浙江农业学报 ›› 2025, Vol. 37 ›› Issue (2): 438-446.DOI: 10.3969/j.issn.1004-1524.20240132
李建强1(), 魏倩倩2, 刘晓霞3, 张均华2, 朱春权2,*(
)
收稿日期:
2024-02-19
出版日期:
2025-02-25
发布日期:
2025-03-20
作者简介:
朱春权,E-mail:zhuchunquan@caas.cn通讯作者:
朱春权
基金资助:
LI Jianqiang1(), WEI Qianqian2, LIU Xiaoxia3, ZHANG Junhua2, ZHU Chunquan2,*(
)
Received:
2024-02-19
Online:
2025-02-25
Published:
2025-03-20
Contact:
ZHU Chunquan
摘要:
为探究适合杭嘉湖地区的新型肥料和适宜肥料用量,本研究选取3种新型肥料,以平湖当地常规施肥为对照,通过田间试验,筛选适合当地水稻优质高产的新型肥料,并进行减氮增效研究。结果表明,与常规施肥相比,施用茂施缓释肥能显著(P<0.05)提高水稻的干重和氮肥利用率,并通过提高水稻穗粒数和结实率进而提高水稻产量。同时,茂施缓释肥显著增加了土壤中有机质和碱解氮含量,提高了脲酶和氨单加氧酶的活性,以及对应功能基因的丰度,增加了土壤微生物生物量碳氮含量。与常规施肥相比,茂施缓释肥减氮10%显著提高了水稻氮素利用率且不影响水稻产量和稻米品质。综上所述,施加茂施缓释肥可在常规氮肥用量的基础上减氮10%,从而达到水稻减氮增效的目的。
中图分类号:
李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446.
LI Jianqiang, WEI Qianqian, LIU Xiaoxia, ZHANG Junhua, ZHU Chunquan. Effects of optimizing fertilization methods on rice yield and soil nutrient balance[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 438-446.
基因名称 Gene name | 正向引物序列(5'→3') Forward primer sequence(5'→3') | 反向引物序列(5'→3') Reverse primer sequence(5'→3') | 参考文献 Reference |
---|---|---|---|
ureC | AAGSTSCACGAGGACTGGGG | AGGTGGTGGCASACCATSAGCAT | [ |
Arch-amoA | TAATGGTCTGGCTTAGACG | CGGCCATCCATCTGTATGT | [ |
Bact-amoA | GGGGTTTCTACTGGTGGT | CCCCTCKGSAAAGCCTTCTTC | [ |
表1 引物信息
Table 1 The information of primer
基因名称 Gene name | 正向引物序列(5'→3') Forward primer sequence(5'→3') | 反向引物序列(5'→3') Reverse primer sequence(5'→3') | 参考文献 Reference |
---|---|---|---|
ureC | AAGSTSCACGAGGACTGGGG | AGGTGGTGGCASACCATSAGCAT | [ |
Arch-amoA | TAATGGTCTGGCTTAGACG | CGGCCATCCATCTGTATGT | [ |
Bact-amoA | GGGGTTTCTACTGGTGGT | CCCCTCKGSAAAGCCTTCTTC | [ |
图1 成熟期水稻地上部干重 CK,不施加氮肥;CF,常规三元复合肥;MSF,茂施缓释肥;JSF,金正大缓释肥;SSF,施可丰稳定性复合肥。干重以单株水稻计,柱上无相同小写字母的表示差异显著(P<0.05)。下同。
Fig.1 The dry weight of rice aboveground at mature stage CK, Without nitrogen fertilizer; CF, conventional fertilizer; MSF, Maoshi slow-release fertilizer; JSF, Jinzhengda slow-release fertilizer; SSF, Shikefeng stable compound fertilizer. Dry weight were measured based on single plant of rice, the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
处理 Treatment | 穗数 Spike number/(104 hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-gain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
CK | 206.10±4.80 c | 190.78±1.59 c | 96.47±0.37 a | 23.24±0.02 b | 9 094.80±215.55 c |
CF | 244.35±14.70 ab | 184.69±1.15 d | 85.92±1.26 c | 23.30±0.05 a | 9 455.40±195.75 b |
MSF | 244.50±7.80 ab | 194.41±2.19 b | 90.75±1.33 b | 23.32±0.03 b | 9 810.45±207.45 a |
JSF | 239.25±7.65 b | 181.34±2.73 e | 89.18±0.52 b | 24.19±0.02 a | 9 606.15±135.00 b |
SSF | 245.55±4.20 a | 208.31±4.93 a | 90.28±1.45 b | 23.22±0.04 b | 9 724.80±297.60 b |
表2 水稻产量与产量构成因子
Table 2 Yield and yield components of rice
处理 Treatment | 穗数 Spike number/(104 hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-gain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
CK | 206.10±4.80 c | 190.78±1.59 c | 96.47±0.37 a | 23.24±0.02 b | 9 094.80±215.55 c |
CF | 244.35±14.70 ab | 184.69±1.15 d | 85.92±1.26 c | 23.30±0.05 a | 9 455.40±195.75 b |
MSF | 244.50±7.80 ab | 194.41±2.19 b | 90.75±1.33 b | 23.32±0.03 b | 9 810.45±207.45 a |
JSF | 239.25±7.65 b | 181.34±2.73 e | 89.18±0.52 b | 24.19±0.02 a | 9 606.15±135.00 b |
SSF | 245.55±4.20 a | 208.31±4.93 a | 90.28±1.45 b | 23.22±0.04 b | 9 724.80±297.60 b |
处理 Treatment | 有机质含量 Organic matter content/% | 总氮含量 Total nitrogen content/(g·kg-1) | 碱解氮含量 Alkali hydrolyzed content N/(mg·kg-1) | 有效磷含量 Available P content/(mg·kg-1) | 速效钾含量 Available K content/(mg·kg-1) |
---|---|---|---|---|---|
CK | 2.57±0.27 b | 1.32±0.07 b | 146.35±5.31 c | 62.09±2.96 a | 58.36±2.86 b |
CF | 2.54±0.13 b | 1.33±0.05 ab | 155.26±7.69 b | 54.06±5.67 b | 63.96±6.39 ab |
MSF | 3.08±0.21 a | 1.42±0.08 a | 167.28±8.72 a | 55.92±4.83 b | 68.52±4.13 ab |
JSF | 2.66±0.32 b | 1.39±0.09 ab | 151.82±12.73 b | 68.31±8.04 a | 72.03±9.22 a |
SSF | 2.48±0.22 b | 1.35±0.10 ab | 159.26±15.46 b | 64.49±3.26 a | 66.31±1.99 ab |
表3 土壤养分含量
Table 3 The nutrient content in the soil
处理 Treatment | 有机质含量 Organic matter content/% | 总氮含量 Total nitrogen content/(g·kg-1) | 碱解氮含量 Alkali hydrolyzed content N/(mg·kg-1) | 有效磷含量 Available P content/(mg·kg-1) | 速效钾含量 Available K content/(mg·kg-1) |
---|---|---|---|---|---|
CK | 2.57±0.27 b | 1.32±0.07 b | 146.35±5.31 c | 62.09±2.96 a | 58.36±2.86 b |
CF | 2.54±0.13 b | 1.33±0.05 ab | 155.26±7.69 b | 54.06±5.67 b | 63.96±6.39 ab |
MSF | 3.08±0.21 a | 1.42±0.08 a | 167.28±8.72 a | 55.92±4.83 b | 68.52±4.13 ab |
JSF | 2.66±0.32 b | 1.39±0.09 ab | 151.82±12.73 b | 68.31±8.04 a | 72.03±9.22 a |
SSF | 2.48±0.22 b | 1.35±0.10 ab | 159.26±15.46 b | 64.49±3.26 a | 66.31±1.99 ab |
处理 Treatment | 干重Dry weight | ||
---|---|---|---|
叶Leaf | 茎Stem | 穗Spike | |
CK | 6.03±0.53 d | 17.55±1.39 b | 44.31±1.12 c |
T1 | 7.43±0.52 a | 17.94±0.95 ab | 54.61±1.85 a |
T2 | 6.64±0.33 b | 17.38±0.69 b | 53.23±0.39 a |
T3 | 6.24±0.10 c | 18.45±0.46 a | 47.69±0.62 b |
表4 成熟期每株水稻地上部干重
Table 4 Aboveground dry weight per plant of rice at mature stage g
处理 Treatment | 干重Dry weight | ||
---|---|---|---|
叶Leaf | 茎Stem | 穗Spike | |
CK | 6.03±0.53 d | 17.55±1.39 b | 44.31±1.12 c |
T1 | 7.43±0.52 a | 17.94±0.95 ab | 54.61±1.85 a |
T2 | 6.64±0.33 b | 17.38±0.69 b | 53.23±0.39 a |
T3 | 6.24±0.10 c | 18.45±0.46 a | 47.69±0.62 b |
处理 Treatment | 氮含量Nitrogen content/(g·kg-1) | 氮肥利用率 Nitrogen use efficiency/% | ||
---|---|---|---|---|
叶Leaf | 茎Stem | 穗Spike | ||
CK | 7.86±0.38 c | 4.75±0.13 b | 10.04±0.50 b | — |
T1 | 9.65±0.48 a | 8.45±0.71 a | 13.70±0.47 a | 46.51±1.47 b |
T2 | 9.77±0.33 a | 8.67±0.35 a | 14.02±0.15 a | 50.51±1.21 a |
T3 | 9.05±0.10 b | 8.42±0.36 a | 14.37±0.52 a | 47.37±1.80 b |
表5 水稻地上部氮含量与氮肥利用率
Table 5 The aboveground nitrogen content and its nitrogen use efficiency in rice
处理 Treatment | 氮含量Nitrogen content/(g·kg-1) | 氮肥利用率 Nitrogen use efficiency/% | ||
---|---|---|---|---|
叶Leaf | 茎Stem | 穗Spike | ||
CK | 7.86±0.38 c | 4.75±0.13 b | 10.04±0.50 b | — |
T1 | 9.65±0.48 a | 8.45±0.71 a | 13.70±0.47 a | 46.51±1.47 b |
T2 | 9.77±0.33 a | 8.67±0.35 a | 14.02±0.15 a | 50.51±1.21 a |
T3 | 9.05±0.10 b | 8.42±0.36 a | 14.37±0.52 a | 47.37±1.80 b |
处理 Treatment | 穗数 Spike number/ (104·hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
CK | 207.15±4.65 b | 190.23±1.66 c | 86.62±0.26 a | 23.24±0.02 b | 9 059.25±240.75 b |
T1 | 265.20±12.45 a | 213.63±2.54 a | 84.83±1.04 a | 23.22±0.07 b | 9 397.95±377.55 a |
T2 | 259.65±15.30 a | 210.66±3.18 a | 81.27±1.55 b | 23.21±0.04 b | 9 268.65±297.60 a |
T3 | 211.35±6.75 b | 195.75±3.11 b | 85.85±0.98 a | 23.51±0.07 a | 8 448.45±289.35 c |
表6 水稻产量及其产量构成因子
Table 6 The yield and yield component factors of rice
处理 Treatment | 穗数 Spike number/ (104·hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|
CK | 207.15±4.65 b | 190.23±1.66 c | 86.62±0.26 a | 23.24±0.02 b | 9 059.25±240.75 b |
T1 | 265.20±12.45 a | 213.63±2.54 a | 84.83±1.04 a | 23.22±0.07 b | 9 397.95±377.55 a |
T2 | 259.65±15.30 a | 210.66±3.18 a | 81.27±1.55 b | 23.21±0.04 b | 9 268.65±297.60 a |
T3 | 211.35±6.75 b | 195.75±3.11 b | 85.85±0.98 a | 23.51±0.07 a | 8 448.45±289.35 c |
处理 Treatment | 糙米率 Husked rice rate | 整精米率 Head rice yield | 直链淀粉含量 Amylose content | 精米率 Milled rice rate | 蛋白质含量 Protein content |
---|---|---|---|---|---|
CK | 83.1±2.51 a | 63.2±2.15 b | 17.2±3.21 a | 74.4±1.36 a | 6.67±0.35 b |
T1 | 83.1±3.25 a | 69.8±1.35 a | 16.8±1.36 a | 74.3±2.14 a | 8.04±0.48 a |
T2 | 82.2±2.66 a | 71.4±1.11 a | 17.1±2.14 a | 74.2±2.25 a | 7.78±0.55 a |
T3 | 83.0±1.85 a | 70.5±1.26 a | 17.2±2.16 a | 74.1±1.34 a | 8.04±0.39 a |
表7 稻米品质
Table 7 Rice quality %
处理 Treatment | 糙米率 Husked rice rate | 整精米率 Head rice yield | 直链淀粉含量 Amylose content | 精米率 Milled rice rate | 蛋白质含量 Protein content |
---|---|---|---|---|---|
CK | 83.1±2.51 a | 63.2±2.15 b | 17.2±3.21 a | 74.4±1.36 a | 6.67±0.35 b |
T1 | 83.1±3.25 a | 69.8±1.35 a | 16.8±1.36 a | 74.3±2.14 a | 8.04±0.48 a |
T2 | 82.2±2.66 a | 71.4±1.11 a | 17.1±2.14 a | 74.2±2.25 a | 7.78±0.55 a |
T3 | 83.0±1.85 a | 70.5±1.26 a | 17.2±2.16 a | 74.1±1.34 a | 8.04±0.39 a |
[1] | 文平兰, 陈海波, 童星. 不同新型肥料在句容市小麦生产上的应用效果初探[J]. 上海农业科技, 2023(2): 141-143. |
WEN P L, CHEN H B, TONG X. Preliminary study on the application effect of different new fertilizers in wheat production in Jurong city[J]. Shanghai Agricultural Science and Technology, 2023(2): 141-143. (in Chinese) | |
[2] | 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201-221. |
DING W C, HE P, ZHOU W. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201-221. (in Chinese with English abstract) | |
[3] | 王文青, 何玮恒, 陈培峰, 等. 新型缓释肥料对水稻产量及氮素吸收利用的影响[J]. 江西农业学报, 2023, 35(1): 84-87. |
WANG W Q, HE W H, CHEN P F, et al. Effect of new slow-release fertilizer on rice yield and nitrogen uptake and utilization[J]. Acta Agriculturae Jiangxi, 2023, 35(1): 84-87. (in Chinese with English abstract) | |
[4] | 刘永红, 郑文涛, 张晋天, 等. 缓/控释肥研究进展及其应用[J]. 华中农业大学学报, 2023, 42(4): 167-176. |
LIU Y H, ZHENG W T, ZHANG J T, et al. Progress and its application of slow/controlled release fertilizers in agricultural production[J]. Journal of Huazhong Agricultural University, 2023, 42(4): 167-176. (in Chinese with English abstract) | |
[5] | 卢忠诚, 傅丽青, 黄其颖, 等. 缓释肥对水稻甬优1540产量及肥料利用率的影响[J]. 农技服务, 2022, 39(11): 1-4. |
LU Z C, FU L Q, HUANG Q Y, et al. Effect of slow-release fertilizer on yield and fertilizer utilization rate of rice Yongyou 1540[J]. Agricultural Technology Service, 2022, 39(11): 1-4. (in Chinese) | |
[6] | 李虹儒, 许景钢, 徐明岗, 等. 我国典型农田长期施肥小麦氮肥回收率的变化特征[J]. 植物营养与肥料学报, 2009, 15(2): 336-343. |
LI H R, XU J G, XU M G, et al. Change characteristic of nitrogen recovery efficiency of wheat in typical farmland of China under long-term fertilization[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 336-343. (in Chinese with English abstract) | |
[7] | WANG C, LV J, XIE J M, et al. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses[J]. Scientific Reports, 2021, 11(1): 8070. |
[8] | 胡香玉, 钟旭华, 彭碧琳, 等. 减氮条件下高产水稻品种的产量形成和氮素利用特征[J]. 核农学报, 2019, 33(12): 2460-2471. |
HU X Y, ZHONG X H, PENG B L, et al. Yield formation and characteristics of nitrogen utilization in high-yielding rice varieties under reduced nitrogen input[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2460-2471. (in Chinese with English abstract) | |
[9] | 杜加银, 茹美, 倪吾钟. 减氮控磷稳钾施肥对水稻产量及养分积累的影响[J]. 植物营养与肥料学报, 2013, 19(3): 523-533. |
DU J Y, RU M, NI W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 523-533. (in Chinese with English abstract) | |
[10] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[11] | 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. |
[12] | 师恩慧. 蚯蚓在秸秆堆制过程中对氮代谢的影响[D]. 长春: 吉林大学, 2022. |
SHI E H. Effect of earthworm on nitrogen metabolism in straw composting process[D]. Changchun: Jilin University, 2022. (in Chinese with English abstract) | |
[13] | 李晨华, 贾仲君, 唐立松, 等. 不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响[J]. 土壤学报, 2012, 49(3): 567-574. |
LI C H, JIA Z J, TANG L S, et al. Effect of model of fertilization on microbial abundance and enzyme activity in oasis farmland soil[J]. Acta Pedologica Sinica, 2012, 49(3): 567-574. (in Chinese with English abstract) | |
[14] | JIANG D Q, JIANG N, JIANG H, et al. Urease inhibitors increased soil ureC gene abundance and intracellular urease activity when extracellular urease activity was inhibited[J]. Geoderma, 2023, 430: 116295. |
[15] | 全国粮油标准化技术委员会. 优质稻谷:GB/T 17891—2007[S/OL]. [2024-02-18]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=56C97D505F4880DE76E2D49C7DA0C872. |
[16] | 赵秉强, 袁亮. 化肥产品创新驱动产业转型升级[J]. 植物营养与肥料学报, 2022, 28(4): 726-731. |
ZHAO B Q, YUAN L. Innovation in chemical fertilizer products driving industrial transformation and evolution[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 726-731. (in Chinese with English abstract) | |
[17] | 胡启良, 杨滨娟, 刘宁, 等. 绿肥混播下不同施氮量对水稻产量、土壤碳氮和微生物群落的影响[J]. 华中农业大学学报, 2022, 41(6): 16-26. |
HU Q L, YANG B J, LIU N, et al. Effects of application rates of nitrogen on rice yield, carbon and nitrogen, microbial community in soil under mixed sowing of green manure[J]. Journal of Huazhong Agricultural University, 2022, 41(6): 16-26. (in Chinese with English abstract) | |
[18] | CONACHER J, CONACHER A. Organic farming and the environment, with particular reference to Australia: a review[J]. Biological Agriculture & Horticulture, 1998, 16: 145-171. |
[19] | 高菊生, 黄晶, 董春华, 等. 长期有机无机肥配施对水稻产量及土壤有效养分影响[J]. 土壤学报, 2014, 51(2): 314-324. |
GAO J S, HUANG J, DONG C H, et al. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients[J]. Acta Pedologica Sinica, 2014, 51(2): 314-324. (in Chinese with English abstract) | |
[20] | 张水清, 林杉, 郭斗斗, 等. 长期施肥下潮土全氮、碱解氮含量与氮素投入水平关系[J]. 中国土壤与肥料, 2017(6): 23-29. |
ZHANG S Q, LIN S, GUO D D, et al. Relationship between total nitrogen, alkali hydrolyzed nitrogen content and nitrogen input levels in fluvo-aquic soil under long term fertilization[J]. Soil and Fertilizer Sciences in China, 2017(6): 23-29. (in Chinese with English abstract) | |
[21] | 熊淑萍, 吴延鹏, 王小纯, 等. 减氮处理对不同小麦品种干物质积累及氮素转运特性的影响[J]. 麦类作物学报, 2015, 35(8): 1134-1140. |
XIONG S P, WU Y P, WANG X C, et al. Effect of lower nitrogen application on dry matter accumulation and nitrogen translocation of different wheat varieties[J]. Journal of Triticeae Crops, 2015, 35(8): 1134-1140. (in Chinese with English abstract) |
[1] | 万绍媛, 刘现波, 才硕, 时红, 程婕. 灌溉方式和种植方式对双季稻产量和稻米品质的影响[J]. 浙江农业学报, 2025, 37(2): 257-268. |
[2] | 兰雪成, 赵凤亮, 张光旭, 李杨, 郭晓红. 纳米氧化锌和纳米氧化硅对水稻种子萌发的影响[J]. 浙江农业学报, 2025, 37(2): 269-277. |
[3] | 李灿, 杨婷, 孙乙铭, 陈洪梁, 崔琦, 沈晓霞. 华东覆盆子优势种质资源的筛选与评价[J]. 浙江农业学报, 2025, 37(2): 349-364. |
[4] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
[5] | 李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158. |
[6] | 吴浩峰, 林朝阳, 沈志成. 耐草甘膦和啶嘧磺隆的转基因水稻研究[J]. 浙江农业学报, 2024, 36(9): 1957-1968. |
[7] | 陈宇眺, 闫川, 洪晓富, 宋佳谕. 分蘖期淹水对常规粳稻生长特性、产量形成与钾素吸收的影响[J]. 浙江农业学报, 2024, 36(9): 1990-1999. |
[8] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[9] | 展梦琪, 苏傲雪, 侯倩, 张皓宇, 姜欣蕊, 徐艳. 水稻对林丹的吸收累积与代谢组学研究[J]. 浙江农业学报, 2024, 36(9): 2110-2121. |
[10] | 邵亚旭, 刘涛, 王事成, 晏磊. 秸秆-有机肥育秧基质的配比筛选与成型工艺[J]. 浙江农业学报, 2024, 36(8): 1856-1866. |
[11] | 潘志军, 吴小文, 吴晨阳, 程驭, 陈龙, 张晓红, 张进山, 周兵, 江波, 张文静, 车钊, 宋贺. 皖中不同类型再生稻品种产量与温光资源利用特征分析[J]. 浙江农业学报, 2024, 36(7): 1492-1501. |
[12] | 李慧, 谭晓琴, 唐茜, 杨洋, 陈玮. 疏花对紫嫣茶树产量及品质成分的影响[J]. 浙江农业学报, 2024, 36(7): 1602-1615. |
[13] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
[14] | 许立婷, 齐广平, 康燕霞, 银敏华, 马彦麟, 贾琼, 汪精海, 姜渊博. 调亏灌溉对苜蓿产量品质效应的荟萃分析[J]. 浙江农业学报, 2024, 36(6): 1256-1269. |
[15] | 赵黎明, 王亚新, 蒋文鑫, 段绍彪, 沈雪峰, 郑殿峰, 冯乃杰. 植物生长调节剂对优质粳稻产量、品质与光合特性的影响[J]. 浙江农业学报, 2024, 36(5): 1003-1014. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||