浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1139-1148.DOI: 10.3969/j.issn.1004-1524.20240427
苏扬1(), 商小兰2, 钱忠明3, 吴林根3, 黄佳琦3, 庄海峰4, 赵宇飞4, 党洪阳5, 徐立军3,*(
)
收稿日期:
2024-05-11
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
苏扬(1984—),男,浙江丽水人,硕士,主要从事生态农业、生态景观研究。E-mail:1592696972@qq.com
通讯作者:
*徐立军,E-mail:xlj3012022@163.com
基金资助:
SU Yang1(), SHANG Xiaolan2, QIAN Zhongming3, WU Lingen3, HUANG Jiaqi3, ZHUANG Haifeng4, ZHAO Yufei4, DANG Hongyang5, XU Lijun3,*(
)
Received:
2024-05-11
Online:
2025-05-25
Published:
2025-06-11
摘要:
为探讨腐熟剂与生物炭协同作用对水稻秸秆还田后土壤质量和水稻生长的影响,设计5个处理——对照(S1)、单独秸秆还田(S2)、秸秆还田配施腐熟剂(S3)、秸秆还田配施生物炭(S4)、秸秆还田配施腐熟剂和生物炭(S5),通过田间试验,分析不同处理对土壤理化性质、酶学性质、微生物群落结构和水稻生产的影响。结果表明,与S2处理相比,腐熟剂与生物炭共同配施处理下,土壤的全氮、全磷、全钾、有机质、有效磷和速效钾含量显著(P<0.05)增加,水稻成熟期土壤过氧化氢酶和蔗糖酶的活性分别显著提高16.06%和19.11%,土壤中微生物的多样性和丰度亦得到提升,水稻产量和地上部干重分别增加了11.42%和11.74%,水稻的地上部氮、磷、钾素吸收总量分别显著提高24.00%、26.12%和13.21%。该研究凸显了腐熟剂与生物炭的协同作用在促进秸秆高效还田、改善土壤生态系统方面的潜力,为强化秸秆等农业废弃物高效还田利用新技术的实际应用提供了科学依据。
中图分类号:
苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148.
SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148.
图1 不同处理对土壤理化性质的影响 柱上无相同小写、大写字母的分别表示在水稻分蘖期和成熟期处理间差异显著(P<0.05),下同。
Fig.1 Effects of treatments on soil physicochemical properties Bars marked without the same lowercase or uppercase letters indicate significant (P<0.05) differences within treatments at the tillering stage or the maturity stage, respectively. The same as below.
样品 Sample | Ace指数 Ace index | Chao指数 Chao index | 香农指数 Shannon index | 覆盖度 Coverage/% |
---|---|---|---|---|
S1 | 5 640.90 | 5 580.43 | 7.13 | 99.04 |
S2 | 5 760.50 | 5 680.78 | 7.10 | 98.92 |
S3 | 5 831.73 | 5 730.73 | 7.17 | 98.98 |
S4 | 5 748.72 | 5 696.04 | 7.20 | 99.02 |
S5 | 6 211.07 | 6 142.42 | 7.30 | 98.86 |
表1 各处理的土壤细菌群落α多样性
Table 1 Alpha diversity of soil bacterial communities under treatments
样品 Sample | Ace指数 Ace index | Chao指数 Chao index | 香农指数 Shannon index | 覆盖度 Coverage/% |
---|---|---|---|---|
S1 | 5 640.90 | 5 580.43 | 7.13 | 99.04 |
S2 | 5 760.50 | 5 680.78 | 7.10 | 98.92 |
S3 | 5 831.73 | 5 730.73 | 7.17 | 98.98 |
S4 | 5 748.72 | 5 696.04 | 7.20 | 99.02 |
S5 | 6 211.07 | 6 142.42 | 7.30 | 98.86 |
处理 Treatment | 产量 Yield/ (t·hm-2) | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 地上部干重 Dry weight of aboveground part/(t·hm-2) | 氮素吸收总量 Nitrogen uptake/ (kg·hm-2) | 磷素吸收总量 Phosphorus uptake/ (kg·hm-2) | 钾素吸收总量 Potassium uptake/ (kg·hm-2) |
---|---|---|---|---|---|---|---|
S1 | 5.87 ±0.12 c | 21.72 ±0.16 b | 89.10 ±1.16 b | 9.59 ±0.18 c | 78.86 ±3.62 b | 13.49 ±0.25 d | 72.76 ±5.26 c |
S2 | 6.14 ±0.19 bc | 22.09 ±0.10 a | 91.05 ±0.67 a | 10.15±0.46 bc | 84.38 ±9.05 b | 15.46 ±0.24 c | 82.61±7.02 bc |
S3 | 6.47 ±0.27 ab | 22.05 ±0.18 a | 91.75 ±0.84 a | 10.72 ±0.51 ab | 95.83 ±5.80 a | 16.92 ±0.98 b | 86.74 ±5.13 ab |
S4 | 6.72 ±0.06 a | 21.96 ±0.16 ab | 91.73 ±0.78 a | 11.04 ±0.39 a | 101.62 ±2.27 a | 19.11 ±0.28 a | 92.13 ±3.83 ab |
S5 | 6.84 ±0.29 a | 22.27 ±0.18 a | 92.22 ±0.28 a | 11.34 ±0.19 a | 104.63±1.15 a | 19.49 ±0.91 a | 93.52 ±2.47 a |
表2 不同处理对水稻生长和养分利用的影响
Table 2 Effects of treatments on rice growth and nutrient utilization
处理 Treatment | 产量 Yield/ (t·hm-2) | 千粒重 1 000-grain weight/g | 结实率 Seed setting rate/% | 地上部干重 Dry weight of aboveground part/(t·hm-2) | 氮素吸收总量 Nitrogen uptake/ (kg·hm-2) | 磷素吸收总量 Phosphorus uptake/ (kg·hm-2) | 钾素吸收总量 Potassium uptake/ (kg·hm-2) |
---|---|---|---|---|---|---|---|
S1 | 5.87 ±0.12 c | 21.72 ±0.16 b | 89.10 ±1.16 b | 9.59 ±0.18 c | 78.86 ±3.62 b | 13.49 ±0.25 d | 72.76 ±5.26 c |
S2 | 6.14 ±0.19 bc | 22.09 ±0.10 a | 91.05 ±0.67 a | 10.15±0.46 bc | 84.38 ±9.05 b | 15.46 ±0.24 c | 82.61±7.02 bc |
S3 | 6.47 ±0.27 ab | 22.05 ±0.18 a | 91.75 ±0.84 a | 10.72 ±0.51 ab | 95.83 ±5.80 a | 16.92 ±0.98 b | 86.74 ±5.13 ab |
S4 | 6.72 ±0.06 a | 21.96 ±0.16 ab | 91.73 ±0.78 a | 11.04 ±0.39 a | 101.62 ±2.27 a | 19.11 ±0.28 a | 92.13 ±3.83 ab |
S5 | 6.84 ±0.29 a | 22.27 ±0.18 a | 92.22 ±0.28 a | 11.34 ±0.19 a | 104.63±1.15 a | 19.49 ±0.91 a | 93.52 ±2.47 a |
[1] | ZHAO Y F, LU Y P, ZHUANG H F, et al. In-situ retention of nitrogen, phosphorus in agricultural drainage and soil nutrients by biochar at different temperatures and the effects on soil microbial response[J]. Science of the Total Environment, 2023, 904: 166292. |
[2] | DU X Z, HAO M, GUO L J, et al. Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China[J]. Agricultural Water Management, 2022, 262: 107403. |
[3] | 漆军, 朱利群, 陈利根, 等. 苏、浙、皖农户秸秆处理行为分析[J]. 资源科学, 2016, 38(6): 1099-1108. |
QI J, ZHU L Q, CHEN L G, et al. Research on the farmers' behavior of straw processing in Jiangsu, Zhejiang and Anhui[J]. Resources Science, 2016, 38(6): 1099-1108. (in Chinese with English abstract) | |
[4] | 房体磊, 李小龙, 刘高峰, 等. 不同秸秆还田方式对烟稻轮作土壤细菌群落多样性和结构的影响[J]. 农业资源与环境学报, 2024, 41(2): 482-492. |
FANG T L, LI X L, LIU G F, et al. Effects of different straw return modes on bacterial diversity and community structure in tobacco-rice rotation soil[J]. Journal of Agricultural Resources and Environment, 2024, 41(2): 482-492. (in Chinese with English abstract) | |
[5] | 钱玉婷, 张应鹏, 杜静, 等. 江苏省秸秆综合利用途径利弊分析及收储运对策研究[J]. 农业工程学报, 2019, 35(22): 154-160. |
QIAN Y T, ZHANG Y P, DU J, et al. Advantages and disadvantages analysis of comprehensive utilization of straw in Jiangsu Province and countermeasure suggestions for collection-storage-transportation system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 154-160. (in Chinese with English abstract) | |
[6] | SCHMIDT H P, KAMMANN C, NIGGLI C, et al. Biochar and biochar-compost as soil amendments to a vineyard soil: influences on plant growth, nutrient uptake, plant health and grape quality[J]. Agriculture, Ecosystems & Environment, 2014, 191: 117-123. |
[7] | 邢莉彬, 成洁, 耿增超, 等. 不同原料生物炭的理化特性及其作炭基肥缓释载体的潜力评价[J]. 环境科学, 2022, 43(5): 2770-2778. |
XING L B, CHENG J, GENG Z C, et al. Physicochemical properties of biochars prepared from different feedstocks and evaluation of its potential as a slow-release carriers for biochar-based fertilizers[J]. Environmental Science, 2022, 43(5): 2770-2778. (in Chinese with English abstract) | |
[8] | 魏萌涵, 孟自力. 化肥减量下耕作方式和施用秸秆腐熟剂对小麦产量和土壤养分的影响[J]. 江苏农业科学, 2022, 50(15): 68-73. |
WEI M H, MENG Z L. Effects of tillage methods and application of straw ripening agent on wheat yield and soil nutrients under nitrogen reduction[J]. Jiangsu Agricultural Sciences, 2022, 50(15): 68-73. (in Chinese with English abstract) | |
[9] | GAO X Y, LIU W Z, LI X Q, et al. A novel fungal agent for straw returning to enhance straw decomposition and nutrients release[J]. Environmental Technology & Innovation, 2023, 30: 103064. |
[10] | 萨如拉, 杨恒山, 高聚林, 等. 西辽河平原区免耕秸秆还田方式对土壤微生物群落组成的影响[J]. 土壤通报, 2022, 53(5): 1067-1078. |
SA R L, YANG H S, GAO J L, et al. Effects of no tillage straw returning on soil microbial community composition in the West Liaohe Plain[J]. Chinese Journal of Soil Science, 2022, 53(5): 1067-1078. (in Chinese with English abstract) | |
[11] | 农传江, 王宇蕴, 徐智, 等. 有机物料腐熟剂对玉米和水稻秸秆还田效应的影响[J]. 西北农业学报, 2016, 25(1): 34-41. |
NONG C J, WANG Y Y, XU Z, et al. Effects of organic matter-decomposition inoculant on maize and rice straw returning[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2016, 25(1): 34-41. (in Chinese with English abstract) | |
[12] | 徐枫林, 孙超然, 颜瑾昱, 等. 水稻秸秆还田机械化技术应用研究进展[J]. 湖南农业科学, 2022(5): 101-106. |
XU F L, SUN C R, YAN J Y, et al. Research progress in the application of mechanized rice straw-returning technology[J]. Hunan Agricultural Sciences, 2022(5): 101-106. (in Chinese with English abstract) | |
[13] | 马云波, 许中旗, 张岩, 等. 冀北山区华北落叶松人工林对土壤化学性质的影响[J]. 水土保持学报, 2015, 29(4): 165-170. |
MA Y B, XU Z Q, ZHANG Y, et al. Impact of larch plantation on soil chemical property in north mountain of Hebei[J]. Journal of Soil and Water Conservation, 2015, 29(4): 165-170. (in Chinese with English abstract) | |
[14] | XU T Y, ZHOU Z J, YAN R P, et al. Real-time monitoring method for layered compaction quality of loess subgrade based on hydraulic compactor reinforcement[J]. Sensors, 2020, 20(15): 4288. |
[15] | TAN Z X, LIN C S K, JI X Y, et al. Returning biochar to fields: a review[J]. Applied Soil Ecology, 2017, 116: 1-11. |
[16] | 卢培娜, 刘景辉, 赵宝平, 等. 菌肥与腐熟秸秆对盐碱地土壤盐分及燕麦品质的影响[J]. 生态学杂志, 2021, 40(6): 1639-1649. |
LU P N, LIU J H, ZHAO B P, et al. Effects of bio-fertilizer and rotten straw on soil salinity and oat quality in saline-alkaline soil[J]. Chinese Journal of Ecology, 2021, 40(6): 1639-1649. (in Chinese with English abstract) | |
[17] | 袁访, 李开钰, 杨慧, 等. 生物炭施用对黄壤土壤养分及酶活性的影响[J]. 环境科学, 2022, 43(9): 4655-4661. |
YUAN F, LI K Y, YANG H, et al. Effects of biochar application on yellow soil nutrients and enzyme activities[J]. Environmental Science, 2022, 43(9): 4655-4661. (in Chinese with English abstract) | |
[18] | 陈盛, 黄达, 张力, 等. 秸秆还田对土壤理化性质及水肥状况影响的研究进展[J]. 灌溉排水学报, 2022, 41(6): 1-11. |
CHEN S, HUANG D, ZHANG L, et al. The effects of straw incorporation on physicochemical properties of soil: a review[J]. Journal of Irrigation and Drainage, 2022, 41(6): 1-11. (in Chinese with English abstract) | |
[19] | 勉有明, 李荣, 侯贤清, 等. 秸秆还田配施腐熟剂对砂性土壤性质及滴灌玉米生长的影响[J]. 核农学报, 2020, 34(10): 2343-2351. |
MIAN Y M, LI R, HOU X Q, et al. Effects of straw returning combined with decomposition agents on sandy soil properties and growth of maize under drip irrigation[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2343-2351. (in Chinese with English abstract) | |
[20] | 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响[J]. 农业环境科学学报, 2012, 31(11): 2192-2199. |
HAN X Z, ZHU L Q, YANG M F, et al. Effects of different amount of wheat straw returning on rice growth, soil microbial biomass and enzyme activity[J]. Journal of Agro-Environment Science, 2012, 31(11): 2192-2199. (in Chinese with English abstract) | |
[21] | 蔡立群, 牛怡, 罗珠珠, 等. 秸秆促腐还田土壤养分及微生物量的动态变化[J]. 中国生态农业学报, 2014, 22(9): 1047-1056. |
CAI L Q, NIU Y, LUO Z Z, et al. Dynamic characteristics of soil nutrients and soil microbial biomass of field-returned straws at different decay accretion conditions[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1047-1056. (in Chinese with English abstract) | |
[22] | 王瑞峰, 赵立欣, 沈玉君, 等. 生物炭制备及其对土壤理化性质影响的研究进展[J]. 中国农业科技导报, 2015, 17(2): 126-133. |
WANG R F, ZHAO L X, SHEN Y J, et al. Research progress on preparing biochar and its effect on soil physio-chemical properties[J]. Journal of Agricultural Science and Technology, 2015, 17(2): 126-133. (in Chinese with English abstract) | |
[23] | MENG J, LIANG S J, TAO M M, et al. Chemical speciation and risk assessment of Cu and Zn in biochars derived from co-pyrolysis of pig manure with rice straw[J]. Chemosphere, 2018, 200: 344-350. |
[24] | ZHANG C, ZHAO X, LIANG A J, et al. Insight into the soil aggregate-mediated restoration mechanism of degraded black soil via biochar addition: emphasizing the driving role of core microbial communities and nutrient cycling[J]. Environmental Research, 2023, 228: 115895. |
[25] | HUANG W, WU J F, PAN X H, et al. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in south China[J]. Journal of Integrative Agriculture, 2021, 20(1): 236-247. |
[26] | 王美琦, 刘银双, 黄亚丽, 等. 秸秆还田对土壤微生态环境影响的研究进展[J]. 微生物学通报, 2022, 49(2): 807-816. |
WANG M Q, LIU Y S, HUANG Y L, et al. Research progress on effects of straw incorporation on soil micro-ecological environment[J]. Microbiology China, 2022, 49(2): 807-816. (in Chinese with English abstract) | |
[27] | 武爱莲, 王劲松, 董二伟, 等. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响[J]. 土壤学报, 2019, 56(1): 176-185. |
WU A L, WANG J S, DONG E W, et al. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil[J]. Acta Pedologica Sinica, 2019, 56(1): 176-185. (in Chinese with English abstract) | |
[28] | 赵炎, 袁新生, 唐瑞杰, 等. 添加生物炭对琼北地区双季稻田生物固氮的影响[J]. 环境科学, 2022, 43(12): 5819-5831. |
ZHAO Y, YUAN X S, TANG R J, et al. Effect of biochar application on biological nitrogen fixation in double cropping paddy field in northern Hainan[J]. Environmental Science, 2022, 43(12): 5819-5831. (in Chinese with English abstract) | |
[29] | 刘佳欢, 王倩, 罗人杰, 等. 黄腐酸肥料对小麦根际土壤微生物多样性和酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1808-1816. |
LIU J H, WANG Q, LUO R J, et al. Effect of fulvic acid fertilizer on microbial diversity and enzyme activity in wheat rhizosphere soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1808-1816. (in Chinese with English abstract) | |
[30] | JIANG Y L, WANG X J, ZHAO Y M, et al. Effects of biochar application on enzyme activities in tea garden soil[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 728530. |
[31] | REN C J, WANG T, XU Y D, et al. Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes[J]. Forest Ecology and Management, 2018, 409: 170-178. |
[32] | CHEN L J, JIANG Y J, LIANG C, et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments[J]. Microbiome, 2019, 7(1): 77. |
[33] | BOUBEKRI K, SOUMARE A, MARDAD I, et al. The screening of potassium-and phosphate-solubilizing Actinobacteria and the assessment of their ability to promote wheat growth parameters[J]. Microorganisms, 2021, 9(3): 470. |
[34] | LIU L Y, TAN Z X, GONG H B, et al. Migration and transformation mechanisms of nutrient elements (N, P, K) within biochar in straw-biochar-soil-plant systems: a review[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 22-32. |
[35] | WU G, LING J, XU Y P, et al. Effects of soil warming and straw return on soil organic matter and greenhouse gas fluxes in winter wheat seasons in the North China Plain[J]. Journal of Cleaner Production, 2022, 356: 131810. |
[36] | 唐海明, 肖小平, 李超, 等. 不同土壤耕作模式对双季水稻生理特性与产量的影响[J]. 作物学报, 2019, 45(5): 740-754. |
TANG H M, XIAO X P, LI C, et al. Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice[J]. Acta Agronomica Sinica, 2019, 45(5): 740-754. (in Chinese with English abstract) | |
[37] | ZHANG Q Q, SONG Y F, WU Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production, 2020, 242: 118435. |
[1] | 朱哲毅, 施芳, 宁可, 郑姗. 政策激励对农户保护性耕作技术采纳行为的影响——基于要素质量和时间偏好的视角[J]. 浙江农业学报, 2025, 37(5): 1172-1181. |
[2] | 武佳龙, 迟铭, 高燕, 王祥, 沈海鸥. 施加生物炭对黑土区坡耕地土壤主要理化指标的动态影响[J]. 浙江农业学报, 2024, 36(9): 2060-2069. |
[3] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
[4] | 熊瑞, 欧阳宁, 欧茜, 钟康裕, 周文涛, 王泓睿, 龙攀, 徐莹, 傅志强. 秸秆还田与耕作方式对双季稻土壤团聚体及碳氮含量的影响[J]. 浙江农业学报, 2024, 36(6): 1347-1356. |
[5] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
[6] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
[7] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
[8] | 韩静, 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟. 毛豆壳生物炭的活化及其对甲萘威的吸附性能[J]. 浙江农业学报, 2023, 35(9): 2202-2211. |
[9] | 汪洁, 陆若辉, 朱伟锋, 陈钰佩, 单英杰. 浙江省主要粮食作物秸秆还田替代化肥的潜力[J]. 浙江农业学报, 2023, 35(8): 1853-1863. |
[10] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
[11] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
[12] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[13] | 崔玲宇, 喻曼, 乔宇颖, 苏瑶, 王云龙, 沈阿林. 基于Web of Science数据库的土壤质量评价及其微生物指标研究趋势分析[J]. 浙江农业学报, 2023, 35(11): 2688-2697. |
[14] | 朱雅婷, 倪远之, 张敏, 王振旗, 沈根祥, 黄娜. 不同秸秆还田量对上海地区稻田甲烷排放的影响[J]. 浙江农业学报, 2023, 35(10): 2436-2445. |
[15] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||