浙江农业学报 ›› 2025, Vol. 37 ›› Issue (2): 438-446.DOI: 10.3969/j.issn.1004-1524.20240132
李建强1(
), 魏倩倩2, 刘晓霞3, 张均华2, 朱春权2,*(
)
收稿日期:2024-02-19
出版日期:2025-02-25
发布日期:2025-03-20
作者简介:朱春权,E-mail:zhuchunquan@caas.cn通讯作者:
朱春权
基金资助:
LI Jianqiang1(
), WEI Qianqian2, LIU Xiaoxia3, ZHANG Junhua2, ZHU Chunquan2,*(
)
Received:2024-02-19
Online:2025-02-25
Published:2025-03-20
Contact:
ZHU Chunquan
摘要:
为探究适合杭嘉湖地区的新型肥料和适宜肥料用量,本研究选取3种新型肥料,以平湖当地常规施肥为对照,通过田间试验,筛选适合当地水稻优质高产的新型肥料,并进行减氮增效研究。结果表明,与常规施肥相比,施用茂施缓释肥能显著(P<0.05)提高水稻的干重和氮肥利用率,并通过提高水稻穗粒数和结实率进而提高水稻产量。同时,茂施缓释肥显著增加了土壤中有机质和碱解氮含量,提高了脲酶和氨单加氧酶的活性,以及对应功能基因的丰度,增加了土壤微生物生物量碳氮含量。与常规施肥相比,茂施缓释肥减氮10%显著提高了水稻氮素利用率且不影响水稻产量和稻米品质。综上所述,施加茂施缓释肥可在常规氮肥用量的基础上减氮10%,从而达到水稻减氮增效的目的。
中图分类号:
李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446.
LI Jianqiang, WEI Qianqian, LIU Xiaoxia, ZHANG Junhua, ZHU Chunquan. Effects of optimizing fertilization methods on rice yield and soil nutrient balance[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 438-446.
| 基因名称 Gene name | 正向引物序列(5'→3') Forward primer sequence(5'→3') | 反向引物序列(5'→3') Reverse primer sequence(5'→3') | 参考文献 Reference |
|---|---|---|---|
| ureC | AAGSTSCACGAGGACTGGGG | AGGTGGTGGCASACCATSAGCAT | [ |
| Arch-amoA | TAATGGTCTGGCTTAGACG | CGGCCATCCATCTGTATGT | [ |
| Bact-amoA | GGGGTTTCTACTGGTGGT | CCCCTCKGSAAAGCCTTCTTC | [ |
表1 引物信息
Table 1 The information of primer
| 基因名称 Gene name | 正向引物序列(5'→3') Forward primer sequence(5'→3') | 反向引物序列(5'→3') Reverse primer sequence(5'→3') | 参考文献 Reference |
|---|---|---|---|
| ureC | AAGSTSCACGAGGACTGGGG | AGGTGGTGGCASACCATSAGCAT | [ |
| Arch-amoA | TAATGGTCTGGCTTAGACG | CGGCCATCCATCTGTATGT | [ |
| Bact-amoA | GGGGTTTCTACTGGTGGT | CCCCTCKGSAAAGCCTTCTTC | [ |
图1 成熟期水稻地上部干重 CK,不施加氮肥;CF,常规三元复合肥;MSF,茂施缓释肥;JSF,金正大缓释肥;SSF,施可丰稳定性复合肥。干重以单株水稻计,柱上无相同小写字母的表示差异显著(P<0.05)。下同。
Fig.1 The dry weight of rice aboveground at mature stage CK, Without nitrogen fertilizer; CF, conventional fertilizer; MSF, Maoshi slow-release fertilizer; JSF, Jinzhengda slow-release fertilizer; SSF, Shikefeng stable compound fertilizer. Dry weight were measured based on single plant of rice, the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
| 处理 Treatment | 穗数 Spike number/(104 hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-gain weight/g | 产量 Yield/(kg·hm-2) |
|---|---|---|---|---|---|
| CK | 206.10±4.80 c | 190.78±1.59 c | 96.47±0.37 a | 23.24±0.02 b | 9 094.80±215.55 c |
| CF | 244.35±14.70 ab | 184.69±1.15 d | 85.92±1.26 c | 23.30±0.05 a | 9 455.40±195.75 b |
| MSF | 244.50±7.80 ab | 194.41±2.19 b | 90.75±1.33 b | 23.32±0.03 b | 9 810.45±207.45 a |
| JSF | 239.25±7.65 b | 181.34±2.73 e | 89.18±0.52 b | 24.19±0.02 a | 9 606.15±135.00 b |
| SSF | 245.55±4.20 a | 208.31±4.93 a | 90.28±1.45 b | 23.22±0.04 b | 9 724.80±297.60 b |
表2 水稻产量与产量构成因子
Table 2 Yield and yield components of rice
| 处理 Treatment | 穗数 Spike number/(104 hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-gain weight/g | 产量 Yield/(kg·hm-2) |
|---|---|---|---|---|---|
| CK | 206.10±4.80 c | 190.78±1.59 c | 96.47±0.37 a | 23.24±0.02 b | 9 094.80±215.55 c |
| CF | 244.35±14.70 ab | 184.69±1.15 d | 85.92±1.26 c | 23.30±0.05 a | 9 455.40±195.75 b |
| MSF | 244.50±7.80 ab | 194.41±2.19 b | 90.75±1.33 b | 23.32±0.03 b | 9 810.45±207.45 a |
| JSF | 239.25±7.65 b | 181.34±2.73 e | 89.18±0.52 b | 24.19±0.02 a | 9 606.15±135.00 b |
| SSF | 245.55±4.20 a | 208.31±4.93 a | 90.28±1.45 b | 23.22±0.04 b | 9 724.80±297.60 b |
| 处理 Treatment | 有机质含量 Organic matter content/% | 总氮含量 Total nitrogen content/(g·kg-1) | 碱解氮含量 Alkali hydrolyzed content N/(mg·kg-1) | 有效磷含量 Available P content/(mg·kg-1) | 速效钾含量 Available K content/(mg·kg-1) |
|---|---|---|---|---|---|
| CK | 2.57±0.27 b | 1.32±0.07 b | 146.35±5.31 c | 62.09±2.96 a | 58.36±2.86 b |
| CF | 2.54±0.13 b | 1.33±0.05 ab | 155.26±7.69 b | 54.06±5.67 b | 63.96±6.39 ab |
| MSF | 3.08±0.21 a | 1.42±0.08 a | 167.28±8.72 a | 55.92±4.83 b | 68.52±4.13 ab |
| JSF | 2.66±0.32 b | 1.39±0.09 ab | 151.82±12.73 b | 68.31±8.04 a | 72.03±9.22 a |
| SSF | 2.48±0.22 b | 1.35±0.10 ab | 159.26±15.46 b | 64.49±3.26 a | 66.31±1.99 ab |
表3 土壤养分含量
Table 3 The nutrient content in the soil
| 处理 Treatment | 有机质含量 Organic matter content/% | 总氮含量 Total nitrogen content/(g·kg-1) | 碱解氮含量 Alkali hydrolyzed content N/(mg·kg-1) | 有效磷含量 Available P content/(mg·kg-1) | 速效钾含量 Available K content/(mg·kg-1) |
|---|---|---|---|---|---|
| CK | 2.57±0.27 b | 1.32±0.07 b | 146.35±5.31 c | 62.09±2.96 a | 58.36±2.86 b |
| CF | 2.54±0.13 b | 1.33±0.05 ab | 155.26±7.69 b | 54.06±5.67 b | 63.96±6.39 ab |
| MSF | 3.08±0.21 a | 1.42±0.08 a | 167.28±8.72 a | 55.92±4.83 b | 68.52±4.13 ab |
| JSF | 2.66±0.32 b | 1.39±0.09 ab | 151.82±12.73 b | 68.31±8.04 a | 72.03±9.22 a |
| SSF | 2.48±0.22 b | 1.35±0.10 ab | 159.26±15.46 b | 64.49±3.26 a | 66.31±1.99 ab |
| 处理 Treatment | 干重Dry weight | ||
|---|---|---|---|
| 叶Leaf | 茎Stem | 穗Spike | |
| CK | 6.03±0.53 d | 17.55±1.39 b | 44.31±1.12 c |
| T1 | 7.43±0.52 a | 17.94±0.95 ab | 54.61±1.85 a |
| T2 | 6.64±0.33 b | 17.38±0.69 b | 53.23±0.39 a |
| T3 | 6.24±0.10 c | 18.45±0.46 a | 47.69±0.62 b |
表4 成熟期每株水稻地上部干重
Table 4 Aboveground dry weight per plant of rice at mature stage g
| 处理 Treatment | 干重Dry weight | ||
|---|---|---|---|
| 叶Leaf | 茎Stem | 穗Spike | |
| CK | 6.03±0.53 d | 17.55±1.39 b | 44.31±1.12 c |
| T1 | 7.43±0.52 a | 17.94±0.95 ab | 54.61±1.85 a |
| T2 | 6.64±0.33 b | 17.38±0.69 b | 53.23±0.39 a |
| T3 | 6.24±0.10 c | 18.45±0.46 a | 47.69±0.62 b |
| 处理 Treatment | 氮含量Nitrogen content/(g·kg-1) | 氮肥利用率 Nitrogen use efficiency/% | ||
|---|---|---|---|---|
| 叶Leaf | 茎Stem | 穗Spike | ||
| CK | 7.86±0.38 c | 4.75±0.13 b | 10.04±0.50 b | — |
| T1 | 9.65±0.48 a | 8.45±0.71 a | 13.70±0.47 a | 46.51±1.47 b |
| T2 | 9.77±0.33 a | 8.67±0.35 a | 14.02±0.15 a | 50.51±1.21 a |
| T3 | 9.05±0.10 b | 8.42±0.36 a | 14.37±0.52 a | 47.37±1.80 b |
表5 水稻地上部氮含量与氮肥利用率
Table 5 The aboveground nitrogen content and its nitrogen use efficiency in rice
| 处理 Treatment | 氮含量Nitrogen content/(g·kg-1) | 氮肥利用率 Nitrogen use efficiency/% | ||
|---|---|---|---|---|
| 叶Leaf | 茎Stem | 穗Spike | ||
| CK | 7.86±0.38 c | 4.75±0.13 b | 10.04±0.50 b | — |
| T1 | 9.65±0.48 a | 8.45±0.71 a | 13.70±0.47 a | 46.51±1.47 b |
| T2 | 9.77±0.33 a | 8.67±0.35 a | 14.02±0.15 a | 50.51±1.21 a |
| T3 | 9.05±0.10 b | 8.42±0.36 a | 14.37±0.52 a | 47.37±1.80 b |
| 处理 Treatment | 穗数 Spike number/ (104·hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
|---|---|---|---|---|---|
| CK | 207.15±4.65 b | 190.23±1.66 c | 86.62±0.26 a | 23.24±0.02 b | 9 059.25±240.75 b |
| T1 | 265.20±12.45 a | 213.63±2.54 a | 84.83±1.04 a | 23.22±0.07 b | 9 397.95±377.55 a |
| T2 | 259.65±15.30 a | 210.66±3.18 a | 81.27±1.55 b | 23.21±0.04 b | 9 268.65±297.60 a |
| T3 | 211.35±6.75 b | 195.75±3.11 b | 85.85±0.98 a | 23.51±0.07 a | 8 448.45±289.35 c |
表6 水稻产量及其产量构成因子
Table 6 The yield and yield component factors of rice
| 处理 Treatment | 穗数 Spike number/ (104·hm-2) | 穗粒数 Seed number per spike | 结实率 Seed setting rate/% | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
|---|---|---|---|---|---|
| CK | 207.15±4.65 b | 190.23±1.66 c | 86.62±0.26 a | 23.24±0.02 b | 9 059.25±240.75 b |
| T1 | 265.20±12.45 a | 213.63±2.54 a | 84.83±1.04 a | 23.22±0.07 b | 9 397.95±377.55 a |
| T2 | 259.65±15.30 a | 210.66±3.18 a | 81.27±1.55 b | 23.21±0.04 b | 9 268.65±297.60 a |
| T3 | 211.35±6.75 b | 195.75±3.11 b | 85.85±0.98 a | 23.51±0.07 a | 8 448.45±289.35 c |
| 处理 Treatment | 糙米率 Husked rice rate | 整精米率 Head rice yield | 直链淀粉含量 Amylose content | 精米率 Milled rice rate | 蛋白质含量 Protein content |
|---|---|---|---|---|---|
| CK | 83.1±2.51 a | 63.2±2.15 b | 17.2±3.21 a | 74.4±1.36 a | 6.67±0.35 b |
| T1 | 83.1±3.25 a | 69.8±1.35 a | 16.8±1.36 a | 74.3±2.14 a | 8.04±0.48 a |
| T2 | 82.2±2.66 a | 71.4±1.11 a | 17.1±2.14 a | 74.2±2.25 a | 7.78±0.55 a |
| T3 | 83.0±1.85 a | 70.5±1.26 a | 17.2±2.16 a | 74.1±1.34 a | 8.04±0.39 a |
表7 稻米品质
Table 7 Rice quality %
| 处理 Treatment | 糙米率 Husked rice rate | 整精米率 Head rice yield | 直链淀粉含量 Amylose content | 精米率 Milled rice rate | 蛋白质含量 Protein content |
|---|---|---|---|---|---|
| CK | 83.1±2.51 a | 63.2±2.15 b | 17.2±3.21 a | 74.4±1.36 a | 6.67±0.35 b |
| T1 | 83.1±3.25 a | 69.8±1.35 a | 16.8±1.36 a | 74.3±2.14 a | 8.04±0.48 a |
| T2 | 82.2±2.66 a | 71.4±1.11 a | 17.1±2.14 a | 74.2±2.25 a | 7.78±0.55 a |
| T3 | 83.0±1.85 a | 70.5±1.26 a | 17.2±2.16 a | 74.1±1.34 a | 8.04±0.39 a |
| [1] | 文平兰, 陈海波, 童星. 不同新型肥料在句容市小麦生产上的应用效果初探[J]. 上海农业科技, 2023(2): 141-143. |
| WEN P L, CHEN H B, TONG X. Preliminary study on the application effect of different new fertilizers in wheat production in Jurong city[J]. Shanghai Agricultural Science and Technology, 2023(2): 141-143. (in Chinese) | |
| [2] | 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201-221. |
| DING W C, HE P, ZHOU W. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201-221. (in Chinese with English abstract) | |
| [3] | 王文青, 何玮恒, 陈培峰, 等. 新型缓释肥料对水稻产量及氮素吸收利用的影响[J]. 江西农业学报, 2023, 35(1): 84-87. |
| WANG W Q, HE W H, CHEN P F, et al. Effect of new slow-release fertilizer on rice yield and nitrogen uptake and utilization[J]. Acta Agriculturae Jiangxi, 2023, 35(1): 84-87. (in Chinese with English abstract) | |
| [4] | 刘永红, 郑文涛, 张晋天, 等. 缓/控释肥研究进展及其应用[J]. 华中农业大学学报, 2023, 42(4): 167-176. |
| LIU Y H, ZHENG W T, ZHANG J T, et al. Progress and its application of slow/controlled release fertilizers in agricultural production[J]. Journal of Huazhong Agricultural University, 2023, 42(4): 167-176. (in Chinese with English abstract) | |
| [5] | 卢忠诚, 傅丽青, 黄其颖, 等. 缓释肥对水稻甬优1540产量及肥料利用率的影响[J]. 农技服务, 2022, 39(11): 1-4. |
| LU Z C, FU L Q, HUANG Q Y, et al. Effect of slow-release fertilizer on yield and fertilizer utilization rate of rice Yongyou 1540[J]. Agricultural Technology Service, 2022, 39(11): 1-4. (in Chinese) | |
| [6] | 李虹儒, 许景钢, 徐明岗, 等. 我国典型农田长期施肥小麦氮肥回收率的变化特征[J]. 植物营养与肥料学报, 2009, 15(2): 336-343. |
| LI H R, XU J G, XU M G, et al. Change characteristic of nitrogen recovery efficiency of wheat in typical farmland of China under long-term fertilization[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 336-343. (in Chinese with English abstract) | |
| [7] | WANG C, LV J, XIE J M, et al. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses[J]. Scientific Reports, 2021, 11(1): 8070. |
| [8] | 胡香玉, 钟旭华, 彭碧琳, 等. 减氮条件下高产水稻品种的产量形成和氮素利用特征[J]. 核农学报, 2019, 33(12): 2460-2471. |
| HU X Y, ZHONG X H, PENG B L, et al. Yield formation and characteristics of nitrogen utilization in high-yielding rice varieties under reduced nitrogen input[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2460-2471. (in Chinese with English abstract) | |
| [9] | 杜加银, 茹美, 倪吾钟. 减氮控磷稳钾施肥对水稻产量及养分积累的影响[J]. 植物营养与肥料学报, 2013, 19(3): 523-533. |
| DU J Y, RU M, NI W Z. Effects of fertilization with reducing nitrogen, controlling phosphorus and stabilizing potassium on rice yield and nutrient accumulation[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 523-533. (in Chinese with English abstract) | |
| [10] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [11] | 李振高, 骆永明, 滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008. |
| [12] | 师恩慧. 蚯蚓在秸秆堆制过程中对氮代谢的影响[D]. 长春: 吉林大学, 2022. |
| SHI E H. Effect of earthworm on nitrogen metabolism in straw composting process[D]. Changchun: Jilin University, 2022. (in Chinese with English abstract) | |
| [13] | 李晨华, 贾仲君, 唐立松, 等. 不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响[J]. 土壤学报, 2012, 49(3): 567-574. |
| LI C H, JIA Z J, TANG L S, et al. Effect of model of fertilization on microbial abundance and enzyme activity in oasis farmland soil[J]. Acta Pedologica Sinica, 2012, 49(3): 567-574. (in Chinese with English abstract) | |
| [14] | JIANG D Q, JIANG N, JIANG H, et al. Urease inhibitors increased soil ureC gene abundance and intracellular urease activity when extracellular urease activity was inhibited[J]. Geoderma, 2023, 430: 116295. |
| [15] | 全国粮油标准化技术委员会. 优质稻谷:GB/T 17891—2007[S/OL]. [2024-02-18]. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=56C97D505F4880DE76E2D49C7DA0C872. |
| [16] | 赵秉强, 袁亮. 化肥产品创新驱动产业转型升级[J]. 植物营养与肥料学报, 2022, 28(4): 726-731. |
| ZHAO B Q, YUAN L. Innovation in chemical fertilizer products driving industrial transformation and evolution[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 726-731. (in Chinese with English abstract) | |
| [17] | 胡启良, 杨滨娟, 刘宁, 等. 绿肥混播下不同施氮量对水稻产量、土壤碳氮和微生物群落的影响[J]. 华中农业大学学报, 2022, 41(6): 16-26. |
| HU Q L, YANG B J, LIU N, et al. Effects of application rates of nitrogen on rice yield, carbon and nitrogen, microbial community in soil under mixed sowing of green manure[J]. Journal of Huazhong Agricultural University, 2022, 41(6): 16-26. (in Chinese with English abstract) | |
| [18] | CONACHER J, CONACHER A. Organic farming and the environment, with particular reference to Australia: a review[J]. Biological Agriculture & Horticulture, 1998, 16: 145-171. |
| [19] | 高菊生, 黄晶, 董春华, 等. 长期有机无机肥配施对水稻产量及土壤有效养分影响[J]. 土壤学报, 2014, 51(2): 314-324. |
| GAO J S, HUANG J, DONG C H, et al. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients[J]. Acta Pedologica Sinica, 2014, 51(2): 314-324. (in Chinese with English abstract) | |
| [20] | 张水清, 林杉, 郭斗斗, 等. 长期施肥下潮土全氮、碱解氮含量与氮素投入水平关系[J]. 中国土壤与肥料, 2017(6): 23-29. |
| ZHANG S Q, LIN S, GUO D D, et al. Relationship between total nitrogen, alkali hydrolyzed nitrogen content and nitrogen input levels in fluvo-aquic soil under long term fertilization[J]. Soil and Fertilizer Sciences in China, 2017(6): 23-29. (in Chinese with English abstract) | |
| [21] | 熊淑萍, 吴延鹏, 王小纯, 等. 减氮处理对不同小麦品种干物质积累及氮素转运特性的影响[J]. 麦类作物学报, 2015, 35(8): 1134-1140. |
| XIONG S P, WU Y P, WANG X C, et al. Effect of lower nitrogen application on dry matter accumulation and nitrogen translocation of different wheat varieties[J]. Journal of Triticeae Crops, 2015, 35(8): 1134-1140. (in Chinese with English abstract) |
| [1] | 吴菊, 杨飞, 吴国泉, 傅贤, 徐晨光. 砂培和土壤栽培对黄瓜生长、产量与品质的影响[J]. 浙江农业学报, 2025, 37(9): 1905-1913. |
| [2] | 朱为静, 吴佳, 洪春来, 朱凤香, 洪磊东, 张涛, 张硕, 诸惠芬. 秸秆覆盖对土壤水热肥及蟠桃产量和品质的影响[J]. 浙江农业学报, 2025, 37(9): 1924-1932. |
| [3] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [4] | 张智颖, 邱琴, 侯立娟, 徐平, 蒋宁, 林金盛, 李辉平, 曲绍轩, 马林, 王伟霞, 李福后. 杀虫剂施用对秀珍菇和毛木耳的安全性评价[J]. 浙江农业学报, 2025, 37(8): 1733-1742. |
| [5] | 严福林, 郎云虎, 简应权, 陈雄飞, 魏巍, 王志威, 安江勇, 任得强, 丁宁, 魏升华. 八爪金龙药材产量与品质对土壤理化性状的响应[J]. 浙江农业学报, 2025, 37(8): 1766-1775. |
| [6] | 谭诗逸, 俞国红, 薛向磊, 赵颖雷, 许宝玉, 张成浩. 工厂化水稻育秧盘搬运装置设计与试验[J]. 浙江农业学报, 2025, 37(7): 1545-1555. |
| [7] | 张智, 何豪豪, 郁妙, 许剑锋. 化肥减量配施土壤改良剂对土壤酸度、土壤养分和水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1301-1308. |
| [8] | 林小兵, 黎江, 成艳红, 王斌强, 何绍浪, 黄尚书, 黄欠如. 不同有机物料对土壤微生物生物量、矿质氮含量与水稻产量的影响[J]. 浙江农业学报, 2025, 37(6): 1309-1318. |
| [9] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [10] | 董智超, 岳宁燕, 吕魏, 余晓燚, 郑凯文, 宋海星, 陈海飞. 高、低含油量油菜品种的产量、品质和氮利用效率对施氮量的响应差异[J]. 浙江农业学报, 2025, 37(5): 998-1008. |
| [11] | 李艳翠, 李福强, 周波. 不同生育期亏缺灌溉对蒙古黄芪光合特性、产量与品质的影响[J]. 浙江农业学报, 2025, 37(4): 779-789. |
| [12] | 秦宇坤, 陈俊英, 王玉萍, 张丽娟. 减氮增碳对长江流域棉花生产和氮素吸收利用的影响[J]. 浙江农业学报, 2025, 37(4): 869-879. |
| [13] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
| [14] | 宋欣录, 范书红, 武桄旗, 展梦琪, 侯倩, 李明月, 徐艳. 铜-菲复合污染对分蘖期水稻根系生理特性和污染物积累的影响[J]. 浙江农业学报, 2025, 37(3): 521-529. |
| [15] | 雷志伟, 李新欣, 徐恒, 张恒, 朱英, 张华. 利用染色体片段替换系鉴定水稻二化螟抗性QTL[J]. 浙江农业学报, 2025, 37(3): 530-537. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||