浙江农业学报 ›› 2022, Vol. 34 ›› Issue (8): 1626-1637.DOI: 10.3969/j.issn.1004-1524.2022.08.07
茹朝1(), 郁继华1,2, 武玥1, 冯致1, 缑兆辉1, 金宁1, 王舒亚1, 刘泽慈1, 吕剑1,2,*(
)
收稿日期:
2021-01-25
出版日期:
2022-08-25
发布日期:
2022-08-26
通讯作者:
吕剑
作者简介:
*吕剑,E-mail: lvjian@gsau.edu.cn基金资助:
RU Chao1(), YU Jihua1,2, WU Yue1, FENG Zhi1, GOU Zhaohui1, JIN Ning1, WANG Shuya1, LIU Zeci1, LYU Jian1,2,*(
)
Received:
2021-01-25
Online:
2022-08-25
Published:
2022-08-26
Contact:
LYU Jian
摘要:
为改善大白菜因化肥过量使用而造成的产量下降、品质变劣和肥料利用率低等问题,以露地栽培旺春大白菜为试材,共设置不施肥(CK1)、常规施肥(CK2)、化肥平衡施肥(T1)、化肥减量30%+6 000 kg·hm-2生物有机肥(T2)、化肥减量30%+9 000 kg·hm-2生物有机肥(T3)、化肥减量40%+6 000 kg·hm-2生物有机肥(T4)、化肥减量40%+9 000 kg·hm-2生物有机肥(T5)7个处理,分析了不同施肥处理对大白菜生长、产量及品质的影响。结果表明:施用生物有机肥不同程度提高了各处理根系活力和叶绿素含量,较当地常规施肥根系活力提高了15.5%~40.3%,叶绿素含量提高了11.5%~37.5%,且随生物有机肥施用量的增加而增加。T1-T5处理较CK2增产0.04%~20.91%,其中T3处理增产率最高为20.91%,其经济效益增加9.04%,施用生物有机肥提高了肥料贡献率,化肥减量30%并配施生物有机肥提升效果最显著。T3处理可溶性糖、可溶性蛋白、游离氨基酸含量分别比CK2高0.91百分点、81.00%和9.61%,施用生物有机肥各处理硝酸盐含量降低11.53%~21.52%,VC、总黄酮、硫苷含量T3处理显著高于CK2,总酚含量各处理差异不显著。各处理矿质元素含量较CK2有不同程度提高,施用生物有机肥后提高更明显。对15项指标进行隶属函数分析,综合评价以T3处理化肥减量30%并配施9 000 kg·hm-2生物有机肥效果最佳,其次为T2>T5>T1>T4>CK2>CK1。
中图分类号:
茹朝, 郁继华, 武玥, 冯致, 缑兆辉, 金宁, 王舒亚, 刘泽慈, 吕剑. 化肥减量配施生物有机肥对露地大白菜产量及品质的影响[J]. 浙江农业学报, 2022, 34(8): 1626-1637.
RU Chao, YU Jihua, WU Yue, FENG Zhi, GOU Zhaohui, JIN Ning, WANG Shuya, LIU Zeci, LYU Jian. Effect of reducing chemical fertilizer and applying bio-organic fertilizer on yield and quality of Chinese cabbage in open field[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1626-1637.
处理 Treatments | 各处理施肥总量Total amount of fertilizer applied in each treatment/(kg·hm-2) | |||
---|---|---|---|---|
N | P2O5 | K2O | 生物有机肥Bio-organic fertilizer | |
CK1 | 0 | 0 | 0 | 0 |
CK2 | 639.0 | 355.5 | 78.0 | 0 |
T1 | 345.0 | 163.5 | 195.0 | 0 |
T2 | 367.5 | 175.5 | 208.5 | 6 000 |
T3 | 367.5 | 175.5 | 208.5 | 9 000 |
T4 | 316.5 | 150.0 | 175.5 | 6 000 |
T5 | 316.5 | 150.0 | 175.5 | 9 000 |
表1 各处理施肥总量
Table 1 The total amount of fertilizer applied in each treatment
处理 Treatments | 各处理施肥总量Total amount of fertilizer applied in each treatment/(kg·hm-2) | |||
---|---|---|---|---|
N | P2O5 | K2O | 生物有机肥Bio-organic fertilizer | |
CK1 | 0 | 0 | 0 | 0 |
CK2 | 639.0 | 355.5 | 78.0 | 0 |
T1 | 345.0 | 163.5 | 195.0 | 0 |
T2 | 367.5 | 175.5 | 208.5 | 6 000 |
T3 | 367.5 | 175.5 | 208.5 | 9 000 |
T4 | 316.5 | 150.0 | 175.5 | 6 000 |
T5 | 316.5 | 150.0 | 175.5 | 9 000 |
图1 化肥减量配施生物有机肥对大白菜根系活力和叶绿素含量的影响 图中不同小写字母表示在0.05 水平上差异显著。
Fig.1 Effects of reducing chemical fertilizers and applying bio-organic fertilizers on root vitality and chlorophyll content of Chinese cabbage Different lowercase letters in the figure indicated significant differences at the 0.05 level.
处理Treatments | 产量Yield/(t·hm-2) | 增产率Increased production rate/% | 肥料贡献率Fertilizer contribution rate/% |
---|---|---|---|
CK1 | 110.88±0.21 e | — | — |
CK2 | 124.96±0.89 d | — | 11.26 |
T1 | 133.06±1.37 c | 6.48 | 16.65 |
T2 | 138.46±0.82 b | 10.80 | 19.91 |
T3 | 151.09±1.69 a | 20.91 | 26.60 |
T4 | 125.01±0.37 d | 0.04 | 11.30 |
T5 | 133.06±0.55 c | 6.48 | 16.66 |
表2 化肥减量配施生物有机肥对大白菜产量和肥料贡献率的影响
Table 2 Effect of reducing chemical fertilizer and applying bio-organic fertilizer on the yield of Chinese cabbage
处理Treatments | 产量Yield/(t·hm-2) | 增产率Increased production rate/% | 肥料贡献率Fertilizer contribution rate/% |
---|---|---|---|
CK1 | 110.88±0.21 e | — | — |
CK2 | 124.96±0.89 d | — | 11.26 |
T1 | 133.06±1.37 c | 6.48 | 16.65 |
T2 | 138.46±0.82 b | 10.80 | 19.91 |
T3 | 151.09±1.69 a | 20.91 | 26.60 |
T4 | 125.01±0.37 d | 0.04 | 11.30 |
T5 | 133.06±0.55 c | 6.48 | 16.66 |
处理 Treatments | 产值 Output | 肥料投入 Fertilizer input | 经济效益 Economic benefit |
---|---|---|---|
CK1 | 110 880±207.6 e | 0 | 110 880.0 |
CK2 | 124 956±889.0 d | 6 039.0 | 118 917.0 |
T1 | 133 056±1371.8 c | 4 891.5 | 128 164.5 |
T2 | 138 456±824.9 b | 16 026.0 | 122 430.0 |
T3 | 151 092±1687.0 a | 21 426.0 | 129 666.0 |
T4 | 125 010±367.6 d | 15 247.5 | 109 762.5 |
T5 | 133 056±546.3c | 20 647.5 | 112 408.5 |
表3 化肥减量配施生物有机肥对大白菜经济效益的影响 (元·hm-2)
Table 3 Effect of reducing chemical fertilizer and applying bio-organic fertilizer on economic benefit of Chinese cabbage (yuan·hm-2)
处理 Treatments | 产值 Output | 肥料投入 Fertilizer input | 经济效益 Economic benefit |
---|---|---|---|
CK1 | 110 880±207.6 e | 0 | 110 880.0 |
CK2 | 124 956±889.0 d | 6 039.0 | 118 917.0 |
T1 | 133 056±1371.8 c | 4 891.5 | 128 164.5 |
T2 | 138 456±824.9 b | 16 026.0 | 122 430.0 |
T3 | 151 092±1687.0 a | 21 426.0 | 129 666.0 |
T4 | 125 010±367.6 d | 15 247.5 | 109 762.5 |
T5 | 133 056±546.3c | 20 647.5 | 112 408.5 |
处理 Treatments | 可溶性糖 Soluble sugar/% | 可溶性蛋白 Soluble protein/(mg·kg-1) | 游离氨基酸 Amino acid/(mg·kg-1) | 硝酸盐 Nitrate/(mg·kg-1) |
---|---|---|---|---|
CK1 | 1.71±0.13 e | 7.4±0.9 d | 264.92±14.27 c | 1 297.15±141.46 c |
CK2 | 2.10±0.30 cd | 10.0±0.5 c | 288.66±16.37 b | 1 810.67±145.60 a |
T1 | 3.11±0.08 a | 11.6±1.3 c | 316.40±10.17 a | 1 601.97±159.38 b |
T2 | 2.49±0.08 b | 18.0±1.1 a | 305.85±1.70 ab | 1 522.66±47.17 bc |
T3 | 3.01±0.24 a | 18.1±1.1 a | 315.71±11.89 a | 1 503.65±187.35 bc |
T4 | 1.98±0.08 de | 15.3±1.2 b | 308.73±13.73 ab | 1 446.27±156.20 bc |
T5 | 2.35±0.14 bc | 15.1±1.3 b | 309.77±5.81 ab | 1 421.05±19.27 bc |
表4 化肥减量配施生物有机肥对大白菜营养品质的影响
Table 4 Effect of reducing chemical fertilizer and applying bio-organic fertilizer on nutritional quality of Chinese cabbage
处理 Treatments | 可溶性糖 Soluble sugar/% | 可溶性蛋白 Soluble protein/(mg·kg-1) | 游离氨基酸 Amino acid/(mg·kg-1) | 硝酸盐 Nitrate/(mg·kg-1) |
---|---|---|---|---|
CK1 | 1.71±0.13 e | 7.4±0.9 d | 264.92±14.27 c | 1 297.15±141.46 c |
CK2 | 2.10±0.30 cd | 10.0±0.5 c | 288.66±16.37 b | 1 810.67±145.60 a |
T1 | 3.11±0.08 a | 11.6±1.3 c | 316.40±10.17 a | 1 601.97±159.38 b |
T2 | 2.49±0.08 b | 18.0±1.1 a | 305.85±1.70 ab | 1 522.66±47.17 bc |
T3 | 3.01±0.24 a | 18.1±1.1 a | 315.71±11.89 a | 1 503.65±187.35 bc |
T4 | 1.98±0.08 de | 15.3±1.2 b | 308.73±13.73 ab | 1 446.27±156.20 bc |
T5 | 2.35±0.14 bc | 15.1±1.3 b | 309.77±5.81 ab | 1 421.05±19.27 bc |
处理 Treatments | VC/(mg·kg-1) | 硫苷 Glucosinolate/(μmol·g-1) | 总黄酮 Total flavonoids/(mg·g-1) | 总酚 Total phenols/(mg·g-1) |
---|---|---|---|---|
CK1 | 68.47±0.62 d | 9.28±0.49 d | 1.34±0.05 d | 4.88±0.06 b |
CK2 | 68.83±0.52 cd | 12.32±0.54 bc | 1.72±0.09 c | 5.49±0.13 a |
T1 | 69.81±0.44 b | 18.40±1.41 a | 1.89±0.04 b | 5.25±0.36 ab |
T2 | 69.47±0.39 bc | 13.33±0.36 b | 1.94±0.08 b | 5.45±0.52 a |
T3 | 70.84±0.57 a | 17.31±0.49 a | 2.22±0.11 a | 5.52±0.10 a |
T4 | 70.72±0.37 a | 11.78±0.62 c | 1.57±0.09 c | 5.59±0.20 a |
T5 | 69.28±0.32 bcd | 11.46±0.49 c | 1.72±0.14 c | 5.21±0.08 ab |
表5 化肥减量配施生物有机肥对大白菜抗氧化物质含量的影响
Table 5 Effect of reducing chemical fertilizer and applying bio-organic fertilizer on the content of antioxidant substances in Chinese cabbage
处理 Treatments | VC/(mg·kg-1) | 硫苷 Glucosinolate/(μmol·g-1) | 总黄酮 Total flavonoids/(mg·g-1) | 总酚 Total phenols/(mg·g-1) |
---|---|---|---|---|
CK1 | 68.47±0.62 d | 9.28±0.49 d | 1.34±0.05 d | 4.88±0.06 b |
CK2 | 68.83±0.52 cd | 12.32±0.54 bc | 1.72±0.09 c | 5.49±0.13 a |
T1 | 69.81±0.44 b | 18.40±1.41 a | 1.89±0.04 b | 5.25±0.36 ab |
T2 | 69.47±0.39 bc | 13.33±0.36 b | 1.94±0.08 b | 5.45±0.52 a |
T3 | 70.84±0.57 a | 17.31±0.49 a | 2.22±0.11 a | 5.52±0.10 a |
T4 | 70.72±0.37 a | 11.78±0.62 c | 1.57±0.09 c | 5.59±0.20 a |
T5 | 69.28±0.32 bcd | 11.46±0.49 c | 1.72±0.14 c | 5.21±0.08 ab |
处理 Treatments | Cu含量 Cu content | Fe含量 Fe content | Mn含量 Mn content | Zn含量 Zn content | Ca含量 Ca content | Mg含量 Mg content |
---|---|---|---|---|---|---|
CK1 | 2.84±0.19 d | 103.22±7.05 e | 11.18±0.76 d | 30.64±1.49 d | 2 224.67±92.24 f | 2 471.8±56.29 d |
CK2 | 3.13±0.07 c | 109.57±7.92 e | 13.26±0.70 c | 34.00±1.22 c | 2 756.33±118.24 bc | 2 591.5±70.65 c |
T1 | 3.32±0.17 bc | 113.58±4.68 e | 12.85±0.12 c | 38.61±1.06 ab | 3 006.00±84.45 a | 2 665.8±45.90 c |
T2 | 3.43±0.17 ab | 215.70±10.05 b | 16.65±1.00 b | 37.06±1.13 b | 2 522.33±43.59 de | 2 888.2±13.70 a |
T3 | 3.53±0.12 ab | 227.65±0.98 a | 18.39±0.21 a | 38.29±1.55 b | 2 715.00±49.43 b | 2 897.0±38.57 a |
T4 | 3.39±0.20 ab | 184.60±1.51 c | 15.70±0.40 b | 39.03±0.17 ab | 2 463.33±31.39 e | 2 646.7±61.83 c |
T5 | 3.70±0.09 a | 167.08±2.50 d | 15.57±0.42 b | 40.95±1.77 a | 2 650.67±90.47 cd | 2 802.8±69.50 b |
表6 化肥减量配施生物有机肥对大白菜矿物质含量的影响
Table 6 Effect of reducing chemical fertilizer and applying bio-organic fertilizer on mineral content of Chinese cabbage mg·kg-1
处理 Treatments | Cu含量 Cu content | Fe含量 Fe content | Mn含量 Mn content | Zn含量 Zn content | Ca含量 Ca content | Mg含量 Mg content |
---|---|---|---|---|---|---|
CK1 | 2.84±0.19 d | 103.22±7.05 e | 11.18±0.76 d | 30.64±1.49 d | 2 224.67±92.24 f | 2 471.8±56.29 d |
CK2 | 3.13±0.07 c | 109.57±7.92 e | 13.26±0.70 c | 34.00±1.22 c | 2 756.33±118.24 bc | 2 591.5±70.65 c |
T1 | 3.32±0.17 bc | 113.58±4.68 e | 12.85±0.12 c | 38.61±1.06 ab | 3 006.00±84.45 a | 2 665.8±45.90 c |
T2 | 3.43±0.17 ab | 215.70±10.05 b | 16.65±1.00 b | 37.06±1.13 b | 2 522.33±43.59 de | 2 888.2±13.70 a |
T3 | 3.53±0.12 ab | 227.65±0.98 a | 18.39±0.21 a | 38.29±1.55 b | 2 715.00±49.43 b | 2 897.0±38.57 a |
T4 | 3.39±0.20 ab | 184.60±1.51 c | 15.70±0.40 b | 39.03±0.17 ab | 2 463.33±31.39 e | 2 646.7±61.83 c |
T5 | 3.70±0.09 a | 167.08±2.50 d | 15.57±0.42 b | 40.95±1.77 a | 2 650.67±90.47 cd | 2 802.8±69.50 b |
处理Treatments | CK1 | CK2 | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|---|---|
叶绿素含量Chlorophyll content | 0 | 0.15 | 0.50 | 0.42 | 1.00 | 0.60 | 0.64 |
根系活力Root vitality | 0.37 | 0 | 0.03 | 0.71 | 1.00 | 0.38 | 0.91 |
产量Yield | 0 | 0.35 | 0.55 | 0.69 | 1.00 | 0.35 | 0.55 |
可溶性糖Soluble sugar | 0 | 0.28 | 1.00 | 0.56 | 0.93 | 0.19 | 0.46 |
可溶性蛋白Soluble protein | 0 | 0.24 | 0.39 | 0.99 | 1.00 | 0.74 | 0.72 |
游离氨基酸Free amino acids | 0 | 0.46 | 1.00 | 0.79 | 0.99 | 0.85 | 0.87 |
硝酸盐Nitrate | 1.00 | 0 | 0.41 | 0.56 | 0.60 | 0.71 | 0.76 |
维生素C VC | 0 | 0.15 | 0.57 | 0.42 | 1.00 | 0.95 | 0.34 |
硫苷Glucosinolate | 0 | 0.33 | 1.00 | 0.44 | 0.88 | 0.27 | 0.24 |
总黄酮Total flavonoids | 0 | 0.43 | 0.63 | 0.68 | 1.00 | 0.27 | 0.43 |
总酚Total phenols | 0 | 0.86 | 0.52 | 0.81 | 0.91 | 1.00 | 0.46 |
铜Cu | 0 | 0.34 | 0.56 | 0.68 | 0.80 | 0.64 | 1.00 |
铁Fe | 0 | 0.05 | 0.08 | 0.90 | 1.00 | 0.65 | 0.51 |
锰Mn | 0 | 0.29 | 0.23 | 0.76 | 1.00 | 0.63 | 0.61 |
锌Zn | 0 | 0.33 | 0.77 | 0.62 | 0.74 | 0.81 | 1.00 |
钙Ca | 0 | 0.68 | 1.00 | 0.38 | 0.76 | 0.31 | 0.55 |
镁Mg | 0 | 0.28 | 0.46 | 0.98 | 1.00 | 0.41 | 0.78 |
平均隶属度Average membership | 0.08 | 0.31 | 0.57 | 0.67 | 0.92 | 0.57 | 0.64 |
位次Rank | 7 | 6 | 5 | 2 | 1 | 4 | 3 |
表7 化肥减量配施生物有机肥对大白菜生长及品质指标影响综合性评价
Table 7 Comprehensive evaluation of the effects of reduced chemical fertilizers and bio-organic fertilizers on the growth and quality of Chinese cabbage
处理Treatments | CK1 | CK2 | T1 | T2 | T3 | T4 | T5 |
---|---|---|---|---|---|---|---|
叶绿素含量Chlorophyll content | 0 | 0.15 | 0.50 | 0.42 | 1.00 | 0.60 | 0.64 |
根系活力Root vitality | 0.37 | 0 | 0.03 | 0.71 | 1.00 | 0.38 | 0.91 |
产量Yield | 0 | 0.35 | 0.55 | 0.69 | 1.00 | 0.35 | 0.55 |
可溶性糖Soluble sugar | 0 | 0.28 | 1.00 | 0.56 | 0.93 | 0.19 | 0.46 |
可溶性蛋白Soluble protein | 0 | 0.24 | 0.39 | 0.99 | 1.00 | 0.74 | 0.72 |
游离氨基酸Free amino acids | 0 | 0.46 | 1.00 | 0.79 | 0.99 | 0.85 | 0.87 |
硝酸盐Nitrate | 1.00 | 0 | 0.41 | 0.56 | 0.60 | 0.71 | 0.76 |
维生素C VC | 0 | 0.15 | 0.57 | 0.42 | 1.00 | 0.95 | 0.34 |
硫苷Glucosinolate | 0 | 0.33 | 1.00 | 0.44 | 0.88 | 0.27 | 0.24 |
总黄酮Total flavonoids | 0 | 0.43 | 0.63 | 0.68 | 1.00 | 0.27 | 0.43 |
总酚Total phenols | 0 | 0.86 | 0.52 | 0.81 | 0.91 | 1.00 | 0.46 |
铜Cu | 0 | 0.34 | 0.56 | 0.68 | 0.80 | 0.64 | 1.00 |
铁Fe | 0 | 0.05 | 0.08 | 0.90 | 1.00 | 0.65 | 0.51 |
锰Mn | 0 | 0.29 | 0.23 | 0.76 | 1.00 | 0.63 | 0.61 |
锌Zn | 0 | 0.33 | 0.77 | 0.62 | 0.74 | 0.81 | 1.00 |
钙Ca | 0 | 0.68 | 1.00 | 0.38 | 0.76 | 0.31 | 0.55 |
镁Mg | 0 | 0.28 | 0.46 | 0.98 | 1.00 | 0.41 | 0.78 |
平均隶属度Average membership | 0.08 | 0.31 | 0.57 | 0.67 | 0.92 | 0.57 | 0.64 |
位次Rank | 7 | 6 | 5 | 2 | 1 | 4 | 3 |
[1] |
PAUL S, GENG C G, YANG T H, et al. Phytochemical and health-beneficial progress of turnip (Brassica rapa)[J]. Journal of Food Science, 2019, 84(1): 19-30.
DOI URL |
[2] | 王雪涵. 三种作物秸秆对大白菜幼苗生长及土壤化学性质的影响[D]. 哈尔滨: 东北农业大学, 2018. |
WANG X H. Effects of three crop stalks on seedling growth and soil chemical properties of continuous cropping Chinese cabbage[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract) | |
[3] | 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报, 2017, 23(6): 1480-1493. |
HUANG S W, TANG J W, LI C H, et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1480-1493. (in Chinese with English abstract) | |
[4] | 王腾飞, 谭长银, 曹雪莹, 等. 长期施肥对土壤重金属积累和有效性的影响[J]. 农业环境科学学报, 2017, 36(2): 257-263. |
WANG T F, TAN C Y, CAO X Y, et al. Effects of long-term fertilization on the accumulation and availability of heavy metals in soil[J]. Journal of Agro-Environment Science, 2017, 36(2): 257-263. (in Chinese with English abstract) | |
[5] | 唐宇. 化肥减施条件下配施生物有机肥对番茄生长及其土壤的影响[D]. 乌鲁木齐: 新疆大学, 2019. |
TANG Y. Effects of applying bio-organic fertilizer on tomato growth and soil under reduced fertilizer application[D]. Urumqi: Xinjiang University, 2019. (in Chinese with English abstract) | |
[6] | 王善高, 田旭, 周应恒. 中国农业化肥施用量增长原因分解及其削减潜力分析[J]. 生态经济, 2019, 35(3): 115-121. |
WANG S G, TIAN X, ZHOU Y H. Analysis on the reasons for increase of agricultural chemical fertilizer in China and the potential of reducing it[J]. Ecological Economy, 2019, 35(3): 115-121. (in Chinese with English abstract) | |
[7] | 魏成熙, 毕志忠, 李维贤, 等. 毕节地区小麦平衡施肥参数研究[J]. 山地农业生物学报, 1998, 17(4): 191-196. |
WEI C X, BI Z Z, LI W X, et al. A study on balanced fertilizing constant for wheat in Bije area[J]. Journal of Mountain Agriculture and Biology, 1998, 17(4): 191-196. (in Chinese with English abstract) | |
[8] | 李秋霞, 黄驰超, 潘根兴. 基于资源环境管理角度推进测土配方施肥的方法探讨[J]. 中国农学通报, 2014, 30(8): 167-175. |
LI Q X, HUANG C C, PAN G X. The study on the method of soil testing and fertilizer recommendation based on the perspective of management of resources and environment[J]. Chinese Agricultural Science Bulletin, 2014, 30(8): 167-175. (in Chinese with English abstract) | |
[9] | 葛顺峰, 朱占玲, 魏绍冲, 等. 中国苹果化肥减量增效技术途径与展望[J]. 园艺学报, 2017, 44(9): 1681-1692. |
GE S F, ZHU Z L, WEI S C, et al. Technical approach and research prospect of saving and improving efficiency of chemical fertilizers for apple in China[J]. Acta Horticulturae Sinica, 2017, 44(9): 1681-1692. (in Chinese with English abstract) | |
[10] | 李亮, 张翔, 毛家伟, 等. 生物有机肥在烟草上的应用研究进展及展望[J]. 中国农学通报, 2016, 32(18): 47-52. |
LI L, ZHANG X, MAO J W, et al. Advances in bio-organic fertilizer application to tobacco[J]. Chinese Agricultural Science Bulletin, 2016, 32(18): 47-52. (in Chinese with English abstract) | |
[11] | 吕真真, 吴向东, 侯红乾, 等. 有机-无机肥配施比例对双季稻田土壤质量的影响[J]. 植物营养与肥料学报, 2017, 23(4): 904-913. |
LÜ Z Z, WU X D, HOU H Q, et al. Effect of different application ratios of chemical and organic fertilizers on soil quality in double cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 904-913. (in Chinese with English abstract) | |
[12] | 李梦梅. 生物有机肥对提高蔬菜产量品质的作用机理研究[D]. 南宁: 广西大学, 2005. |
LI M M. Studies on the mechanism of bio-organic manure on improving yield and quality of vegetable[D]. Nanning: Guangxi University, 2005. (in Chinese with English abstract) | |
[13] | 付丽军, 张爱敏, 王向东, 等. 生物有机肥改良设施蔬菜土壤的研究进展[J]. 中国土壤与肥料, 2017(3): 1-5. |
FU L J, ZHANG A M, WANG X D, et al. Advances on application of bio organic fertilizer for restoring facility vegetable soil[J]. Soil and Fertilizer Sciences in China, 2017(3): 1-5. (in Chinese with English abstract) | |
[14] | 梁宏, 黄静, 赵佳, 等. 新型生物有机肥防治西瓜枯萎病机理[J]. 北方园艺, 2017(2): 117-121. |
LIANG H, HUANG J, ZHAO J, et al. Mechanism of new bio-organic fertilizer on controlling to watermelon fusarium wilt disease[J]. Northern Horticulture, 2017(2): 117-121. (in Chinese) | |
[15] | 谢鹏虓, 黄鹏, 安丹军. 配施生物有机肥及化肥减量对玉米间作豌豆土壤微生物及产量的影响[J]. 甘肃农业大学学报, 2014, 49(6): 41-46. |
XIE P X, HUANG P, AN D J. Effects of bio-organic fertilizer and chemical fertilizer reduction on soil microorganism and yield of maize/pea intercropping[J]. Journal of Gansu Agricultural University, 2014, 49(6): 41-46. (in Chinese with English abstract) | |
[16] | 秦闯, 李硕, 郭艳杰, 等. 增施生物有机肥减施化肥对夏玉米土壤生物指标的影响[J]. 河北农业大学学报, 2018, 41(6): 17-23. |
QIN C, LI S, GUO Y J, et al. Effect of applying bio-organic fertilizer and reducing chemical fertilizer on soil biological index of summer maize[J]. Journal of Hebei Agricultural University, 2018, 41(6): 17-23. (in Chinese with English abstract) | |
[17] | 柏琼芝, 肖石江, 王晓瑞, 等. 化肥减量配施生物有机肥对秋马铃薯产量的影响[J]. 土壤与作物, 2019, 8(2): 158-165. |
BAI Q Z, XIAO S J, WANG X R, et al. Effect of reduced chemical fertilizer plus biological fertilizer on autumn potato yield[J]. Soils and Crops, 2019, 8(2): 158-165. (in Chinese with English abstract) | |
[18] | 史书强, 赵颖, 何志刚, 等. 生物有机肥配施化肥对马铃薯土壤养分运移及产量的影响[J]. 江苏农业科学, 2016, 44(6): 154-157. |
SHI S Q, ZHAO Y, HE Z G, et al. Effects of bio-organic fertilizer combined with chemical fertilizers on soil nutrient transport and yield of potato[J]. Jiangsu Agricultural Sciences, 2016, 44(6): 154-157. (in Chinese) | |
[19] | 邱晓丽. 不同生物有机肥对土壤生物活性以及对马铃薯的生物效应的影响[D]. 兰州: 甘肃农业大学, 2018. |
QIU X L. Effects of bio-organic fertilizers on soil biological activities and the root growth, morphology and activities of potato[D]. Lanzhou: Gansu Agricultural University, 2018. (in Chinese with English abstract) | |
[20] | 刘慧. 减量化肥配施生物有机肥对茄科蔬菜生长、产量、品质及土壤性质的影响[D]. 延安: 延安大学, 2020. |
LIU H. Effects of reduced amount of chemical fertilizer combined with bio-organic fertilizer on Solanaceae vegetable growth, yield, quality and soil properties[D]. Yan'an: Yan'an University, 2020. (in Chinese with English abstract) | |
[21] |
唐宇, 包慧芳, 詹发强, 等. 化肥减施条件下配施生物有机肥对番茄生长及品质的影响[J]. 新疆农业科学, 2019, 56(5): 841-854.
DOI |
TANG Y, BAO H F, ZHAN F Q, et al. Effect of combined application of bio-organic fertilizer on tomato growth and quality under the condition of chemical fertilizer reduction[J]. Xinjiang Agricultural Sciences, 2019, 56(5): 841-854. (in Chinese with English abstract)
DOI |
|
[22] | 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000. |
[23] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
[24] | 刘绚霞, 杨莉. 分光光度法测定油菜籽中硫代葡萄糖甙[J]. 陕西农业科学, 2002, 48(6): 5-7. |
LIU X X, YANG L. Spectrophotometric determination of glucosinolates in rapeseed[J]. Shaanxi Journal of Agricultural Sciences, 2002, 48(6): 5-7. (in Chinese) | |
[25] | 唐巧玉, 周毅峰, 朱玉昌, 等. 金橘皮中黄酮类物质的提取及其体外抗氧化活性研究[J]. 农业工程学报, 2008, 24(6): 258-261. |
TANG Q Y, ZHOU Y F, ZHU Y C, et al. Extraction of flavone compounds from Fortunella margarita peel and its antioxidation in vitro[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(6): 258-261. (in Chinese with English abstract) | |
[26] |
LI X C, HU Q P, JIANG S X, et al. Flos Chrysanthemi Indici protects against hydroxyl-induced damages to DNA and MSCs via antioxidant mechanism[J]. Journal of Saudi Chemical Society, 2015, 19(4): 454-460.
DOI URL |
[27] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[28] | 刘刚. 平衡施肥对桑树产量与品质的影响及其施肥模型的建立[D]. 重庆: 西南大学, 2012. |
LIU G. Effects of balanced fertilization on mulberry yield and quality and its fertilization model[D]. Chongqing: Southwest University, 2012. (in Chinese with English abstract) | |
[29] | 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J]. 水土保持学报, 2018, 32(1): 352-360. |
SONG Y L, YU J, CHEN S G, et al. Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 352-360. (in Chinese with English abstract) | |
[30] | 张迎春, 颉建明, 郁继华, 等. 生物有机肥部分替代化肥对莴笋生长、产量及品质的影响[J]. 干旱地区农业研究, 2020, 38(1): 66-73. |
ZHANG Y C, XIE J M, YU J H, et al. Effects of partial substitution of chemical fertilizer by bio-organic fertilizer on the growth, yield and quality of Asparagus lettuce[J]. Agricultural Research in the Arid Areas, 2020, 38(1): 66-73. (in Chinese with English abstract) | |
[31] | 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响[J]. 中国农业科学, 2018, 51(11): 2136-2142. |
WEN Y C, ZHANG Y D, YUAN L, et al. Crop yield and soil fertility response to commercial organic fertilizer substituting chemical fertilizer[J]. Scientia Agricultura Sinica, 2018, 51(11): 2136-2142. (in Chinese with English abstract) | |
[32] |
孙家骏, 付青霞, 谷洁, 等. 生物有机肥对猕猴桃土壤酶活性和微生物群落的影响[J]. 应用生态学报, 2016, 27(3): 829-837.
DOI |
SUN J J, FU Q X, GU J, et al. Effects of bio-organic fertilizer on soil enzyme activities and microbial community in kiwifruit orchard[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 829-837. (in Chinese with English abstract) | |
[33] | 何东霞, 颉建明, 何志学, 等. 生物有机肥部分替代化肥对韭菜生长生理及肥料利用率的影响[J]. 西北农业学报, 2020, 29(6): 958-967. |
HE D X, XIE J M, HE Z X, et al. Effect of partial substitution of chemical fertilizer with bio-organic fertilizer on growth physiological and fertilizer utilization efficiency in Chinese chives[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(6): 958-967. (in Chinese with English abstract) | |
[34] | 张钧恒, 马乐乐, 李建明. 全有机营养肥水耦合对番茄品质、产量及水分利用效率的影响[J]. 中国农业科学, 2018, 51(14): 2788-2798. |
ZHANG J H, MA L L, LI J M. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato[J]. Scientia Agricultura Sinica, 2018, 51(14): 2788-2798. (in Chinese with English abstract) | |
[35] | 林志锋, 刘勋, 谢博. 生物有机肥在苦瓜、豆角栽培上的应用研究[J]. 广西农业科学, 2006, 37(4): 408-409. |
LIN Z F, LIU X, XIE B. Application of bio-organic fertilizer on balsam pear and snapbean cultivation[J]. Guangxi Agricultural Sciences, 2006, 37(4): 408-409. (in Chinese with English abstract) | |
[36] | 钟希琼, 王惠珍, 邓日烈, 等. 生物有机肥对蔬菜生理性状和品质的影响[J]. 佛山科学技术学院学报(自然科学版), 2005, 23(2): 74-76. |
ZHONG X Q, WANG H Z, DENG R L, et al. Effects of bioorganic fertilizer on physiological characters and quality of vegetables[J]. Journal of Foshan University(Natural Science Edition), 2005, 23(2): 74-76. (in Chinese with English abstract) | |
[37] | 孙志栋, 戴国辉, 陈惠云, 等. 不同生物有机肥对设施栽培西兰花生长、品质与效益的影响分析[J]. 土壤通报, 2013, 44(4): 918-924. |
SUN Z D, DAI G H, CHEN H Y, et al. Effects of different types of bio-fertilizer on growth, quality and benefit of Brassica oleracea var. italica with protecting culture[J]. Chinese Journal of Soil Science, 2013, 44(4): 918-924. (in Chinese with English abstract) | |
[38] | 孔祥波, 徐坤, 尚庆文, 等. 生物有机肥对生姜生长及产量、品质的影响[J]. 中国土壤与肥料, 2007(2): 64-67. |
KONG X B, XU K, SHANG Q W, et al. Effect of bioorganic fertilizer on the growth, yield and quality of ginger[J]. Soil and Fertilizer Sciences in China, 2007(2): 64-67. (in Chinese with English abstract) | |
[39] | 朱代强. 生物有机肥部分替代化肥对蒜苗生长生理、养分吸收、产量及品质的影响[D]. 兰州: 甘肃农业大学, 2018. |
ZHU D Q. The effect of bio-organic fertilizer on the yield nutrient absorption photosynthesis and quality of garlic shoots[D]. Lanzhou: Gansu Agricultural University, 2018. (in Chinese with English abstract) | |
[40] | 李杰, 贾豪语, 颉建明, 等. 生物肥部分替代化肥对花椰菜产量、品质、光合特性及肥料利用率的影响[J]. 草业学报, 2015, 24(1): 47-55. |
LI J, JIA H Y, XIE J M, et al. Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield, quality, photosynthesis and fertilizer utilization rate in broccoli[J]. Acta Prataculturae Sinica, 2015, 24(1): 47-55. (in Chinese with English abstract) | |
[41] | 朱文振, 马龙, 李国荣. 黄酮类化合物的抗癌作用及作用机制[J]. 生命科学, 2012, 24(5): 444-449. |
ZHU W Z, MA L, LI G R. Prevention and molecular mechanisms of flavonoids against cancer[J]. Chinese Bulletin of Life Sciences, 2012, 24(5): 444-449. (in Chinese with English abstract) | |
[42] | 王成, 吕剑, 李静, 等. 不同生物有机肥用量对韭菜产量、品质及养分利用的影响[J]. 中国土壤与肥料, 2019(6): 204-211. |
WANG C, LYU J, LI J, et al. Effects of different biological fertilizer levels on yield, quality and nutrient utilization of Chinese chive[J]. Soil and Fertilizer Sciences in China, 2019(6): 204-211. (in Chinese with English abstract) | |
[43] |
ZHANG L, KAWAGUCHI R, MORIKAWA-ICHINOSE T, et al. Sulfur deficiency-induced glucosinolate catabolism attributed to two β-glucosidases, BGLU28 and BGLU30, is required for plant growth maintenance under sulfur deficiency[J]. Plant and Cell Physiology, 2020, 61(4): 803-813.
DOI URL |
[44] | 赵满兴, 刘慧, 白二磊, 等. 腐殖酸肥或生物有机肥替代部分化肥对土壤肥力、红枣产量和品质的影响[J]. 西北农业学报, 2019, 28(6): 981-987. |
ZHAO M X, LIU H, BAI E L, et al. Effects of combined application of chemical fertilizer with humic acid and bio-organic fertilizer on soil fertility and jujube yield and quality[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(6): 981-987. (in Chinese with English abstract) | |
[45] |
HAN S H, AN J Y, HWANG J, et al. The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system[J]. Forest Science and Technology, 2016, 12(3): 137-143.
DOI URL |
[46] | 陆景陵. 植物营养学(上册)[M]. 北京: 中国农业大学出版社, 2003. |
[47] | 金莉, 肖雪梅, 郁继华, 等. 营养液浓度对基质栽培番茄果实矿质元素含量的影响[J]. 甘肃农业大学学报, 2020, 55(2): 76-82. |
JIN L, XIAO X M, YU J H, et al. Effect of nutrient solution concentration on mineral element content in tomato fruit under substrate culture[J]. Journal of Gansu Agricultural University, 2020, 55(2): 76-82. (in Chinese with English abstract) | |
[48] |
LI B Y, ZHOU D M, CANG L, et al. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications[J]. Soil and Tillage Research, 2007, 96(1/2): 166-173.
DOI URL |
[49] | 李水祥, 佘文琴, 吴世涛, 等. 有机肥替代部分化肥改善‘三红蜜柚’树体营养及果实品质[J]. 热带作物学报, 2020, 41(4): 649-654. |
LI S X, SHE W Q, WU S T, et al. Partial substitution of chemical fertilizer by organic fertilizer improving nutrition and fruit quality of ‘Sanhong-Miyou’[J]. Chinese Journal of Tropical Crops, 2020, 41(4): 649-654. (in Chinese with English abstract) |
[1] | 莫言玲, 张文静, 罗亚兰, 曾静, 陈静静, 刘义华. 宽柄芥种质资源农艺性状与营养品质性状鉴定与评价[J]. 浙江农业学报, 2022, 34(2): 317-328. |
[2] | 李菊, 颉博杰, 魏守辉, 张国斌, 武玥, 唐中祺, 肖雪梅, 郁继华. 有机肥与化肥配施对松花菜花球营养品质和挥发性物质的影响[J]. 浙江农业学报, 2021, 33(7): 1199-1211. |
[3] | 奚辉, 李国雷, 陶安安, 顾品, 韩东道, 李娜, 陈喜靖. 滴灌施用有机液肥对红美人柑橘园土壤环境、柑橘产量、品质和经济效益的影响[J]. 浙江农业学报, 2021, 33(4): 670-677. |
[4] | 陶鹏, 岳智臣, 赵彦婷, 雷娟利, 李必元. 大白菜BrSPS1Fb基因剪接受体位点变异及其对剪接的影响[J]. 浙江农业学报, 2021, 33(11): 2068-2074. |
[5] | 王长进, 徐运林, 程昕昕, 周毅, 余海兵. 甜玉米种子营养品质主要性状全基因组关联分析[J]. 浙江农业学报, 2020, 32(3): 383-389. |
[6] | 翟克清, 张昕昱, 周念念, 安玉兰, 雷玥, 高洁, 甘德芳, 刘文, 何晓梅. 光学干涉膜下生菜的生理指标变化及品质分析[J]. 浙江农业学报, 2019, 31(9): 1493-1501. |
[7] | 林瑞, 任海英, 安笑笑, 郑锡良, 梁森苗, 张淑文, 戚行江. 生物有机肥对杨梅凋萎病防控及其树势恢复的影响[J]. 浙江农业学报, 2019, 31(7): 1096-1104. |
[8] | 王淑珍, 张亚惠, 裘劼人, 周历萍, 陈思思, 柴伟国, 毛碧增. 不同倍性草莓品种性状比较[J]. 浙江农业学报, 2019, 31(6): 893-899. |
[9] | 王燕云, 赵龙杰, 郝春莉, 蔡尽忠. 生物有机肥对不同连作年限设施黄瓜土壤微生物数量和酶活性的影响[J]. 浙江农业学报, 2019, 31(4): 631-638. |
[10] | 周艳超, 吴艳红, 田兴武, 周海霞, 韩泽宇, 刘吉青, 兰挚谦, 张雪艳. 纳米碳与枯草菌对黄瓜幼苗生长及土壤环境的影响[J]. 浙江农业学报, 2019, 31(3): 392-400. |
[11] | 苗晓茸, 刘俊英, 张前兵, 李菲菲, 孙艳梅, 于磊, 马春晖. 喷施硼、钼肥对滴灌紫花苜蓿生产性能及营养品质的影响[J]. 浙江农业学报, 2019, 31(10): 1583-1590. |
[12] | 胡丽萍, 周国兴, 刘光敏, 王亚钦, 何洪巨. 组配改良剂对铅胁迫萝卜营养品质及铅积累的影响[J]. 浙江农业学报, 2018, 30(4): 592-599. |
[13] | 赵国富, 王金敖, 谢庭辉. 红颜草莓不同发育时期营养品质及香气变化[J]. 浙江农业学报, 2018, 30(12): 2044-2048. |
[14] | 邓晓雷, 潘晶晶, 祝水金, 陈进红. 铃期极端高温对转iaaM基因棉花棉铃产量性状、纤维品质和棉仁营养品质的影响[J]. 浙江农业学报, 2018, 30(11): 1805-1810. |
[15] | 刘芳, 韩丹, 赵铭钦, 李小勇, 管成伟. 微生物菌剂配施腐殖酸钾对植烟土壤改良及烤烟经济效益的影响[J]. 浙江农业学报, 2017, 29(7): 1064-1069. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 705
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 907
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||