浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 869-879.DOI: 10.3969/j.issn.1004-1524.20240343
收稿日期:
2024-04-12
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
秦宇坤(1993—),男,河南开封人,硕士,助理研究员,主要研究方向为棉花高产栽培。E-mail:18236411280@163.com
通讯作者:
*张丽娟,E-mail:416599139@qq.com
基金资助:
QIN Yukun(), CHEN Junying, WANG Yuping, ZHANG Lijuan*(
)
Received:
2024-04-12
Online:
2025-04-25
Published:
2025-05-09
摘要:
为探究长江流域直播棉光合特性、产量、氮素吸收利用、土壤养分对减氮增碳措施的响应,筛选适宜的施氮方式,以棉花品种赣棉杂0906为对象,设置4种施氮方式[N0,不施氮;N1,常规施氮,施氮量(折纯,下同)345 kg·hm-2;N2,减氮20%,施氮量276 kg·hm-2;N3,减氮增碳,施氮量276 kg·hm-2,其中,由有机肥提供的纯氮为27.6 kg·hm-2],测定功能叶光合参数、群体生物量、产量及其构成因素、氮素吸收利用、土壤养分含量的变化。结果表明,与N0相比,2020年和2021年各施氮处理盛铃期的净光合速率分别显著(P<0.05)增加13.47%~33.38%和30.32%~39.64%。与N1相比,N2、N3处理未显著降低棉花功能叶的胞间CO2浓度、气孔导度和蒸腾速率。与N1相比,N3处理未显著降低棉花群体生物量、籽棉产量。2020年,N3处理的氮肥农学利用率、偏生产力分别较N1处理显著增加16.62%、19.15%,在2021年分别显著增加21.03%、22.14%。两年间,N3处理的土壤有机质、全氮、有效磷、速效钾含量未较N1处理显著降低,可保持土壤养分稳定,2020年的土壤硝态氮含量还较N1处理显著降低49.72%。综上,较常规施氮量降低20%,并利用有机肥替代10%的化肥,能够稳定棉花产量,提升氮肥利用率,保持土壤养分,有利于长江流域棉区的绿色发展。
中图分类号:
秦宇坤, 陈俊英, 王玉萍, 张丽娟. 减氮增碳对长江流域棉花生产和氮素吸收利用的影响[J]. 浙江农业学报, 2025, 37(4): 869-879.
QIN Yukun, CHEN Junying, WANG Yuping, ZHANG Lijuan. Effects of reducing nitrogen and increasing carbon on cotton production and nitrogen absorption and utilization in the Yangtze River Basin of China[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 869-879.
图1 不同处理对叶片光合指标的影响 Pn,净光合速率;Ci,胞间CO2浓度;Gs,气孔导度;Tr,蒸腾速率。同一年份同一时期柱上无相同字母的表示处理间差异显著(P<0.05)。
Fig.1 Effects of treatments on leaf photosynthetic indexes Pn, Net photosynthetic rate; Ci, Intercellular CO2 concentration; Gs, Stomatal conductance; Tr, Transpiration rate. Bars marked without the same letters indicate significant difference within treatments at the same growth stage in the same year at P<0.05.
年份 Year | 处理 Treatment | 单铃重 Single boll weight/g | 单株铃数 Number of bolls per plant | 籽棉产量 Seed cotton yield/(kg·hm-2) |
---|---|---|---|---|
2020 | N0 | 4.29±0.24 b | 13.53±2.77 c | 1 262.65±188.65 b |
N1 | 5.41±0.20 a | 28.47±1.33 a | 3 802.00±119.00 a | |
N2 | 5.34±0.20 a | 24.07±1.43 b | 3 693.00±58.50 a | |
N3 | 5.53±0.07 a | 26.53±1.03 ab | 3 716.00±59.50 a | |
2021 | N0 | 4.20 ±0.15 b | 10.17 ±0.77 b | 1 128.00±18.00 c |
N1 | 5.40 ±0.14 a | 24.90±1.80 a | 3 639.50±71.50 a | |
N2 | 5.30 ±0.25 a | 24.07 ±2.57 a | 3 262.00±68.50 b | |
N3 | 5.41 ±0.54 a | 26.40±2.50 a | 3 470.00 ±169.50 a |
表1 不同处理对棉花产量及其构成因素的影响
Table 1 Effects of treatments on cotton yield and its components
年份 Year | 处理 Treatment | 单铃重 Single boll weight/g | 单株铃数 Number of bolls per plant | 籽棉产量 Seed cotton yield/(kg·hm-2) |
---|---|---|---|---|
2020 | N0 | 4.29±0.24 b | 13.53±2.77 c | 1 262.65±188.65 b |
N1 | 5.41±0.20 a | 28.47±1.33 a | 3 802.00±119.00 a | |
N2 | 5.34±0.20 a | 24.07±1.43 b | 3 693.00±58.50 a | |
N3 | 5.53±0.07 a | 26.53±1.03 ab | 3 716.00±59.50 a | |
2021 | N0 | 4.20 ±0.15 b | 10.17 ±0.77 b | 1 128.00±18.00 c |
N1 | 5.40 ±0.14 a | 24.90±1.80 a | 3 639.50±71.50 a | |
N2 | 5.30 ±0.25 a | 24.07 ±2.57 a | 3 262.00±68.50 b | |
N3 | 5.41 ±0.54 a | 26.40±2.50 a | 3 470.00 ±169.50 a |
年份 Year | 处理 Treatment | 群体生物量Population biomass | 群体氮素积累量Nitrogen content per plant | |||
---|---|---|---|---|---|---|
营养器官 Vegetative organs | 生殖器官 Reproductive organs | 营养器官 Vegetative organs | 生殖器官 Reproductive organs | 整株 Whole plant | ||
2020 | N0 | 140.41±14.49 c | 93.54±15.67 b | 42.50±4.91 b | 32.36±5.81 c | 74.86±2.21 c |
N1 | 202.47±19.34 a | 246.65±14.99 a | 64.44±7.30 a | 89.11±3.13 ab | 153.56±8.16 ab | |
N2 | 173.38±4.98 b | 237.09±10.93 a | 57.05±2.55 a | 82.84±7.93 b | 139.88±10.49 b | |
N3 | 190.71±11.18 ab | 258.52±19.95 a | 60.58±2.95 a | 94.86±5.11 a | 155.44±5.48 a | |
2021 | N0 | 99.85±7.70 b | 79.88±7.36 b | 30.22±3.26 b | 28.34±3.06 b | 58.57±4.15 b |
N1 | 139.97±3.42 a | 274.29±2.94 a | 44.64±0.86 a | 101.82±2.14 a | 146.47±2.55 a | |
N2 | 134.97±4.52 a | 265.26±7.08 a | 43.70±0.33 a | 97.22±4.51 a | 140.91±4.83 a | |
N3 | 146.73±16.64 a | 270.10±11.49 a | 45.28±7.62 a | 100.09±6.45 a | 145.36±8.43 a |
表2 不同处理对棉花生物量与氮素吸收的影响
Table 2 Effects of treatments on biomass and nitrogen content of cotton kg·hm-2
年份 Year | 处理 Treatment | 群体生物量Population biomass | 群体氮素积累量Nitrogen content per plant | |||
---|---|---|---|---|---|---|
营养器官 Vegetative organs | 生殖器官 Reproductive organs | 营养器官 Vegetative organs | 生殖器官 Reproductive organs | 整株 Whole plant | ||
2020 | N0 | 140.41±14.49 c | 93.54±15.67 b | 42.50±4.91 b | 32.36±5.81 c | 74.86±2.21 c |
N1 | 202.47±19.34 a | 246.65±14.99 a | 64.44±7.30 a | 89.11±3.13 ab | 153.56±8.16 ab | |
N2 | 173.38±4.98 b | 237.09±10.93 a | 57.05±2.55 a | 82.84±7.93 b | 139.88±10.49 b | |
N3 | 190.71±11.18 ab | 258.52±19.95 a | 60.58±2.95 a | 94.86±5.11 a | 155.44±5.48 a | |
2021 | N0 | 99.85±7.70 b | 79.88±7.36 b | 30.22±3.26 b | 28.34±3.06 b | 58.57±4.15 b |
N1 | 139.97±3.42 a | 274.29±2.94 a | 44.64±0.86 a | 101.82±2.14 a | 146.47±2.55 a | |
N2 | 134.97±4.52 a | 265.26±7.08 a | 43.70±0.33 a | 97.22±4.51 a | 140.91±4.83 a | |
N3 | 146.73±16.64 a | 270.10±11.49 a | 45.28±7.62 a | 100.09±6.45 a | 145.36±8.43 a |
年份 Year | 处理 Treatment | 氮肥农学利用率 Agronomic utilization rate of N/(kg·kg-1) | 氮肥偏生产力 Partial productivity of N fertilizer/(kg·kg-1) | 氮肥回收率 Recovery rate of N fertilizer/% | 氮肥生理利用率 Physiological utilization rate of N/(kg·kg-1) | 氮肥内在利用率 Intrinsic utilization rate of N/(kg·kg-1) |
---|---|---|---|---|---|---|
2020 | N0 | — | — | — | — | 7.59±1.31 b |
N1 | 7.75±0.35 b | 11.02±0.35 b | 22.81±2.36 a | 32.54±5.15 a | 11.15±1.04 a | |
N2 | 9.29±0.22 a | 13.38±0.21 a | 23.56±3.80 a | 37.86±5.97 a | 11.73±0.89 a | |
N3 | 9.38±0.21 a | 13.46±0.22 a | 29.20±1.99 a | 30.53±2.11 a | 10.56±0.42 a | |
2021 | N0 | — | — | — | — | 7.96±0.67 b |
N1 | 7.28±0.21 b | 10.55±0.21 b | 28.58±0.70 a | 25.48±0.74 b | 10.68±0.26 a | |
N2 | 7.73±0.25 ab | 11.82±0.25 a | 25.94±0.71 a | 29.83±1.75 ab | 10.16±0.38 a | |
N3 | 8.49±0.62 a | 12.57±0.61 a | 27.08±2.78 a | 31.45±3.05 a | 10.28±0.86 a |
表3 不同处理对氮肥利用的影响
Table 3 Effects of treatments on nitrogen fertilizer utilization
年份 Year | 处理 Treatment | 氮肥农学利用率 Agronomic utilization rate of N/(kg·kg-1) | 氮肥偏生产力 Partial productivity of N fertilizer/(kg·kg-1) | 氮肥回收率 Recovery rate of N fertilizer/% | 氮肥生理利用率 Physiological utilization rate of N/(kg·kg-1) | 氮肥内在利用率 Intrinsic utilization rate of N/(kg·kg-1) |
---|---|---|---|---|---|---|
2020 | N0 | — | — | — | — | 7.59±1.31 b |
N1 | 7.75±0.35 b | 11.02±0.35 b | 22.81±2.36 a | 32.54±5.15 a | 11.15±1.04 a | |
N2 | 9.29±0.22 a | 13.38±0.21 a | 23.56±3.80 a | 37.86±5.97 a | 11.73±0.89 a | |
N3 | 9.38±0.21 a | 13.46±0.22 a | 29.20±1.99 a | 30.53±2.11 a | 10.56±0.42 a | |
2021 | N0 | — | — | — | — | 7.96±0.67 b |
N1 | 7.28±0.21 b | 10.55±0.21 b | 28.58±0.70 a | 25.48±0.74 b | 10.68±0.26 a | |
N2 | 7.73±0.25 ab | 11.82±0.25 a | 25.94±0.71 a | 29.83±1.75 ab | 10.16±0.38 a | |
N3 | 8.49±0.62 a | 12.57±0.61 a | 27.08±2.78 a | 31.45±3.05 a | 10.28±0.86 a |
年份 Year | 处理 Treatment | 有机质含量 Organic matter content/ (g·kg-1) | 全氮含量 Total nitrogen content/ (g·kg-1) | 有效磷含量 Available phosphorus content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | 铵态氮含量 Ammonium nitrogen content/ (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
2020 | N0 | 5.94±0.19 a | 0.74±0.14 a | 3.95±0.73 a | 130.58±6.62 b | 2.05±0.09 a | 1.43±0.35 b |
N1 | 6.91±0.71 a | 0.89±0.01 a | 4.16±0.71 a | 169.46±9.46 a | 2.54±0.63 a | 3.58±0.18 a | |
N2 | 6.18±0.12 a | 0.75±0.07 a | 3.30±0.63 a | 161.48±7.92 a | 2.08±0.61 a | 1.92±0.58 b | |
N3 | 6.85±0.96 a | 0.83±0.18 a | 3.41±0.44 a | 165.89±11.21 a | 1.96±0.27 a | 1.80±0.09 b | |
2021 | N0 | 6.00±0.60 b | 0.56±0.10 b | 4.89±0.61 a | 71.85±5.75 a | 3.36±0.22 c | 0.72±0.17 b |
N1 | 7.83±0.73 a | 0.79±0.19 a | 4.93±0.68 a | 76.57±10.37 a | 5.25±0.47 a | 1.87±0.04 a | |
N2 | 7.53±0.63 a | 0.66±0.03 ab | 5.75±0.69 a | 76.87±10.63 a | 4.67±0.38 b | 1.74±0.56 a | |
N3 | 8.67±0.57 a | 0.67±0.07 ab | 5.23±0.92 a | 82.60±4.50 a | 4.30±0.19 b | 1.29±0.46 ab |
表4 不同处理对土壤养分含量的影响
Table 4 Effects of treatments on soil nutrients content
年份 Year | 处理 Treatment | 有机质含量 Organic matter content/ (g·kg-1) | 全氮含量 Total nitrogen content/ (g·kg-1) | 有效磷含量 Available phosphorus content/ (mg·kg-1) | 速效钾含量 Available potassium content/ (mg·kg-1) | 铵态氮含量 Ammonium nitrogen content/ (mg·kg-1) | 硝态氮含量 Nitrate nitrogen content/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
2020 | N0 | 5.94±0.19 a | 0.74±0.14 a | 3.95±0.73 a | 130.58±6.62 b | 2.05±0.09 a | 1.43±0.35 b |
N1 | 6.91±0.71 a | 0.89±0.01 a | 4.16±0.71 a | 169.46±9.46 a | 2.54±0.63 a | 3.58±0.18 a | |
N2 | 6.18±0.12 a | 0.75±0.07 a | 3.30±0.63 a | 161.48±7.92 a | 2.08±0.61 a | 1.92±0.58 b | |
N3 | 6.85±0.96 a | 0.83±0.18 a | 3.41±0.44 a | 165.89±11.21 a | 1.96±0.27 a | 1.80±0.09 b | |
2021 | N0 | 6.00±0.60 b | 0.56±0.10 b | 4.89±0.61 a | 71.85±5.75 a | 3.36±0.22 c | 0.72±0.17 b |
N1 | 7.83±0.73 a | 0.79±0.19 a | 4.93±0.68 a | 76.57±10.37 a | 5.25±0.47 a | 1.87±0.04 a | |
N2 | 7.53±0.63 a | 0.66±0.03 ab | 5.75±0.69 a | 76.87±10.63 a | 4.67±0.38 b | 1.74±0.56 a | |
N3 | 8.67±0.57 a | 0.67±0.07 ab | 5.23±0.92 a | 82.60±4.50 a | 4.30±0.19 b | 1.29±0.46 ab |
[1] | 邹芳刚, 郭文琦, 王友华, 等. 施氮量对长江流域滨海盐土棉花氮素吸收利用的影响[J]. 植物营养与肥料学报, 2015, 21(5): 1150-1158. |
ZOU F G, GUO W Q, WANG Y H, et al. Effects of nitrogen application rate on the nitrogen uptake and utilization of cotton grown in coastal saline fields of Yangtze River Valley[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(5): 1150-1158. (in Chinese with English abstract) | |
[2] | 张教海, 羿国香, 别墅, 等. 近五年湖北省及长江流域棉区棉花生产形势分析[J]. 湖北农业科学, 2020, 59(18): 25-28. |
ZHANG J H, YI G X, BIE S, et al. Analysis of cotton production situation in cotton areas of Hubei Province and Yangtze River Basin in the last five years[J]. Hubei Agricultural Sciences, 2020, 59(18): 25-28. (in Chinese with English abstract) | |
[3] | 张丽娟, 秦宇坤, 程慧煌, 等. 鄱阳湖区赣北棉田地表径流氮磷流失特征研究[J]. 中国农业科技导报, 2022, 24(6): 166-175. |
ZHANG L J, QIN Y K, CHENG H H, et al. Research on characteristics of nitrogen and phosphorus loss from surface runoff of cotton field in northern Jiangxi Province of Poyang Lake Region[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 166-175. (in Chinese with English abstract) | |
[4] | ZHANG H H, FU X Q, WANG X R, et al. Identification and screening of nitrogen-efficient cotton genotypes under low and normal nitrogen environments at the seedling stage[J]. Journal of Cotton Research, 2018, 1(1): 6. |
[5] | MACDONALD B C T, LATIMER J O, SCHWENKE G D, et al. The current status of nitrogen fertiliser use efficiency and future research directions for the Australian cotton industry[J]. Journal of Cotton Research, 2018, 1(1): 15. |
[6] | 董合林, 李鹏程, 刘爱忠, 等. 河南植棉区施氮量对麦棉两熟产量及氮肥利用率的影响[J]. 棉花学报, 2014, 26(1): 73-80. |
DONG H L, LI P C, LIU A Z, et al. Effect of nitrogen application rate on yield and nitrogen use efficiency of wheat-cotton double cropping in the Henan cotton region[J]. Cotton Science, 2014, 26(1): 73-80. (in Chinese with English abstract) | |
[7] | 徐海东, 董合林, 苏丽丽, 等. 液态有机肥对滴灌棉花光合特性及产量形成规律的影响[J]. 中国农学通报, 2017, 33(20): 71-77. |
XU H D, DONG H L, SU L L, et al. Effect of liquid organic fertilizer on photosynthetic characteristics and yield formation of cotton under drip irrigation[J]. Chinese Agricultural Science Bulletin, 2017, 33(20): 71-77. (in Chinese with English abstract) | |
[8] | 李霞, 郑曙峰, 董合忠. 长江流域棉区棉花轻简化高效栽培技术体系[J]. 中国棉花, 2017, 44(12): 32-34. |
LI X, ZHENG S F, DONG H Z. Light, simplified and efficient cotton cultivation technology system in cotton area of Yangtze River Basin[J]. China Cotton, 2017, 44(12): 32-34. (in Chinese) | |
[9] | 郭莉莉, 李飞, 李彩红, 等. 氮肥减量深施对油后密植棉花光合特性、产量和氮素利用效率的影响[J]. 华北农学报, 2022, 37(S1): 221-230. |
GUO L L, LI F, LI C H, et al. Effects of nitrogen reduction and deep application on photosynthetic characteristics, yield and nitrogen utilization efficiency of high density planting cotton after oil[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(S1): 221-230. (in Chinese) | |
[10] | 颜安, 吴勇, 徐金虹, 等. 有机肥氮替代化肥氮和土壤改良剂对盐碱地棉花产量和土壤养分的影响[J]. 中国土壤与肥料, 2021(6): 72-77. |
YAN A, WU Y, XU J H, et al. Effects of partial substitution of chemical nitrogen with organic fertilizer nitrogen and soil amendments on cotton production and soil nutrient in salinization field[J]. Soil and Fertilizer Sciences in China, 2021(6): 72-77. (in Chinese with English abstract) | |
[11] | 高飞, 任亮奇, 崔增团, 等. 氮肥深施对旱作覆膜农田土壤养分含量及春玉米产量的影响[J]. 干旱地区农业研究, 2023, 41(5): 89-98. |
GAO F, REN L Q, CUI Z T, et al. Effects of deep application of nitrogen fertilizer on soil nutrient content and spring maize yield in dryland film mulched farmland[J]. Agricultural Research in the Arid Areas, 2023, 41(5): 89-98. (in Chinese with English abstract) | |
[12] | 宋邦鹏, 蒋平安, 盛建东, 等. 化肥氮配施有机肥对棉花养分吸收及产量的影响[J]. 湖南农业科学, 2022(7): 22-26. |
SONG B P, JIANG P A, SHENG J D, et al. Different nitrogen levels combined with organic fertilizer affecting nutrient uptake and yield of cotton[J]. Hunan Agricultural Sciences, 2022(7): 22-26. (in Chinese with English abstract) | |
[13] | CHEN X J, XI K P, YANG Z P, et al. Long-term increases in continuous cotton yield and soil fertility following the application of cotton straw and organic manure[J]. Agronomy, 2023, 13:2133. |
[14] | 罗雪梅, 陈明媛, 王宁宁, 等. 减氮及有机替代对新疆棉田土壤氮素有效性和利用效率的影响[J]. 植物营养与肥料学报, 2024, 30(2): 289-306. |
LUO X M, CHEN M Y, WANG N N, et al. Effects of nitrogen reduction and organic substitution on soil nitrogen availability and utilization efficiency in Xinjiang cotton field[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(2): 289-306. (in Chinese with English abstract) | |
[15] | 李佳乐, 梁泳怡, 刘文杰, 等. 有机肥替代化学氮肥对橡胶幼苗生长和土壤环境的影响[J]. 应用生态学报, 2022, 33(2): 431-438. |
LI J L, LIANG Y Y, LIU W J, et al. Effects of manure substituting chemical nitrogen fertilizer on rubber seedling growth and soil environment[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 431-438. (in Chinese with English abstract) | |
[16] | 赵健, 籍瑶, 刘玥, 等. 长江流域农业面源污染现状、问题与对策[J]. 环境保护, 2022, 50(17): 30-32. |
ZHAO J, JI Y, LIU Y, et al. Current situation, problems and suggestions on agricultural non-point source pollution in the Yangtze River Basin[J]. Environmental Protection, 2022, 50(17): 30-32. (in Chinese with English abstract) | |
[17] | 张海星, 赵智强, 王瑞锋, 等. 长江中下游地区耕地土壤有机碳密度变化率驱动因素[J]. 农业工程学报, 2023, 39(9): 112-122. |
ZHANG H X, ZHAO Z Q, WANG R F, et al. Driving factors of cultivated land soil organic carbon density change rate in Middle-Lower Reaches of the Yangtze River Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 112-122. (in Chinese with English abstract) | |
[18] | 林涛, 吴凤全, 陈春帆, 等. 减量灌溉下不同施氮量对南疆机采棉田干物质积累及产量影响[J]. 新疆农业科学, 2019, 56(8): 1408-1417. |
LIN T, WU F Q, CHEN C F, et al. Effects of different nitrogen application rates on the dry matter accumulation and yield of the machine-picked cotton field in southern Xinjiang[J]. Xinjiang Agricultural Sciences, 2019, 56(8): 1408-1417. (in Chinese with English abstract) | |
[19] | 李鹏程, 董合林, 刘爱忠, 等. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响[J]. 植物营养与肥料学报, 2015, 21(3): 590-599. |
LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 590-599. (in Chinese with English abstract) | |
[20] | 冯克云, 王宁, 南宏宇, 等. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137. |
FENG K Y, WANG N, NAN H Y, et al. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton[J]. Acta Agronomica Sinica, 2021, 47(1): 125-137. (in Chinese with English abstract) | |
[21] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. |
[22] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[23] | 秦宇坤, 李鹏程, 郑苍松, 等. 施氮量对低肥力棉田土壤氮素及棉花养分吸收利用影响[J]. 棉花学报, 2019, 31(3): 242-253. |
QIN Y K, LI P C, ZHENG C S, et al. Effects of nitrogen application rates on soil nitrogen content, nutrient uptake and utilization of cotton in low fertility fields[J]. Cotton Science, 2019, 31(3): 242-253. (in Chinese with English abstract) | |
[24] | 王姣琳, 徐新朋, 杨兰芳, 等. 长江流域中稻产量、肥料增产效应及利用率特征[J]. 植物营养与肥料学报, 2021, 27(6): 919-928. |
WANG J L, XU X P, YANG L F, et al. Characteristics of middle-season rice yield, fertilizer increase yield effect and use efficiency in the Yangtze Valley[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 919-928. (in Chinese with English abstract) | |
[25] | 马凯, 王振华, 王天宇, 等. 水氮耦合对微咸水膜下滴灌棉花光合特性及产量的影响[J]. 西北农业学报, 2022, 31(5): 559-568. |
MA K, WANG Z H, WANG T Y, et al. Effects of water and nitrogen coupling on photosynthetic characteristics and yield of film mulching cotton under brackish water drip irrigation[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(5): 559-568. (in Chinese with English abstract) | |
[26] | 李伶俐, 房卫平, 谢德意, 等. 施氮量对杂交棉光合生理特性及产量、品质的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1183-1189. |
LI L L, FANG W P, XIE D Y, et al. Effects of nitrogen application rates on photosynthetic and physiological characteristics and yield and quality of hybrid cotton[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1183-1189. (in Chinese with English abstract) | |
[27] | 刘伟, 袁方方, 李志坤, 等. 适量氮肥和缩节胺配施提高黄河流域棉区棉花产量的机理[J]. 植物营养与肥料学报, 2023, 29(9): 1738-1750. |
LIU W, YUAN F F, LI Z K, et al. Mechanism of suitable nitrogen and mepiquat chloride combination rate on increasing the yield of cotton in the cotton-growing region of Yellow River Valley[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(9): 1738-1750. (in Chinese with English abstract) | |
[28] | 李淑贤, 鲍锦辉, 姜兰, 等. 缓释氮肥配施脲酶抑制剂对棉花光合特征的影响[J]. 中国棉花, 2021, 48(10): 1-7. |
LI S X, BAO J H, JIANG L, et al. Effects of slow-release nitrogen fertilizer combined with urease inhibitor on photosynthetic characteristics of cotton[J]. China Cotton, 2021, 48(10): 1-7. (in Chinese with English abstract) | |
[29] | 王研, 罗彤, 闵涛, 等. 不同液体有机肥对新疆棉花生长及土壤养分的影响[J]. 土壤, 2023, 55(4):739-748. |
WANG Y, LUO T, MIN T, et al. Effects of different liquid organic fertilizers on cotton growth and soil nutrients[J]. Soil, 2023, 55(4):739-748. (in Chinese with English abstract) | |
[30] | 郑剑超, 李明, 史芳芳, 等. 化肥减量配施有机肥和微生物肥对番茄光合特性和肥料利用率的影响[J]. 中国瓜菜, 2024, 37(2): 74-79. |
ZHENG J C, LI M, SHI F F, et al. Effects of chemical fertilizer reduction combined with organic fertilizer and microbial fertilizer on photosynthetic characteristics and fertilizer utilization rate of tomato[J]. China Cucurbits and Vegetables, 2024, 37(2): 74-79. (in Chinese with English abstract) | |
[31] | 齐海坤, 李芳军, 孟璐, 等. 氮、 钾肥运筹对棉花熟性、产量和肥料利用率的影响[J]. 河北农业大学学报, 2020, 43(4): 1-9. |
QI H K, LI F J, MENG L, et al. Effects of nitrogen and potassium application on earliness, yield and fertilizer efficiency of cotton[J]. Journal of Hebei Agricultural University, 2020, 43(4): 1-9. (in Chinese with English abstract) | |
[32] | 阳会兵, 杨俊兴, 周仲华, 等. 栽培因子对长江流域早熟棉花短季栽培产量影响及建成模型研究[J]. 激光生物学报, 2019, 28(3): 281-288. |
YANG H B, YANG J X, ZHOU Z H, et al. A study on the effects of cultivation factors on cotton yield in short season[J]. Acta Laser Biology Sinica, 2019, 28(3): 281-288. (in Chinese with English abstract) | |
[33] | 张丽娟, 秦宇坤, 陈俊英. 油棉两季秸秆还田下施氮量对棉花产量形成及氮肥利用效率的影响[J]. 作物杂志, 2024(4): 158-163. |
ZHANG L J, QIN Y K, CHEN J Y. Effects of nitrogen application rate on cotton yield formation and nitrogen utilization efficiency under rape-cotton double cropping straw returning condition[J]. Crops, 2024(4): 158-163. (in Chinese with English abstract) | |
[34] | 杨国江, 陈云, 林祥群, 等. 氮肥减施下有机肥替代对滴灌棉花产量、氮素吸收利用及土壤硝态氮的影响[J]. 新疆农业科学, 2023, 60(9): 2138-2145. |
YANG G J, CHEN Y, LIN X Q, et al. Effects of organic fertilizer replacement on the yield and nutrient absorption of cotton and nitrate nitrogen under chemical fertilizer reduction[J]. Xinjiang Agricultural Sciences, 2023, 60(9): 2138-2145. (in Chinese with English abstract) | |
[35] | 王佳旭, 张旷野, 张飞, 等. 施氮方式及用量改善高粱光合特性及土壤微生物群落特征[J]. 山西农业大学学报(自然科学版), 2022, 42(5): 17-26. |
WANG J X, ZHANG K Y, ZHANG F, et al. Effects of nitrogen application methods and amounts on photosynthetic characteristics and soil microbial community characteristics of sorghum[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2022, 42(5): 17-26. (in Chinese with English abstract) | |
[36] | 殷金忠, 唐蛟, 吕利娟, 等. 缓释包膜尿素配施对土壤性质和夏玉米生长的影响[J]. 河南科技学院学报(自然科学版), 2024, 52(2): 25-32. |
YIN J Z, TANG J, LV L J, et al. Effects of controlled-release coated urea combined application on soil properties and summer maize growth[J]. Journal of Henan Institute of Science and Technology(Natural Science Edition), 2024, 52(2): 25-32. (in Chinese with English abstract) | |
[37] | 陈凯威, 张仕彬, 徐凯, 等. 不同有机肥替代化肥比对井冈蜜橘品质和土壤养分及酶活性的影响[J]. 中国土壤与肥料, 2023(12): 97-106. |
CHEN K W, ZHANG S B, XU K, et al. Effects of partial substitution of chemical fertilizer with organic fertilizer on the quality of Jinggang tangerine and soil nutrient and enzyme activities[J]. Soil and Fertilizer Sciences in China, 2023(12): 97-106. (in Chinese with English abstract) | |
[38] | 李林洋, 夏淑洁, 张润花, 等. 氮钾互作对长江流域棉花产量和氮肥利用效率的影响及适宜施肥水平研究[J]. 中国土壤与肥料, 2022(1): 40-46. |
LI L Y, XIA S J, ZHANG R H, et al. Effect of interaction of nitrogen and potassium fertilizer on cotton yield and nitrogen use efficiency and assessment of suitable fertilization level in the Yangtze River Basin[J]. Soil and Fertilizer Sciences in China, 2022(1): 40-46. (in Chinese with English abstract) | |
[39] | 祝海竣, 唐舟, 石爱龙, 等. 灌溉模式和有机肥配施对水稻产量、光合特性和氮肥利用率的影响[J]. 土壤, 2022, 54(4): 700-707. |
ZHU H J, TANG Z, SHI A L, et al. Effects of irrigation patterns and combined application of organic fertilizer on rice yield, photosynthetic characteristics and nitrogen use efficiency[J]. Soils, 2022, 54(4): 700-707. (in Chinese with English abstract) | |
[40] | 樊海潮, 张志恒, 赵中亭, 等. 施氮量对蒜后直播棉产量、品质以及效益的影响[J]. 中国棉花, 2023, 50(12): 28-31. |
FAN H C, ZHANG Z H, ZHAO Z T, et al. Effect of nitrogen fertilizer application on yield, quality, and benefit of directly seeded cotton after garlic[J]. China Cotton, 2023, 50(12): 28-31. (in Chinese with English abstract) | |
[41] | 王宁, 南宏宇, 冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响[J]. 应用生态学报, 2020, 31(1): 173-181. |
WANG N, NAN H Y, FENG K Y. Effects of reduced chemical fertilizer with organic fertilizer application on soil microbial biomass, enzyme activity and cotton yield[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 173-181. (in Chinese with English abstract) | |
[42] | 汪苏洁, 贵会平, 董强, 等. 有机肥替代对棉花养分积累、产量及土壤肥力的影响[J]. 棉花学报, 2021, 33(1): 54-65. |
WANG S J, GUI H P, DONG Q, et al. Effects of organic fertilizer substitution on cotton nutrient accumulation, yield and soil fertility[J]. Cotton Science, 2021, 33(1): 54-65. (in Chinese with English abstract) | |
[43] | 尔晨, 林涛, 夏文, 等. 灌溉定额和施氮量对机采棉田水分运移及硝态氮残留的影响[J]. 作物学报, 2022, 48(2): 497-510. |
ER C, LIN T, XIA W, et al. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton[J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. (in Chinese with English abstract) | |
[44] | 且天真, 武迪, 张德健, 等. 不同年限施用有机肥对土壤理化性质的影响[J]. 安徽农业科学, 2023, 51(12): 135-141. |
QIE T Z, WU D, ZHANG D J, et al. Effects of different years of application of organic fertilizer on physical and chemical properties of soil[J]. Journal of Anhui Agricultural Sciences, 2023, 51(12): 135-141. (in Chinese with English abstract) | |
[45] | 曹刚, 胡勇, 朱琼琼. 农机农艺融合肥料深施与有机肥替代部分化肥对水稻种植的影响[J]. 基层农技推广, 2022, 10(9): 14-16. |
CAO G, HU Y, ZHU Q Q. Effects of deep application of fertilizer by agricultural machinery and organic fertilizer replacing part of chemical fertilizer on rice planting[J]. Primary Agricultural Technology Extension, 2022, 10(9): 14-16. (in Chinese) | |
[46] | 孙勇, 曲京博, 初晓冬, 等. 不同施肥处理对黑土土壤肥力和作物产量的影响[J]. 江苏农业科学, 2018, 46(14): 45-50. |
SUN Y, QU J B. CHU X D, et al. Effects of different fertilization treatments on soil fertility and crop yield in black soils[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 45-50. (in Chinese with English abstract) | |
[47] | 李锐, 陶瑞, 王丹, 等. 减氮配施有机肥对滴灌棉田土壤生物学性状与团聚体特性的影响[J]. 应用生态学报, 2017, 28(10): 3297-3304. |
LI R, TAO R, WANG D, et al. Effect of mineral N fertilizer reduction and organic fertilizer substitution on soil biological properties and aggregate characteristics in drip-irrigated cotton field[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3297-3304. (in Chinese with English abstract) |
[1] | 李艳翠, 李福强, 周波. 不同生育期亏缺灌溉对蒙古黄芪光合特性、产量与品质的影响[J]. 浙江农业学报, 2025, 37(4): 779-789. |
[2] | 应永飞, 韩东轩, 孟芳, 俞遴, 沈佳栾, 汪开英. 沼液替代化肥对水稻产量、品质和土壤特性的影响[J]. 浙江农业学报, 2025, 37(4): 880-891. |
[3] | 万绍媛, 刘现波, 才硕, 时红, 程婕. 灌溉方式和种植方式对双季稻产量和稻米品质的影响[J]. 浙江农业学报, 2025, 37(2): 257-268. |
[4] | 李灿, 杨婷, 孙乙铭, 陈洪梁, 崔琦, 沈晓霞. 华东覆盆子优势种质资源的筛选与评价[J]. 浙江农业学报, 2025, 37(2): 349-364. |
[5] | 李建强, 魏倩倩, 刘晓霞, 张均华, 朱春权. 优化施肥措施对水稻产量和土壤养分平衡的影响[J]. 浙江农业学报, 2025, 37(2): 438-446. |
[6] | 韩笑, 刘旭杰, 石吕, 张晋, 单海勇, 石晓旭, 严旖旎, 刘建, 薛亚光. 麦秸行间集覆还田下控释氮肥减施对水稻产量、品质与氮肥利用率的影响[J]. 浙江农业学报, 2025, 37(1): 1-13. |
[7] | 李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158. |
[8] | 陈宇眺, 闫川, 洪晓富, 宋佳谕. 分蘖期淹水对常规粳稻生长特性、产量形成与钾素吸收的影响[J]. 浙江农业学报, 2024, 36(9): 1990-1999. |
[9] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
[10] | 潘志军, 吴小文, 吴晨阳, 程驭, 陈龙, 张晓红, 张进山, 周兵, 江波, 张文静, 车钊, 宋贺. 皖中不同类型再生稻品种产量与温光资源利用特征分析[J]. 浙江农业学报, 2024, 36(7): 1492-1501. |
[11] | 李慧, 谭晓琴, 唐茜, 杨洋, 陈玮. 疏花对紫嫣茶树产量及品质成分的影响[J]. 浙江农业学报, 2024, 36(7): 1602-1615. |
[12] | 胡铁军. 化肥减量配施微生物肥对西蓝花产量品质与土壤性质的影响[J]. 浙江农业学报, 2024, 36(7): 1657-1665. |
[13] | 许立婷, 齐广平, 康燕霞, 银敏华, 马彦麟, 贾琼, 汪精海, 姜渊博. 调亏灌溉对苜蓿产量品质效应的荟萃分析[J]. 浙江农业学报, 2024, 36(6): 1256-1269. |
[14] | 赵黎明, 王亚新, 蒋文鑫, 段绍彪, 沈雪峰, 郑殿峰, 冯乃杰. 植物生长调节剂对优质粳稻产量、品质与光合特性的影响[J]. 浙江农业学报, 2024, 36(5): 1003-1014. |
[15] | 高虎, 穆晓国, 李海俊, 高富成, 张莹, 李建设, 叶林. 粉垄耕作对坝地土壤特性及甘蓝产量的影响[J]. 浙江农业学报, 2024, 36(5): 1113-1123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||