陈院华, 杨涛, 徐昌旭, 程丽群, 谢杰. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 2024, 36(3): 600-612. |
[2] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
[3] | 郑涵, 丁文金, 何招亮, 侯凡, 戴彬凤, 钟列权, 张海鹏, 杨勇. 穗分化期高温对水稻生长发育的影响及缓解措施研究进展[J]. 浙江农业学报, 2024, 36(2): 470-480. |
[4] | 罗英杰, 崔维军, 王忠华, 吴月燕, 林宏友, 周洁, 严成其, 王栩鸣. 水稻泛素连接酶D3与抗病相关蛋白VOZ2的互作分析[J]. 浙江农业学报, 2024, 36(1): 9-17. |
[5] | 张思雨, 林朝阳, 叶雨轩, 沈志成. 转cry1Ab-vip3Af2和cp4-epsps基因的抗虫耐除草剂水稻的研究[J]. 浙江农业学报, 2023, 35(8): 1823-1833. |
[6] | 杨坤, 侯冠军, 赵秀侠, 方婷, 王利军. 水生动植物协同净化系统对鳜鱼养殖池塘水质与经济效益的影响[J]. 浙江农业学报, 2023, 35(7): 1709-1719. |
[7] | 王鑫彤, 万祖粱, 杨振中, 王国骄. 秸秆秋季湿耙还田对水稻不同生育时期叶片-土壤生态化学计量特征的影响[J]. 浙江农业学报, 2023, 35(6): 1243-1252. |
[8] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[9] | 张超正, 张旭鹏, 陈丹玲. 劳动力老龄化、耕地细碎化必然导致水稻生产成本增加吗?——基于鄂东南地区的微观调查[J]. 浙江农业学报, 2023, 35(5): 1211-1222. |
[10] | 夏小东, 张晓波, 施勇烽, 许如根. 水稻致死突变体基因克隆与分子机制研究进展[J]. 浙江农业学报, 2023, 35(5): 1223-1234. |
[11] | 蒋莹莹, 张华, 雷志伟, 徐恒, 张恒, 朱英. 茉莉酸信号关键转录因子OsMYC2影响水稻愈伤诱导和分化的功能初探[J]. 浙江农业学报, 2023, 35(5): 973-982. |
[12] | 张斌, 冯晓庆, 郑芊, 陈稳, 滕杰. 抑制OsPUT5基因表达降低水稻低温抗性[J]. 浙江农业学报, 2023, 35(4): 780-788. |
[13] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
[14] | 伍少福, 倪元君, 詹丽钏, 彭璐, 吴英杰. 不同土壤调理剂对镉汞复合污染稻田安全生产和稻米铁锌含量的影响[J]. 浙江农业学报, 2023, 35(2): 417-424. |
[15] | 樊闯, 赵子皓, 张雪松, 杨沈斌. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||