浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 880-891.DOI: 10.3969/j.issn.1004-1524.20240321
应永飞1(), 韩东轩2, 孟芳3, 俞遴4, 沈佳栾5, 汪开英2,*(
)
收稿日期:
2024-04-08
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
应永飞(1977—),男,浙江仙居人,博士,高级兽医师,主要从事畜牧技术推广工作。E-mail:yyf1001@163.com
通讯作者:
*汪开英,E-mail: zjuwky@zju.edu.cn
基金资助:
YING Yongfei1(), HAN Dongxuan2, MENG Fang3, YU Lin4, SHEN Jialuan5, WANG Kaiying2,*(
)
Received:
2024-04-08
Online:
2025-04-25
Published:
2025-05-09
摘要: 为探明沼液替代化肥对水稻生产的影响,采用田间试验对比了基肥施用3种配比的沼液和化肥(100%化肥、80%化肥+25%沼液、100%沼液)对水稻产量和品质、土壤养分、微生物群落结构,以及土壤、水稻重金属含量的影响。结果表明,基肥全施沼液处理的水稻结实率、千粒重、产量和稻米品质在3个处理中表现最佳。施用沼液会导致水稻秸秆中的Cu、Zn、As含量增加,存在重金属累积风险,籽粒中的As含量虽显著(P<0.05)增加,但未超过GB 2762—2022《食品安全国家标准 食品中污染物限量》的限量标准。施用沼液改变了土壤微生物群落结构,增加了微生物的α多样性,提高了电活性菌的相对丰度。综合来看,在该试验条件下,全施沼液可降低肥料成本,增加种植品质,带来最优收益。
中图分类号:
应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891.
YING Yongfei, HAN Dongxuan, MENG Fang, YU Lin, SHEN Jialuan, WANG Kaiying. Effects of biogas slurry substituting chemical fertilizer on rice yield and quality and soil characteristics[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 880-891.
处理 | PH/cm | ESN | SL/cm | FGN | GN | SSR/% | TGW/g | Y/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|
Treatment | ||||||||
CK | 129.5±6.6 a | 17.0±4.0 a | 23.8±0.3 a | 342±31 a | 483±41 a | 70.9±3.9 b | 22.1±1.1 b | 11 023.2±88.0 c |
S1 | 122.4±4.0 b | 17.4±2.6 a | 23.9±0.8 a | 324±23 a | 446±40 ab | 72.6±4.5 b | 22.9±1.2 ab | 11 349.6±96.5 b |
S2 | 126.0±3.4 b | 19.0±2.4 a | 24.0±0.6 a | 308±51 a | 404±42 b | 76.2±6.2 a | 23.7±1.1 a | 12 465.6±118.5 a |
表1 不同处理对水稻产量及其构成因子的影响
Table 1 Effect of treatments on rice yield and its components
处理 | PH/cm | ESN | SL/cm | FGN | GN | SSR/% | TGW/g | Y/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|
Treatment | ||||||||
CK | 129.5±6.6 a | 17.0±4.0 a | 23.8±0.3 a | 342±31 a | 483±41 a | 70.9±3.9 b | 22.1±1.1 b | 11 023.2±88.0 c |
S1 | 122.4±4.0 b | 17.4±2.6 a | 23.9±0.8 a | 324±23 a | 446±40 ab | 72.6±4.5 b | 22.9±1.2 ab | 11 349.6±96.5 b |
S2 | 126.0±3.4 b | 19.0±2.4 a | 24.0±0.6 a | 308±51 a | 404±42 b | 76.2±6.2 a | 23.7±1.1 a | 12 465.6±118.5 a |
处理 Treatment | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 氮含量 N content/(g·kg-1) | 磷含量 P content/(g·kg-1) | 钾含量 K content/(g·kg-1) |
---|---|---|---|---|---|
CK | 6.48±0.06 c | 11.14±0.07 a | 10.30±0.01 c | 1.36±0.04 c | 3.99±0.06 a |
S1 | 6.89±0.10 b | 11.34±0.07 a | 10.86±0.06 b | 1.58±0.00 b | 3.73±0.10 a |
S2 | 7.70±0.11 a | 11.24±0.07 a | 11.60±0.04 a | 1.90±0.01 a | 3.93±0.16 a |
表2 不同处理的稻米品质
Table 2 Rice quality under treatments
处理 Treatment | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 氮含量 N content/(g·kg-1) | 磷含量 P content/(g·kg-1) | 钾含量 K content/(g·kg-1) |
---|---|---|---|---|---|
CK | 6.48±0.06 c | 11.14±0.07 a | 10.30±0.01 c | 1.36±0.04 c | 3.99±0.06 a |
S1 | 6.89±0.10 b | 11.34±0.07 a | 10.86±0.06 b | 1.58±0.00 b | 3.73±0.10 a |
S2 | 7.70±0.11 a | 11.24±0.07 a | 11.60±0.04 a | 1.90±0.01 a | 3.93±0.16 a |
图1 不同处理水稻植株与籽粒中的重金属含量 柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.1 Heavy metals content in straw and grain of rice under treatments Bars marked without the same letters indicate significant difference at P<0.05.
图2 不同处理土壤的基本理化性质 同一时期柱上无相同字母的表示处理间差异显著(P<0.05)。BRP,水稻种植前;AH,水稻收割后。下同。
Fig.2 Soil physiochemical properties under treatments Bars marked without the same letters indicate significant (P<0.05) difference at the same stage.BRP, Before rice planting; AH, After harvest.The same as below.
图4 不同处理的土壤微生物群落组成与α多样性的变化 Acidobacteriota,酸杆菌门;Bacteroidota,拟杆菌门;Chloroflexi,绿弯菌门;Crenarchaeota,泉古菌门;Desulfobacterota,脱硫菌门;Latescibacterota,迟杆菌门;Myxococcota,黏菌门;Nitrospirota,硝化螺旋菌门;Proteobacteria,变形菌门;Verrucomicrobiota,疣微菌门;Sideroxydans,铁氧化菌属;Bathyarchaeia,深古菌;Anaerolinea,厌氧绳菌属;Anaeromyxobacter,厌氧黏细菌属;Bacteroidetes,拟杆菌属;Rokubacteriales,罗库菌门;Pseudolabrys,假双头斧形菌属;Bryobacter,苔藓杆菌属;Nitrospira,硝化螺旋菌属。
Fig.4 Changes in microbial community composition and alpha diversity under treatments
图5 不同处理下电活性菌属总的相对丰度(左)及其组成(右) Acidibacter,酸杆菌属;Desulfovibrio,脱硫弧菌属;Desulfobulbus,脱硫球茎菌属;Desulfitobacterium,脱亚硫酸菌属;Bacillus,芽孢杆菌属;Pseudomonas,假单胞菌属;Brevundimonas,短波单胞菌;Comamonas,丛毛单胞菌属;Sporomusa,鼠孢菌属;Magnetospirillum,磁螺菌属;Acinetobacter,不动杆菌属;Corynebacterium,棒状杆菌属;Geobacteraceae,地杆菌科;Geothrix,地发菌属;Geobacter,地杆菌属;Aeromonas,气单胞菌属;Methanomassiliicoccus,甲烷马赛球菌属;Methanosarcina,甲烷八叠球菌属;Methanosaeta,鬃毛甲烷菌属;Methanobacterium,甲烷杆菌属;Shewanella,希瓦氏菌属;Acidiphilium,嗜酸菌属。
Fig.5 Relative abundance of electroactive bacteria (left) and its composition (right) under treatments
图6 土壤微生物丰度(A)和α多样性(B)与土壤环境因子的相关性 pH,土壤pH值;OM,土壤有机质含量;AN,土壤碱解氮含量;AP,土壤有效磷含量;AK,土壤速效钾含量;Simpson,Simpson指数;Shannon,Shannon指数;Pielou-e,Pielou-e指数;observed-feature,observed-feature 指数;goods-coverage,goods-coverage 指数;dominance,dominance 指数;Chao1,Chao1指数。Rokubacteriales,罗库菌门;Sideroxydans,铁氧化菌属;Anaeromyxobacter,厌氧黏细菌属;Pseudolabrys,假双头斧形菌属;Latescibacterota,迟杆菌门;Nitrospira,硝化螺旋菌属;Bacteroidetes,拟杆菌属;Anaerolinea,厌氧绳菌属;Bryobacter,苔藓杆菌属;Bathyarchaeia,深古菌。
Fig.6 Correlation between soil microbial abundance(A), alpha diversity(B) and soil environmental factors pH, Soil pH value; OM, Soil organic matter content; AN, Soil hydrolysable nitrogen content; AP, Soil available phosphorus content; AK, Soil available potassium content; Simpson,Simpson index; Shannon, Shannon index; Pielou-e,Pielou-e index;observed-feature,observed-feature index;goods-coverage,goods-coverage index;dominance,dominance index;Chao1,Chao1 index.
处理 Treatment | 种子费 Seed fee | 肥料费 Fertilizer fee | 人工费 Labor cost | 总成本 Total cost | 产值 Output | 利润 Profit |
---|---|---|---|---|---|---|
CK | 1 800 | 2 250 | 13 425 | 17 475 | 29 655 | 12 180 |
S1 | 1 800 | 1 980 | 13 800 | 17 580 | 30 525 | 12 945 |
S2 | 1 800 | 900 | 13 800 | 16 500 | 33 525 | 17 025 |
表3 不同处理稻田的经济效益
Table 3 Economic benefits of rice planting under treatments yuan·hm-2
处理 Treatment | 种子费 Seed fee | 肥料费 Fertilizer fee | 人工费 Labor cost | 总成本 Total cost | 产值 Output | 利润 Profit |
---|---|---|---|---|---|---|
CK | 1 800 | 2 250 | 13 425 | 17 475 | 29 655 | 12 180 |
S1 | 1 800 | 1 980 | 13 800 | 17 580 | 30 525 | 12 945 |
S2 | 1 800 | 900 | 13 800 | 16 500 | 33 525 | 17 025 |
[1] | 李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析[J]. 植物营养与肥料学报, 2017, 23(6): 1416-1432. |
LI S T, LIU X Y, HE P. Analyses on nutrient requirements in current agriculture production in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1416-1432. (in Chinese with English abstract) | |
[2] | 朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259-273. |
ZHU Z L, JIN J Y. Fertilizer use and food security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese with English abstract) | |
[3] | 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915-924. |
ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese with English abstract) | |
[4] | 习斌, 翟丽梅, 刘申, 等. 有机无机肥配施对玉米产量及土壤氮磷淋溶的影响[J]. 植物营养与肥料学报, 2015, 21(2): 326-335. |
XI B, ZHAI L M, LIU S, et al. Effects of combination of organic and inorganic fertilization on maize yield and soil nitrogen and phosphorus leaching[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 326-335. (in Chinese with English abstract) | |
[5] | 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力[J]. 植物营养与肥料学报, 2018, 24(1): 1-21. |
SONG D L, HOU S P, WANG X B, et al. Nutrient resource quantity of crop straw and its potential of substituting[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 1-21. (in Chinese with English abstract) | |
[6] | 仇焕广, 廖绍攀, 井月, 等. 我国畜禽粪便污染的区域差异与发展趋势分析[J]. 环境科学, 2013, 34(7): 2766-2774. |
QIU H G, LIAO S P, JING Y, et al. Regional differences and development tendency of livestock manure pollution in China[J]. Environmental Science, 2013, 34(7): 2766-2774. (in Chinese with English abstract) | |
[7] | YANG Y D, WANG P X, ZENG Z H. Dynamics of bacterial communities in a 30-year fertilized paddy field under different organic-inorganic fertilization strategies[J]. Agronomy, 2019, 9(1): 14. |
[8] | WEI M, HU G Q, WANG H, et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China[J]. European Journal of Soil Biology, 2017, 82: 27-34. |
[9] | 朱建春, 张增强, 樊志民, 等. 中国畜禽粪便的能源潜力与氮磷耕地负荷及总量控制[J]. 农业环境科学学报, 2014, 33(3): 435-445. |
ZHU J C, ZHANG Z Q, FAN Z M, et al. Biogas potential, cropland load and total amount control of animal manure in China[J]. Journal of Agro-Environment Science, 2014, 33(3): 435-445. (in Chinese with English abstract) | |
[10] | 姜利红, 谭力彰, 田昌, 等. 不同施肥对双季稻田径流氮磷流失特征的影响[J]. 水土保持学报, 2017, 31(6): 33-38. |
JIANG L H, TAN L Z, TIAN C, et al. Effects of fertilizer applications on runoff nitrogen and phosphorus loss in double cropping paddy field[J]. Journal of Soil and Water Conservation, 2017, 31(6): 33-38. (in Chinese with English abstract) | |
[11] | 宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175-181. |
NING C C, WANG J W, CAI K Z. The effects of organic fertilizers on soil fertility and soil environmental quality: a review[J]. Ecology and Environmental Sciences, 2016, 25(1): 175-181. (in Chinese with English abstract) | |
[12] | 马艳, 李海, 常志州, 等. 沼液对植物病害的防治效果及机理研究Ⅰ: 对植物病原真菌的抑制效果及抑菌机理初探[J]. 农业环境科学学报, 2011, 30(2): 366-374. |
MA Y, LI H, CHANG Z Z, et al. Biocontrol effect and mechanism of biogas slurry on plant disease Ⅰ: primary study of growth inhibition effects and mechanism on phytopathogen fungi[J]. Journal of Agro-Environment Science, 2011, 30(2): 366-374. (in Chinese with English abstract) | |
[13] | WEIQUN S L. Effect of highly efficient nutrient solution of biogas slurry on yield and quality of vegetables[J]. Agricultural Science and Technology, 2011, 12: 567-570. |
[14] | 沈其林, 单胜道, 周健驹, 等. 猪粪发酵沼液成分测定与分析[J]. 中国沼气, 2014, 32(3): 83-86. |
SHEN Q L, SHAN S D, ZHOU J J, et al. Determination and analysis of compositions in biogas slurry produced by swine manure digestion[J]. China Biogas, 2014, 32(3): 83-86. (in Chinese with English abstract) | |
[15] | 张进, 张妙仙, 单胜道, 等. 沼液对水稻生长产量及其重金属含量的影响[J]. 农业环境科学学报, 2009, 28(10): 2005-2009. |
ZHANG J, ZHANG M X, SHAN S D, et al. Growth status, grain yield and heavy metals content of rice(Oryza sativa L.) as affected by biogas slurry application[J]. Journal of Agro-Environment Science, 2009, 28(10): 2005-2009. (in Chinese with English abstract) | |
[16] | 岑汤校, 张硕, 胡宇峰. 单季稻不同用量沼液的肥效试验[J]. 中国土壤与肥料, 2012(2): 83-86. |
CEN T X, ZHANG S, HU Y F. Efficiency of biogas slurry fertilizer in different amount on single cropping rice[J]. Soil and Fertilizer Sciences in China, 2012(2): 83-86. (in Chinese with English abstract) | |
[17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[18] | 吴云当, 李芳柏, 刘同旭. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J]. 土壤学报, 2016, 53(2): 277-291. |
WU Y D, LI F B, LIU T X. Mechanism of extracellular electron transfer among microbe-humus-mineral in soil: a review[J]. Acta Pedologica Sinica, 2016, 53(2): 277-291. (in Chinese with English abstract) | |
[19] | 李松林. 大量施灌沼液稻田氮素动态特征及其对环境的影响[D]. 杭州: 浙江大学, 2011. |
LI S L. Nitrogen dynamics in paddy field after irrigation of biogas slurry and its impact on the environment[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract) | |
[20] | 张昌爱, 刘银秀, 单胜道, 等. 等氮量替代原则下沼液部分替代化肥技术方案[J]. 中国沼气, 2019, 37(1): 94-97. |
ZHANG C A, LIU Y X, SHAN S D, et al. Technical scheme of biogas slurry partially replacing chemical fertilizer with the principle of equal amount of nitrogen substitution[J]. China Biogas, 2019, 37(1): 94-97. (in Chinese with English abstract) | |
[21] | 黄继川, 彭智平, 徐培智, 等. 沼液稻田消解对水稻生产、土壤肥力及环境安全的影响[J]. 广东农业科学, 2016, 43(10): 69-76. |
HUANG J C, PENG Z P, XU P Z, et al. Effects of paddy field disposal of biogas slurry on rice production, soil fertility and environmental safety[J]. Guangdong Agricultural Sciences, 2016, 43(10): 69-76. (in Chinese with English abstract) | |
[22] | WANG Q Q, HUANG Q, WANG J X, et al. Ecological circular agriculture: a case study evaluating biogas slurry applied to rice in two soils[J]. Chemosphere, 2022, 301: 134628. |
[23] | 刘银秀, 池永清, 董越勇, 等. 不同沼液施用年限土壤养分含量和微生物群落结构差异[J]. 植物营养与肥料学报, 2023, 29(3): 483-495. |
LIU Y X, CHI Y Q, DONG Y Y, et al. Variation of nutrient content and microbial community in soils under different application years of biogas slurry[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 483-495. (in Chinese with English abstract) | |
[24] | 邵文奇, 纪力, 孙春梅, 等. 不同沼液施用量对水稻生长、产量及重金属含量的影响[J]. 浙江农业学报, 2017, 29(12): 1963-1969. |
SHAO W Q, JI L, SUN C M, et al. Effects of application rate of biogas slurry on growth, grain yield and heavy metals contents of rice[J]. Acta Agriculturae Zhejiangensis, 2017, 29(12): 1963-1969. (in Chinese with English abstract) | |
[25] | 叶雪珠, 陈德, 肖文丹, 等. 不同类型农药中重金属分布特征及风险分析[J]. 农药学学报, 2023, 25(1): 227-236. |
YE X Z, CHEN D, XIAO W D, et al. Distribution characteristics and risk analysis of heavy metals in pesticides[J]. Chinese Journal of Pesticide Science, 2023, 25(1): 227-236. (in Chinese with English abstract) | |
[26] | 宋文恩, 郭雪雁, 陈世宝, 等. 酸化方式对土壤中铜的形态及生物有效性的影响[J]. 农业环境科学学报, 2014, 33(12): 2343-2349. |
SONG W E, GUO X Y, CHEN S B, et al. Effects of different acidification methods on forms and bioavailability of Cu in soils[J]. Journal of Agro-Environment Science, 2014, 33(12): 2343-2349. (in Chinese with English abstract) | |
[27] | 周阳, 黄旭, 赵海燕, 等. 麦秸秆和沼液配施对水稻苗期生长和土壤微生物的调控[J]. 土壤学报, 2020, 57(2): 479-489. |
ZHOU Y, HUANG X, ZHAO H Y, et al. Regulation of wheat straw and biogas slurry application on rice seedling growth and soil microorganism[J]. Acta Pedologica Sinica, 2020, 57(2): 479-489. (in Chinese with English abstract) | |
[28] | REN T T, YU X Y, LIAO J H, et al. Application of biogas slurry rather than biochar increases soil microbial functional gene signal intensity and diversity in a poplar plantation[J]. Soil Biology and Biochemistry, 2020, 146: 107825. |
[29] | WANG M, LI S S, CHEN S B, et al. Manipulation of the rhizosphere bacterial community by biofertilizers is associated with mitigation of cadmium phytotoxicity[J]. Science of the Total Environment, 2019, 649: 413-421. |
[30] | GEELHOED J S, STAMS A J M. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens[J]. Environmental Science & Technology, 2011, 45(2): 815-820. |
[31] | AFSHARIAN Y P, RAHIMNEJAD M. Functional dynamics of microbial communities in bioelectrochemical systems: the importance of eco-electrogenic treatment of complex substrates[J]. Current Opinion in Electrochemistry, 2022, 31: 100816. |
[1] | 王芸, 俞朝, 沈泓, 曹米娜, 周其耀, 胡智鹏, 金崇伟, 冯英. 硅锌叶面肥对芹菜镉积累和营养品质的影响[J]. 浙江农业学报, 2025, 37(1): 61-66. |
[2] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
[3] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
[4] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[5] | 肖华, 徐杏, 谢传奇, 周昕, 周卫东, 唐文升. 鸟粪石沉淀预处理对猪场沼液双膜浓缩工艺的影响[J]. 浙江农业学报, 2023, 35(6): 1407-1415. |
[6] | 邓美华, 高娜, 吴林土, 徐火忠, 洪海清, 朱有为. 浙江省铅污染源解析与茶叶铅污染风险评价[J]. 浙江农业学报, 2023, 35(5): 1123-1131. |
[7] | 邱妹, 邓旗, 房志家, 王雅玲, 孙力军. 饲料中真菌毒素对养殖水产动物危害的研究进展[J]. 浙江农业学报, 2023, 35(3): 717-726. |
[8] | 朱雅婷, 倪远之, 张敏, 王振旗, 沈根祥, 黄娜. 不同秸秆还田量对上海地区稻田甲烷排放的影响[J]. 浙江农业学报, 2023, 35(10): 2436-2445. |
[9] | 茹朝, 郁继华, 武玥, 冯致, 缑兆辉, 金宁, 王舒亚, 刘泽慈, 吕剑. 化肥减量配施生物有机肥对露地大白菜产量及品质的影响[J]. 浙江农业学报, 2022, 34(8): 1626-1637. |
[10] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[11] | 邓涛, 杨华, 肖英平, 汪雯, 吕文涛, 王小骊, 吴振, 吉小凤. QuEChERS-超高效液相色谱-串联质谱法同时测定婴幼儿辅食果泥中5种链格孢霉毒素[J]. 浙江农业学报, 2022, 34(12): 2728-2739. |
[12] | 廖平强, 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋. 不同密度异型莎草和水苋菜对水稻产量及稻米加工、外观品质的影响[J]. 浙江农业学报, 2022, 34(11): 2348-2357. |
[13] | 江涛, 王立国, 孙芳芳, 成剑波, 何腾兵, 秦松, 范成五, 阴文芳. 沼渣生物质炭对西南喀斯特山区沼液灌溉土壤氮淋溶和白菜产量的影响[J]. 浙江农业学报, 2021, 33(11): 2104-2115. |
[14] | 吉小凤, 吕文涛, 汪建妹, 廖琳慧, 徐杰, 钱鸣蓉. 超高效液相色谱-串联质谱法测定鲜鸡蛋中氟虫腈及其代谢物残留[J]. 浙江农业学报, 2020, 32(10): 1849-1854. |
[15] | 潘俊峰, 钟旭华, 黄农荣, 刘彦卓, 田卡, 梁开明, 彭碧琳, 傅友强, 胡香玉. 不同栽培模式对华南双季晚稻产量和氮肥利用率的影响[J]. 浙江农业学报, 2019, 31(6): 857-868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||