浙江农业学报 ›› 2025, Vol. 37 ›› Issue (5): 1130-1138.DOI: 10.3969/j.issn.1004-1524.20240432
陈梦微1(), 梁徐2, 张成磊1, 梁璟1, 许樱子1, 项丹丹1, 杨照渠1, 谢永东3,*(
)
收稿日期:
2024-05-23
出版日期:
2025-05-25
发布日期:
2025-06-11
作者简介:
陈梦微(1994—),女,浙江仙居人,硕士,助教,主要从事果树栽培与生理研究。E-mail:912468236@qq.com
通讯作者:
*谢永东,E-mail:xie.yd@foxmail.com
基金资助:
CHEN Mengwei1(), LIANG Xu2, ZHANG Chenglei1, LIANG Jing1, XU Yingzi1, XIANG Dandan1, YANG Zhaoqu1, XIE Yongdong3,*(
)
Received:
2024-05-23
Online:
2025-05-25
Published:
2025-06-11
摘要: 为探究微生物菌肥在杨梅栽培中的应用效果,以东魁杨梅为供试材料,设置对照(不施微生物菌肥,CK)、处理A(含胶冻样类芽孢杆菌LXB4001和新型枯草芽孢杆菌)、处理B(含解淀粉芽孢杆菌)和处理C(含LV-枯草芽孢杆菌)共4个处理,研究不同微生物菌肥对东魁杨梅种植土壤0~20 cm土层pH值、酶活性、肥力,以及叶片叶绿素和氮、磷、钾含量的影响。结果表明,与CK相比:处理C会显著(P<0.05)降低土壤pH值;3种微生物菌肥可以提高土壤养分含量,土壤碱解氮、有效磷、速效钾含量分别显著提高18.2%~45.0%、43.7%~156.3%、24.0%~40.8%;3种微生物菌肥还促进了杨梅植株叶片叶绿素和氮磷钾的积累,除处理B的叶片磷含量外,其余处理的叶片总叶绿素及氮、磷、钾含量分别显著增加27.5%~42.4%、17.5%~33.2%、11.7%~13.6%、14.6%~32.9%。基于主成分分析进行综合评价,4个处理的综合得分从高到低依次为处理A>处理B>处理C>CK。综上,微生物菌肥有助于改良土壤性质,提升土壤肥力,提高土壤可持续生产能力,利于植株生长。在该试验条件下,处理A的效果最佳。
中图分类号:
陈梦微, 梁徐, 张成磊, 梁璟, 许樱子, 项丹丹, 杨照渠, 谢永东. 微生物菌肥对东魁杨梅土壤性状和叶片营养的影响[J]. 浙江农业学报, 2025, 37(5): 1130-1138.
CHEN Mengwei, LIANG Xu, ZHANG Chenglei, LIANG Jing, XU Yingzi, XIANG Dandan, YANG Zhaoqu, XIE Yongdong. Effects of microbial fertilizer on soil properties and leaf nutrition of Dongkui bayberry[J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1130-1138.
图1 不同处理对土壤pH值和有机质含量的影响 柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.1 Effect of treatments on soil pH and organic matter content Bars marked without the same letters indicate significant difference at P<0.05. The same as below.
处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content |
---|---|---|---|
CK | 536.03± 9.34 c | 1 056.81± 45.89 c | 1 592.84± 54.82 c |
A | 662.17± 3.42 b | 1 368.37± 9.27 b | 2 030.54± 10.86 b |
B | 746.97± 5.68 a | 1 521.65± 13.48 a | 2 268.62± 17.31 a |
C | 729.09± 27.61 a | 1 510.47± 36.95 a | 2 239.56± 12.65 a |
表1 不同处理对杨梅叶片叶绿素含量的影响
Table 1 Effect of treatments on chlorophyll content of bayberry leaves mg·kg-1
处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 总叶绿素含量 Total chlorophyll content |
---|---|---|---|
CK | 536.03± 9.34 c | 1 056.81± 45.89 c | 1 592.84± 54.82 c |
A | 662.17± 3.42 b | 1 368.37± 9.27 b | 2 030.54± 10.86 b |
B | 746.97± 5.68 a | 1 521.65± 13.48 a | 2 268.62± 17.31 a |
C | 729.09± 27.61 a | 1 510.47± 36.95 a | 2 239.56± 12.65 a |
处理 Treatment | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 钾含量 Potassium content |
---|---|---|---|
CK | 10.19±0.03 d | 1.03±0.02 b | 5.62±0.22 c |
A | 13.57±0.08 a | 1.17±0.00 a | 7.47±0.55 a |
B | 12.59±0.07 b | 0.99±0.01 b | 6.44±0.45 b |
C | 11.97±0.61 c | 1.15±0.04 a | 6.66±0.37 b |
表2 不同处理对杨梅叶片养分含量的影响
Table 2 Effect of treatments on nutrients content of bayberry leaves g·kg-1
处理 Treatment | 氮含量 Nitrogen content | 磷含量 Phosphorus content | 钾含量 Potassium content |
---|---|---|---|
CK | 10.19±0.03 d | 1.03±0.02 b | 5.62±0.22 c |
A | 13.57±0.08 a | 1.17±0.00 a | 7.47±0.55 a |
B | 12.59±0.07 b | 0.99±0.01 b | 6.44±0.45 b |
C | 11.97±0.61 c | 1.15±0.04 a | 6.66±0.37 b |
主成分 Principal component | 特征值 Characteristic value | 方差贡献率 Variance contribution rate/% | 累积贡献率 Cumulative contribution rate/% |
---|---|---|---|
1 | 8.235 | 43.344 | 43.344 |
2 | 5.237 | 27.565 | 70.909 |
3 | 3.573 | 18.806 | 89.715 |
表3 主成分的特征值和贡献率
Table 3 Eigenvalue and contribution rate of principal components
主成分 Principal component | 特征值 Characteristic value | 方差贡献率 Variance contribution rate/% | 累积贡献率 Cumulative contribution rate/% |
---|---|---|---|
1 | 8.235 | 43.344 | 43.344 |
2 | 5.237 | 27.565 | 70.909 |
3 | 3.573 | 18.806 | 89.715 |
[1] | 陈方永. 一粒种子成就一大产业: 刍议东魁杨梅发展40年[J]. 中国果树, 2023(8): 1-6. |
CHEN F Y. A seed makes a big industry: the development of Myrica rubra cv. ‘Dongkui' in the past 40 years[J]. China Fruits, 2023(8): 1-6. (in Chinese with English abstract) | |
[2] | 江云珠, 姚佳蓉, 姜遥, 等. 浙江省杨梅设施栽培主要模式及效益分析[J]. 农产品质量与安全, 2022(4): 69-73. |
JIANG Y Z, YAO J R, JIANG Y, et al. Main modes and benefit analysis of bayberry facility cultivation in Zhejiang Province[J]. Quality and Safety of Agro-Products, 2022(4): 69-73. (in Chinese with English abstract) | |
[3] | 钟乐, 曾燕, 邱新法, 等. 浙江省杨梅种植适宜性区划[J]. 自然资源遥感, 2023, 35(2): 236-244. |
ZHONG L, ZENG Y, QIU X F, et al. Suitability regionalization of Myrica rubra planting in Zhejiang Province[J]. Remote Sensing for Natural Resources, 2023, 35(2): 236-244. (in Chinese with English abstract) | |
[4] | 彭健健, 徐坚, 王晓晓, 等. 杨梅主产区土壤肥力空间异质性及其影响因素: 以浙江仙居和临海为例[J]. 果树学报, 2023, 40(7): 1421-1433. |
PENG J J, XU J, WANG X X, et al. Spatial variation of soil fertility and its influencing factors in Myrica rubra region: a case study in Xianju County and Linhai City[J]. Journal of Fruit Science, 2023, 40(7): 1421-1433. (in Chinese with English abstract) | |
[5] | SIMPSON R J, OBERSON A, CULVENOR R A, et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems[J]. Plant and Soil, 2011, 349(1): 89-120. |
[6] | DA COSTA P B, BENEDUZI A, DE SOUZA R, et al. The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing[J]. Plant and Soil, 2013, 368(1): 267-280. |
[7] | 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201-221. |
DING W C, HE P, ZHOU W. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201-221. (in Chinese with English abstract) | |
[8] | 张德楠, 张燕钊, 滕秋梅, 等. 化肥减量配施微生物菌肥对圣女果产量、品质及土壤肥力的影响[J]. 中国土壤与肥料, 2023(10): 36-47. |
ZHANG D N, ZHANG Y Z, TENG Q M, et al. Effects of chemical fertilizer reduction and application of microbial fertilizer on yield and quality of cherry tomatoes and soil fertility[J]. Soil and Fertilizer Sciences in China, 2023(10): 36-47. (in Chinese with English abstract) | |
[9] | 张凯煜, 谷洁, 王小娟, 等. 微生物有机肥对樱桃园土壤细菌群落的影响[J]. 中国环境科学, 2019, 39(3): 1245-1252. |
ZHANG K Y, GU J, WANG X J, et al. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard[J]. China Environmental Science, 2019, 39(3): 1245-1252. (in Chinese with English abstract) | |
[10] | 杨淑娜, 高志远, 奚昕琰, 等. 芽孢杆菌菌肥和菌剂对连作条件下桃幼树生长和土壤环境的影响[J]. 应用生态学报, 2022, 33(2): 423-430. |
YANG S N, GAO Z Y, XI X Y, et al. Effects of Bacillus fertilizer and agent on growth of young peach tree and soil environment under replant condition[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 423-430. (in Chinese with English abstract) | |
[11] | 姜莉莉, 王开运, 武玉国, 等. 施用生物有机肥对番茄果实品质及土壤生物学特性的影响[J]. 华北农学报, 2020, 35(6): 141-147. |
JIANG L L, WANG K Y, WU Y G, et al. Effect of application of bioorganic fertilizer on tomatoes fruit quality and soil biological characteristics[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(6): 141-147. (in Chinese with English abstract) | |
[12] | 张曼, 郝科星, 张焕, 等. 菌肥与生物炭配施对设施西瓜生长及土壤理化性质的影响[J]. 中国瓜菜, 2023, 36(5): 72-77. |
ZHANG M, HAO K X, ZHANG H, et al. Effects of bacterial fertilizer combined with biochar on watermelon growth and soil physical and chemical properties in greenhouse[J]. China Cucurbits and Vegetables, 2023, 36(5): 72-77. (in Chinese with English abstract) | |
[13] | 董万鹏, 吴楠, 龙婷, 等. 微生物菌肥对玫瑰防病促生作用及土壤微环境的影响[J]. 中国土壤与肥料, 2023(8): 121-127. |
DONG W P, WU N, LONG T, et al. Effects of microbial fertilizer on disease control and growth of rose and its effect on soil microenvironment[J]. Soil and Fertilizer Sciences in China, 2023(8): 121-127. (in Chinese with English abstract) | |
[14] | 刘政典. HPS微生物菌肥对阿克苏地区苹果园土壤及果实品质的影响[D]. 阿拉尔: 塔里木大学, 2022. |
LIU Z D. Effect of HPS microbial fertilizer on soil and fruit quality in apple orchards in Aksu region[D]. Alaer: Tarim University, 2022. (in Chinese with English abstract) | |
[15] | 张芮, 温文, 董博, 等. 不同水分条件下菌肥施用对陇椒产量与品质的影响[J]. 江西农业大学学报, 2023, 45(2): 337-348. |
ZHANG R, WEN W, DONG B, et al. Effects of bacterial fertilizer application on yield and quality of plateau long pepper under different water conditions[J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 337-348. (in Chinese with English abstract) | |
[16] | KADHUM A A, ALOBAIDY B S J, AL-JOBOORY W. The effect of bio and mineral fertilizers on growth and yield of wheat (Triticum estivum L.)[J]. IOP Conference Series: Earth and Environmental Science, 2021, 761(1): 012004. |
[17] | SUSANTI Y, WANGIYANA W, ZUBAIDI A. Yield of mungbean relay-planted at different dates and spacings between double-rows of mycorrhiza-biofertilized maize plants[J]. Russian Journal of Agricultural and Socio-Economic Sciences, 2020, 102(6): 162-169. |
[18] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[19] | 王学奎. 植物生理生化试验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. |
[20] | 刘嫒, 刘春燕, 吴雨卓. 生物菌肥对桃园土壤养分及叶片氮磷钾含量的影响[J]. 湖南农业科学, 2023(1): 48-51. |
LIU A, LIU C Y, WU Y Z. Effects of bacterial manure on rhizosphere soil nutrients and N, P and K contents in peach leaves[J]. Hunan Agricultural Sciences, 2023(1): 48-51. (in Chinese with English abstract) | |
[21] | 冯玉倩, 米俊珍, 赵宝平, 等. 秸秆配施微生物菌肥对盐碱地土壤理化性质及作物产量和品质的影响[J]. 中国土壤与肥料, 2023(9): 96-104. |
FENG Y Q, MI J Z, ZHAO B P, et al. Effects of straw combined with microbial fertilizer on soil physical and chemical properties and crop yield and quality in saline-alkali soil[J]. Soil and Fertilizer Sciences in China, 2023(9): 96-104. (in Chinese with English abstract) | |
[22] | 姜路花, 吴雅兰, 邹新红, 等. 利用益生菌提高杨梅树有机肥肥效试验[J]. 浙江农业科学, 2023, 64(2): 382-385. |
JIANG L H, WU Y L, ZOU X H, et al. Evaluation on improving fertilizer efficiency of organic fertilizer of bayberry by probiotics[J]. Journal of Zhejiang Agricultural Sciences, 2023, 64(2): 382-385. (in Chinese with English abstract) | |
[23] | MARX M C, WOOD M, JARVIS S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1633-1640. |
[24] | NANNIPIERI P, GIAGNONI L, RENELLA G, et al. Soil enzymology: classical and molecular approaches[J]. Biology and Fertility of Soils, 2012, 48(7): 743-762. |
[25] | 高志豪, 张锦韬, 何云飞, 等. 不同类型微生物菌肥对烤烟种植的影响[J]. 湖南农业科学, 2023(4): 38-44. |
GAO Z H, ZHANG J T, HE Y F, et al. Effects of different microbial fertilizers on tobacco cultivation[J]. Hunan Agricultural Sciences, 2023(4): 38-44. (in Chinese with English abstract) | |
[26] | 郭艳兰, 牟德生, 张勤德, 等. 化肥减量配施不同用量微生物菌肥对黑比诺葡萄生长、品质及土壤肥力的影响[J]. 江苏农业学报, 2023, 39(9): 1938-1944. |
GUO Y L, MU D S, ZHANG Q D, et al. Effects of chemical fertilizer reduction combined with microbial fertilizer on growth, quality and soil fertility of Pinot Noir grape[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(9): 1938-1944. (in Chinese with English abstract) | |
[27] | 朱诗君, 王丽丽, 金树权, 等. 微生物菌剂菌肥对西瓜连作障碍的缓解作用[J]. 中国农学通报, 2023, 39(28): 48-53. |
ZHU S J, WANG L L, JIN S Q, et al. The alleviating effect of microbial fertilizer on watermelon continuous cropping obstacles[J]. Chinese Agricultural Science Bulletin, 2023, 39(28): 48-53. (in Chinese with English abstract) | |
[28] | MIRAN N, RASOULI SADAGHIANI M H, FEIZIASL V, et al. Predicting soil nutrient contents using Landsat OLI satellite images in rain-fed agricultural lands, northwest of Iran[J]. Environmental Monitoring and Assessment, 2021, 193(9): 607. |
[29] | 刘玉连, 卢红, 李明, 等. 2种微生物菌肥对穿心莲根际土壤理化性质、微生物数量及酶活性的影响[J]. 江苏农业科学, 2023, 51(12): 208-214. |
LIU Y L, LU H, LI M, et al. Influences of two microbial fungal fertilizers on physicochemical properties, microbial number and enzyme activity of Andrographis rhizosphere soil[J]. Jiangsu Agricultural Sciences, 2023, 51(12): 208-214. (in Chinese) | |
[30] | 朱丹, 张磊, 韦泽秀, 等. 菌肥对青稞根际土壤理化性质以及微生物群落的影响[J]. 土壤学报, 2014, 51(3): 627-637. |
ZHU D, ZHANG L, WEI Z X, et al. Effects of bacterial manure on soil physicochemical properties and microbial community diversity in rhizosphere of highland barley[J]. Acta Pedologica Sinica, 2014, 51(3): 627-637. (in Chinese with English abstract) | |
[31] | 吴贵平. 复合微生物肥对杨梅果实品质的影响[J]. 浙江农业科学, 2020, 61(8): 1586-1587. |
WU G P. Effect of compound microbial fertilizer on fruit quality of Chinese bayberry[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(8): 1586-1587. (in Chinese with English abstract) | |
[32] | 花少伟. 茶园中豆科绿肥—根瘤菌—芽孢杆菌互作体系的应用效果研究[D]. 南京: 南京农业大学, 2021. |
HUA S W. The study in application effect of leguminous green manure-rhizobia-bacillus interaction system in tea plantation[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese with English abstract) | |
[33] | 张爱民, 甄丽娜, 徐业营, 等. 花生接种胶冻样类芽孢杆菌对土壤微生物群落、氨化细菌、固氮菌及产量的影响[J]. 肥料与健康, 2022, 49(2): 30-34. |
ZHANG A M, ZHEN L N, XU Y Y, et al. Effects of peanut inoculated with Paenibacillus mucilaginosus on soil microbial community, ammonifying bacteria, azotobacter and yield[J]. Fertilizer & Health, 2022, 49(2): 30-34. (in Chinese with English abstract) | |
[34] | 张明, 李明, 杨龙伟, 等. 生物有机肥配施枯草芽孢杆菌对穿心莲品质及土壤性质的影响[J]. 山东农业科学, 2023, 55(8): 101-109. |
ZHANG M, LI M, YANG L W, et al. Effects of bio-organic fertilizer combined with Bacillus subtilis on Andrographis paniculata quality and soil properties[J]. Shandong Agricultural Sciences, 2023, 55(8): 101-109. (in Chinese with English abstract) | |
[35] | 保善存, 樊光辉, 李发毅. 解淀粉芽孢杆菌微生物菌剂对枸杞生长及土壤性状的影响[J]. 中国土壤与肥料, 2023(8): 112-120. |
BAO S C, FAN G H, LI F Y. Effects of Bacillus amyloliquefaciens microbial agent on the growth and soil properties of Lycium barbarum L[J]. Soil and Fertilizer Sciences in China, 2023(8): 112-120. (in Chinese with English abstract) | |
[36] | 王爱斌, 宋慧芳, 张流洋, 等. 生物肥和菌肥对蓝莓苗生长及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 63-70. |
WANG A B, SONG H F, ZHANG L Y, et al. Effects of bio-organic and microbial fertilizers on growth and soil nutrients of Vaccinium spp. seedlings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2020, 44(6): 63-70. (in Chinese with English abstract) | |
[37] | 王晓艳. 不同菌肥对油茶叶内源激素及氮磷钾含量和林下土壤理化性质的影响[J]. 江苏林业科技, 2021, 48(5): 28-32. |
WANG X Y. Effects of different bacterial fertilizers on soil properties, leaf endogenous hormones and N, P, K contents in Camellia oleifera Abel[J]. Journal of Jiangsu Forestry Science & Technology, 2021, 48(5): 28-32. (in Chinese with English abstract) |
[1] | 杜颂, 汤涛, 程曦, 赵学平, 张春荣, 梁晓宇, 王萌, 张震, 李永成, 章程辉. 砜吡草唑及其主要代谢物在土壤中的消解和对土壤酶活性的影响研究[J]. 浙江农业学报, 2025, 37(4): 847-857. |
[2] | 高兰芸, 刘昊, 李爱, 张婷婷, 杨丽芳, 高英. NaCl对樱桃砧木组培生根、IAA原位分布及相关酶活性的影响[J]. 浙江农业学报, 2024, 36(6): 1300-1308. |
[3] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
[4] | 侯栋, 李亚莉, 岳宏忠, 张东琴, 姚拓, 黄书超, 杨海兴. 微生物菌肥替代部分化肥对花椰菜产量、品质及土壤微生物的影响[J]. 浙江农业学报, 2024, 36(3): 589-599. |
[5] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[6] | 张宇昊, 马卫华, 刘晋佳, 马秀梅, 姜玉锁. 亚致死剂量呋虫胺对意大利蜜蜂采集蜂免疫解毒相关基因表达和酶活性的影响[J]. 浙江农业学报, 2023, 35(3): 575-581. |
[7] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[8] | 周力, 桂林生. 饲粮中小麦颗粒用量对藏羊公羔瘤胃内环境的影响[J]. 浙江农业学报, 2023, 35(11): 2543-2554. |
[9] | 高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435. |
[10] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[11] | 金侯定, 郑春颖, 华斌, 俞晨良, 李柯豫, 喻卫武. 香榧扦插生根解剖学与生理相关酶活性[J]. 浙江农业学报, 2022, 34(9): 1955-1966. |
[12] | 蔡继业, 房祥军, 韩延超, 丁玉庭, 陈杭君, 吴伟杰, 郜海燕. 气调贮藏对东魁杨梅品质的影响[J]. 浙江农业学报, 2022, 34(2): 352-359. |
[13] | 陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658. |
[14] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[15] | 范琳娟, 刘子荣, 徐雪亮, 王奋山, 彭德良, 姚英娟. 6种杀线剂对重茬山药土壤微生物数量、酶活性和养分含量的影响[J]. 浙江农业学报, 2021, 33(3): 506-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||