浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1347-1356.DOI: 10.3969/j.issn.1004-1524.20230320
熊瑞1,2(), 欧阳宁1,2, 欧茜1,2, 钟康裕1,2, 周文涛1,2, 王泓睿1,2, 龙攀1,2, 徐莹1,2, 傅志强1,2,*(
)
收稿日期:
2023-03-13
出版日期:
2024-06-25
发布日期:
2024-07-02
作者简介:
熊瑞(1995—),男,贵州毕节人,硕士研究生,主要研究方向为稻田固碳减排。E-mail: xiongrui04@126.com
通讯作者:
*傅志强,E-mail: zqf_cis@126.com
基金资助:
XIONG Rui1,2(), OUYANG Ning1,2, OU Xi1,2, ZHONG Kangyu1,2, ZHOU Wentao1,2, WANG Hongrui1,2, LONG Pan1,2, XU Ying1,2, FU Zhiqiang1,2,*(
)
Received:
2023-03-13
Online:
2024-06-25
Published:
2024-07-02
摘要:
为探讨南方双季稻区秸秆还田与不同耕作方式结合对土壤团聚体组成及土壤有机碳、全氮含量的影响,在湖南双季稻区开展了主区为秸秆还田(S1)与不还田(S0),副区为免耕(NT)、浅旋耕(RT)、深耕(TT)的大田裂区试验。结果表明,与其他处理相比,S1+TT处理下0~10 cm土层早、晚稻的土壤大团聚体质量分数分别显著(P<0.05)提高1.70%~9.03%、4.48%~30.53%;10~20 cm土层土壤团聚体的平均质量直径和几何平均直径显著高于除S0+TT外的其他处理,在早稻上二者分别提高了7.23%~18.67%和4.35%~10.77%,在晚稻上二者分别提高了5.06%~23.88%和4.94%~23.19%;早稻10~20 cm土层(除S1+NT处理外)、晚稻0~10 cm土层的全氮含量分别显著提高13.04%~23.81%、10.14%~40.74%;早、晚稻10~20 cm土层和早稻0~10 cm土层的土壤有机碳含量分别显著提高4.36%~26.70%、3.83%~21.71%、3.86%~10.92%。综上,在双季稻区秸秆还田搭配深耕可以提高土壤团聚体的稳定性,及土壤有机碳、全氮含量,有利于促进土壤耕作层团聚体结构稳定,提高土壤质量。
中图分类号:
熊瑞, 欧阳宁, 欧茜, 钟康裕, 周文涛, 王泓睿, 龙攀, 徐莹, 傅志强. 秸秆还田与耕作方式对双季稻土壤团聚体及碳氮含量的影响[J]. 浙江农业学报, 2024, 36(6): 1347-1356.
XIONG Rui, OUYANG Ning, OU Xi, ZHONG Kangyu, ZHOU Wentao, WANG Hongrui, LONG Pan, XU Ying, FU Zhiqiang. Effect of straw returning and tillage method on soil aggregates and carbon, nitrogen content in double-season rice[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1347-1356.
图1 不同处理对早稻(A)、晚稻(B)土壤水稳性团聚体分布特征的影响 S1,秸秆还田;S0,秸秆不还田;TT,双季深耕;RT,浅旋耕;NT,免耕。柱上无相同字母的表示同一土层同一粒径不同处理间差异显著(P<0.05)。下同。
Fig.1 Effects of treatments on soil water stability aggregate distribution characteristics in early rice (A) and late rice (B) S1, Straw returning ; S0, No straw returning ; TT, Double season deep tillage; RT, Shallow rotary tillage; NT, No-tillage. Bars marked without the same letters indicate significant (P<0.05) difference within treatments in the same soil layer for the same particle size. The same as below.
土层 Soil layer/cm | 处理 Treatment | 平均质量直径Mean weight diameter | 几何平均直径Geometric mean weight | ||
---|---|---|---|---|---|
早稻Early rice | 晚稻Late rice | 早稻Early rice | 晚稻Late rice | ||
0~10 | S1+TT | 0.92±0.03 a | 1.02±0.01 ab | 0.73±0.01 a | 1.08±0.03 a |
S1+NT | 0.86±0.01 b | 1.01±0.03 ab | 0.70±0.01 c | 1.03±0.01 b | |
S1+RT | 0.91±0.02 a | 0.99±0.04 ab | 0.72±0.01 ab | 0.89±0.03 c | |
S0+TT | 0.86±0.02 b | 1.03±0.03 a | 0.71±0.01 bc | 1.03±0.01 b | |
S0+NT | 0.82±0.01 c | 0.87±0.04 c | 0.68±0.01 d | 1.07±0.02 ab | |
S0+RT | 0.81±0.02 c | 0.97±0.01 b | 0.68±0.00 d | 0.82±0.02 d | |
10~20 | S1+TT | 0.89±0.01 a | 0.83±0.01 a | 0.72±0.01 a | 0.85±0.02 a |
S1+NT | 0.83±0.02 b | 0.79±0.01 bc | 0.69±0.01 bc | 0.79±0.01 b | |
S1+RT | 0.80±0.01 c | 0.76±0.03 cd | 0.68±0.01 c | 0.73±0.01 c | |
S0+TT | 0.88±0.02 a | 0.80±0.02 ab | 0.71±0.01 ab | 0.81±0.01 b | |
S0+NT | 0.80±0.02 c | 0.67±0.03 e | 0.68±0.01 c | 0.79±0.02 b | |
S0+RT | 0.75±0.00 d | 0.74±0.00 d | 0.65±0.01 d | 0.69±0.01 d |
表1 不同处理对土壤团聚体平均质量直径和几何平均直径的影响
Table 1 Effects of treatments on mean weight diameter and geometric mean weight of soil aggregates mm
土层 Soil layer/cm | 处理 Treatment | 平均质量直径Mean weight diameter | 几何平均直径Geometric mean weight | ||
---|---|---|---|---|---|
早稻Early rice | 晚稻Late rice | 早稻Early rice | 晚稻Late rice | ||
0~10 | S1+TT | 0.92±0.03 a | 1.02±0.01 ab | 0.73±0.01 a | 1.08±0.03 a |
S1+NT | 0.86±0.01 b | 1.01±0.03 ab | 0.70±0.01 c | 1.03±0.01 b | |
S1+RT | 0.91±0.02 a | 0.99±0.04 ab | 0.72±0.01 ab | 0.89±0.03 c | |
S0+TT | 0.86±0.02 b | 1.03±0.03 a | 0.71±0.01 bc | 1.03±0.01 b | |
S0+NT | 0.82±0.01 c | 0.87±0.04 c | 0.68±0.01 d | 1.07±0.02 ab | |
S0+RT | 0.81±0.02 c | 0.97±0.01 b | 0.68±0.00 d | 0.82±0.02 d | |
10~20 | S1+TT | 0.89±0.01 a | 0.83±0.01 a | 0.72±0.01 a | 0.85±0.02 a |
S1+NT | 0.83±0.02 b | 0.79±0.01 bc | 0.69±0.01 bc | 0.79±0.01 b | |
S1+RT | 0.80±0.01 c | 0.76±0.03 cd | 0.68±0.01 c | 0.73±0.01 c | |
S0+TT | 0.88±0.02 a | 0.80±0.02 ab | 0.71±0.01 ab | 0.81±0.01 b | |
S0+NT | 0.80±0.02 c | 0.67±0.03 e | 0.68±0.01 c | 0.79±0.02 b | |
S0+RT | 0.75±0.00 d | 0.74±0.00 d | 0.65±0.01 d | 0.69±0.01 d |
土层 Soil layer/cm | 处理 Treatment | 土壤有机碳含量Soil organic carbon content | 土壤全氮含量Total nitrogen content | ||
---|---|---|---|---|---|
早稻Early rice | 晚稻Late rice | 早稻Early rice | 晚稻Late rice | ||
0~10 | S1+TT | 16.15±0.27 a | 14.94±0.12 b | 0.95±0.01 a | 0.76±0.02 a |
S1+NT | 15.55±0.32 b | 15.63±0.06 a | 0.93±0.06 a | 0.57±0.02 c | |
S1+RT | 14.92±0.06 c | 14.16±0.23 c | 0.88±0.04 a | 0.69±0.03 b | |
S0+TT | 14.75±0.16 c | 13.05±0.10 d | 0.73±0.04 bc | 0.67±0.02 b | |
S0+NT | 14.76±0.05 c | 15.58±0.51 a | 0.69±0.01 c | 0.54±0.04 c | |
S0+RT | 14.56±0.18 c | 13.38±0.14 d | 0.76±0.03 b | 0.56±0.04 c | |
10~20 | S1+TT | 16.99±0.63 a | 15.19±0.36 a | 0.78±0.02 a | 0.75±0.02 a |
S1+NT | 14.67±0.18 d | 13.41±0.25 c | 0.72±0.08 ab | 0.74±0.02 a | |
S1+RT | 16.28±0.22 b | 14.63±0.37 b | 0.64±0.05 b | 0.64±0.02 b | |
S0+TT | 15.24±0.22 c | 14.23±0.04 b | 0.63±0.04 b | 0.60±0.01 bc | |
S0+NT | 13.41±0.14 f | 12.48±0.21 d | 0.69±0.03 b | 0.57±0.05 c | |
S0+RT | 14.04±0.05 e | 13.15±0.19 c | 0.64±0.02 b | 0.55±0.05 c |
表2 不同处理对土壤有机碳(SOC)和全氮(TN)含量的影响
Table 2 Effects of treatments on contents of soil organic carbon (SOC) and total nitrogen (TN) g·kg-1
土层 Soil layer/cm | 处理 Treatment | 土壤有机碳含量Soil organic carbon content | 土壤全氮含量Total nitrogen content | ||
---|---|---|---|---|---|
早稻Early rice | 晚稻Late rice | 早稻Early rice | 晚稻Late rice | ||
0~10 | S1+TT | 16.15±0.27 a | 14.94±0.12 b | 0.95±0.01 a | 0.76±0.02 a |
S1+NT | 15.55±0.32 b | 15.63±0.06 a | 0.93±0.06 a | 0.57±0.02 c | |
S1+RT | 14.92±0.06 c | 14.16±0.23 c | 0.88±0.04 a | 0.69±0.03 b | |
S0+TT | 14.75±0.16 c | 13.05±0.10 d | 0.73±0.04 bc | 0.67±0.02 b | |
S0+NT | 14.76±0.05 c | 15.58±0.51 a | 0.69±0.01 c | 0.54±0.04 c | |
S0+RT | 14.56±0.18 c | 13.38±0.14 d | 0.76±0.03 b | 0.56±0.04 c | |
10~20 | S1+TT | 16.99±0.63 a | 15.19±0.36 a | 0.78±0.02 a | 0.75±0.02 a |
S1+NT | 14.67±0.18 d | 13.41±0.25 c | 0.72±0.08 ab | 0.74±0.02 a | |
S1+RT | 16.28±0.22 b | 14.63±0.37 b | 0.64±0.05 b | 0.64±0.02 b | |
S0+TT | 15.24±0.22 c | 14.23±0.04 b | 0.63±0.04 b | 0.60±0.01 bc | |
S0+NT | 13.41±0.14 f | 12.48±0.21 d | 0.69±0.03 b | 0.57±0.05 c | |
S0+RT | 14.04±0.05 e | 13.15±0.19 c | 0.64±0.02 b | 0.55±0.05 c |
图2 不同处理对早稻(A)、晚稻(B)土壤团聚体有机碳贡献率的影响
Fig.2 Effects of treatments on the contribution rate of soil aggregate organic carbon in early rice (A) and late rice (B)
图3 不同处理对早稻(A)、晚稻(B)土壤团聚体全氮贡献率的影响
Fig.3 Effects of treatments on the contribution rate of soil aggregate total nitrogen in early rice (A) and late rice (B)
[1] | 黄璐, 赵国慧, 李廷亮, 等. 秸秆还田对黄土旱塬麦田土壤团聚体有机碳组分的影响[J]. 农业工程学报, 2022, 38(13): 123-132. |
HUANG L, ZHAO G H, LI T L, et al. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 123-132. (in Chinese with English abstract) | |
[2] | 李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334-344. |
LI J, WU H J, WU X P, et al. Long-term conservation tillage enhanced organic carbon and nitrogen contents of particulate organic matter in soil aggregates[J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344. (in Chinese with English abstract) | |
[3] | WANG C, PAN Y Y, ZHANG Z M, et al. Effect of straw decomposition on organic carbon fractions and aggregate stability in salt marshes[J]. Science of the Total Environment, 2021, 777: 145852. |
[4] | ADEKALU K O, OKUNADE D A, OSUNBITAN J A. Compaction and mulching effects on soil loss and runoff from two southwestern Nigeria agricultural soils[J]. Geoderma, 2006, 137(1/2): 226-230. |
[5] | 龙攀, 苏姗, 黄亚男, 等. 双季稻田冬季种植模式对土壤有机碳和碳库管理指数的影响[J]. 应用生态学报, 2019, 30(4): 1135-1142. |
LONG P, SU S, HUANG Y N, et al. Effects of winter cropping mode on soil organic carbon and carbon management index of double rice paddy[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1135-1142. (in Chinese with English abstract) | |
[6] | 郑凤君, 王雪, 李生平, 等. 免耕覆盖下土壤水分、团聚体稳定性及其有机碳分布对小麦产量的协同效应[J]. 中国农业科学, 2021, 54(3): 596-607. |
ZHENG F J, WANG X, LI S P, et al. Synergistic effects of soil moisture, aggregate stability and organic carbon distribution on wheat yield under no-tillage practice[J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607. (in Chinese with English abstract) | |
[7] | 邹文秀, 韩晓增, 严君, 等. 耕翻和秸秆还田深度对东北黑土物理性质的影响[J]. 农业工程学报, 2020, 36(15): 9-18. |
ZOU W X, HAN X Z, YAN J, et al. Effects of incorporation depth of tillage and straw returning on soil physical properties of black soil in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 9-18. (in Chinese with English abstract) | |
[8] | 田慎重, 王瑜, 宁堂原, 等. 转变耕作方式对长期旋免耕农田土壤有机碳库的影响[J]. 农业工程学报, 2016, 32(17): 98-105. |
TIAN S Z, WANG Y, NING T Y, et al. Effect of tillage method changes on soil organic carbon pool in farmland under long-term rotary tillage and no tillage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 98-105. (in Chinese with English abstract) | |
[9] | CHEN Z D, TI J S, CHEN F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China[J]. Nutrient Cycling in Agroecosystems, 2017, 109(2): 103-114. |
[10] | 蔡立群, 齐鹏, 张仁陟. 保护性耕作对麦-豆轮作条件下土壤团聚体组成及有机碳含量的影响[J]. 水土保持学报, 2008, 22(2): 141-145. |
CAI L Q, QI P, ZHANG R Z. Effects of conservation tillage measures on soil aggregates stability and soil organic carbon in two sequence rotation system with spring wheat and field pea[J]. Journal of Soil and Water Conservation, 2008, 22(2): 141-145. (in Chinese with English abstract) | |
[11] | 邓子正, 黄明镜, 张吴平, 等. 旱作条件下保护性耕作对土壤结构和容重影响试验研究[J]. 土壤通报, 2023, 54(1): 46-55. |
DENG Z Z, HUANG M J, ZHANG W P, et al. Effects of conservation tillage on soil structure and bulk density under dryland[J]. Chinese Journal of Soil Science, 2023, 54(1): 46-55. (in Chinese with English abstract) | |
[12] | ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
[13] | PRASAD J V N S, RAO C S, SRINIVAS K, et al. Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi arid tropics of southern India[J]. Soil and Tillage Research, 2016, 156: 131-139. |
[14] | 张玉铭, 胡春胜, 陈素英, 等. 耕作与秸秆还田方式对碳氮在土壤团聚体中分布的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1558-1570. |
ZHANG Y M, HU C S, CHEN S Y, et al. Effects of tillage and straw returning method on the distribution of carbon and nitrogen in soil aggregates[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1558-1570. (in Chinese with English abstract) | |
[15] | TABATABAI M A. Soil organic matter testing: an overview[M]//MAGDOFF F R, TABATABAI M A, HANLON E A JR. Soil organic matter: analysis and interpretation. Madison, WI, USA: Soil Science Society of America, 2015: 1-9. |
[16] | 杨靖民, 张忠庆, 于晓斌, 等. 连续流动注射—紫外分光光度法快速测定土壤硝酸盐含量[J]. 吉林农业大学学报, 2013, 35(5): 573-576. |
YANG J M, ZHANG Z Q, YU X B, et al. Rapid determination of soil nitrate content with continuous flow injection-ultraviolet spectrophotometry[J]. Journal of Jilin Agricultural University, 2013, 35(5): 573-576. (in Chinese with English abstract) | |
[17] | HUANG T T, YANG N, LU C, et al. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods[J]. Soil and Tillage Research, 2021, 214: 105171. |
[18] | 刘哲, 韩霁昌, 孙增慧, 等. δ13C法研究砂姜黑土添加秸秆后团聚体有机碳变化规律[J]. 农业工程学报, 2017, 33(14): 179-187. |
LIU Z, HAN J C, SUN Z H, et al. Change law of organic carbon in lime concretion black soil aggregates with application of straw by δ13C method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 179-187. (in Chinese with English abstract) | |
[19] | ZHENG H B, LIU W R, ZHENG J Y, et al. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China[J]. PLoS One, 2018, 13(6): e0199523. |
[20] | WANG E Z, LIN X L, TIAN L, et al. Effects of short-term rice straw return on the soil microbial community[J]. Agriculture, 2021, 11(6): 561. |
[21] | SEGLAH P A, WANG Y J, WANG H Y, et al. Crop straw utilization and field burning in Northern region of Ghana[J]. Journal of Cleaner Production, 2020, 261: 121191. |
[22] | WEN X, CHEN W W, CHEN B, et al. Does the prohibition on open burning of straw mitigate air pollution?: an empirical study in Jilin Province of China in the post-harvest season[J]. Journal of Environmental Management, 2020, 264: 110451. |
[23] | HALDER M, AHMAD S J, RAHMAN T, et al. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh[J]. Geoderma Regional, 2023, 32: e00620. |
[24] | HU R W, LIU Y J, CHEN T, et al. Responses of soil aggregates, organic carbon, and crop yield to short-term intermittent deep tillage in Southern China[J]. Journal of Cleaner Production, 2021, 298: 126767. |
[25] | SIX J, ELLIOTT E T, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. |
[26] | 宋佳, 黄晶, 高菊生, 等. 冬种绿肥和秸秆还田对双季稻区土壤团聚体和有机质官能团的影响[J]. 应用生态学报, 2021, 32(2): 564-570. |
SONG J, HUANG J, GAO J S, et al. Effects of green manure planted in winter and straw returning on soil aggregates and organic matter functional groups in double cropping rice area[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 564-570. (in Chinese with English abstract) | |
[27] | 贺美, 王迎春, 王立刚, 等. 应用DNDC模型分析东北黑土有机碳演变规律及其与作物产量之间的协同关系[J]. 植物营养与肥料学报, 2017, 23(1): 9-19. |
HE M, WANG Y C, WANG L G, et al. Using DNDC model to simulate black soil organic carbon dynamics as well as its coordinate relationship with crop yield[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 9-19. (in Chinese with English abstract) | |
[28] | LI Z K, SHEN Y, ZHANG W Y, et al. Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system[J]. Field Crops Research, 2023, 291: 108800. |
[29] | ZHU L Q, HU N J, YANG M F, et al. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system[J]. PLoS One, 2014, 9(2): e88900. |
[30] | 刘世平, 陈文林, 聂新涛, 等. 麦稻两熟地区不同埋深对还田秸秆腐解进程的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1049-1053. |
LIU S P, CHEN W L, NIE X T, et al. Effect of embedding depth on decomposition course of crop residues in rice-wheat system[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1049-1053. (in Chinese with English abstract) | |
[31] | 丁司丞, 陈书涛, 王瑾, 等. 增温对不同作物秸秆在土壤中分解速率的影响及模拟[J]. 植物营养与肥料学报, 2021, 27(11): 2054-2062. |
DING S C, CHEN S T, WANG J, et al. Effects of warming on the decomposition rates of the straw of different crops in soils and modelling[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 2054-2062. (in Chinese with English abstract) | |
[32] | 武际, 郭熙盛, 王允青, 等. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征[J]. 中国农业科学, 2011, 44(16): 3351-3360. |
WU J, GUO X S, WANG Y Q, et al. Decomposition characteristics of rapeseed and wheat straws under different rice cultivations and straw mulching models[J]. Scientia Agricultura Sinica, 2011, 44(16): 3351-3360. (in Chinese with English abstract) | |
[33] | 王子阳, 陈婉华, 袁伟, 等. 双季稻地区不同类型水稻秸秆与还田深度对还田秸秆腐解进程的影响[J]. 中国土壤与肥料, 2022(2): 170-174. |
WANG Z Y, CHEN W H, YUAN W, et al. Effects of different types of rice straw and returning depth on decomposition course of straw in double cropping rice region[J]. Soil and Fertilizer Sciences in China, 2022(2): 170-174. (in Chinese with English abstract) | |
[34] | BLAUD A, LERCH T Z, CHEVALLIER T, et al. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw[J]. Applied Soil Ecology, 2012, 53: 1-9. |
[35] | 吴雨晴, 郑春莲, 孙景生, 等. 长期咸水灌溉对棉田土壤水稳性团聚体的影响[J]. 灌溉排水学报, 2020, 39(9): 58-64. |
WU Y Q, ZHENG C L, SUN J S, et al. The effects of long-term saline water irrigation on stability of soil aggregates in a cotton field[J]. Journal of Irrigation and Drainage, 2020, 39(9): 58-64. (in Chinese with English abstract) | |
[36] | HE X, CHEN J, LI Y, et al. Seasonal dynamics of soil aggregates and associated C and N stocks in different fertilizer managements[J]. Archives of Agronomy and Soil Science, 2022, 68(10): 1305-1321. |
[37] | WANG Y L, WU P N, MEI F J, et al. Does continuous straw returning keep China farmland soil organic carbon continued increase?: a meta-analysis[J]. Journal of Environmental Management, 2021, 288: 112391. |
[38] | SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176. |
[39] | TORMENA C A, SILVA A P, LIBARDI P L. Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto[J]. Revista Brasileira De Ciência Do Solo, 1998, 22(4): 573-581. |
[40] | 何进, 李洪文, 陈海涛, 等. 保护性耕作技术与机具研究进展[J]. 农业机械学报, 2018, 49(4): 1-19. |
HE J, LI H W, CHEN H T, et al. Research progress of conservation tillage technology and machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 1-19. (in Chinese with English abstract) | |
[41] | 张明伟, 杨恒山, 邰继承, 等. 秸秆还田与浅埋滴灌对玉米耕层土壤水稳性团聚体及其碳含量的影响[J]. 农业环境科学学报, 2022, 41(5): 999-1008. |
ZHANG M W, YANG H S, TAI J C, et al. Effects of straw return and shallow drip irrigation on topsoil water-stable aggregates and carbon content in maize field[J]. Journal of Agro-Environment Science, 2022, 41(5): 999-1008. (in Chinese with English abstract) | |
[42] | 皇甫呈惠, 孙筱璐, 刘树堂, 等. 长期定位秸秆还田对土壤团聚体及有机碳组分的影响[J]. 华北农学报, 2020, 35(3): 153-159. |
HUANGFU C H, SUN X L, LIU S T, et al. Effect of long-term straw returning to field on soil aggregates and organic carbon components[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(3): 153-159. (in Chinese with English abstract) | |
[43] | FENG Q, AN C J, CHEN Z, et al. Can deep tillage enhance carbon sequestration in soils?: a meta-analysis towards GHG mitigation and sustainable agricultural management[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110293. |
[44] | VAZQUEZ E, BENITO M, ESPEJO R, et al. Effects of no-tillage and liming amendment combination on soil carbon and nitrogen mineralization[J]. European Journal of Soil Biology, 2019, 93: 103090. |
[45] | HELLNER Q, KOESTEL J, ULÉN B, et al. Effects of tillage and liming on macropore networks derived from X-ray tomography images of a silty clay soil[J]. Soil Use and Management, 2018, 34(2): 197-205. |
[1] | 汪洁, 陆若辉, 朱伟锋, 陈钰佩, 单英杰. 浙江省主要粮食作物秸秆还田替代化肥的潜力[J]. 浙江农业学报, 2023, 35(8): 1853-1863. |
[2] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
[3] | 朱雅婷, 倪远之, 张敏, 王振旗, 沈根祥, 黄娜. 不同秸秆还田量对上海地区稻田甲烷排放的影响[J]. 浙江农业学报, 2023, 35(10): 2436-2445. |
[4] | 于博, 王钰艳, 任琴, 党玉蕾, 张志鹏, 王宇. 秸秆还田对土壤结构和春玉米生长的影响[J]. 浙江农业学报, 2023, 35(10): 2446-2455. |
[5] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[6] | 贾生强, 范惠珊, 陈喜靖, 喻曼, 沈阿林, 苏瑶. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 2021, 33(9): 1686-1699. |
[7] | 刘根红, 薛银鑫, 张倩, 周佳瑞, 买小凤. 滴灌条件下不同耕深及秸秆还田量对玉米生长的影响[J]. 浙江农业学报, 2021, 33(1): 8-17. |
[8] | 张统帅, 闫丽娟, 李广, 陈国鹏, 罗永忠. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响[J]. 浙江农业学报, 2020, 32(8): 1329-1341. |
[9] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
[10] | 王青霞, 陈喜靖, 喻曼, 沈阿林. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展[J]. 浙江农业学报, 2019, 31(2): 333-342. |
[11] | 吴兴慧, 张余, 李振宙, 周良, 黄小燕, 陈庆富, 黄凯丰. 不同耕作方式对苦荞衰老和籽粒灌浆特性的影响[J]. 浙江农业学报, 2019, 31(12): 1963-1970. |
[12] | 罗原骏, 蒲玉琳, 龙高飞, 叶春, 朱波. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389-1397. |
[13] | 胡心意, 傅庆林, 刘琛, 丁能飞, 林义成. 秸秆还田和耕作深度对稻田耕层土壤的影响[J]. 浙江农业学报, 2018, 30(7): 1202-1210. |
[14] | 马南, 钱瑞雪, 杨慧敏, 陈智文, 蒋云峰. 免耕留茬耕作对中小型土壤动物群落的影响[J]. 浙江农业学报, 2018, 30(5): 825-831. |
[15] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 419
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||