浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1300-1308.DOI: 10.3969/j.issn.1004-1524.20230812
高兰芸1(), 刘昊2, 李爱1, 张婷婷1, 杨丽芳2, 高英1,*(
)
收稿日期:
2023-06-29
出版日期:
2024-06-25
发布日期:
2024-07-02
作者简介:
高兰芸(1998—),女,宁夏中卫人,硕士,研究方向为果树学。E-mail:1986648561@qq.com
通讯作者:
*高英,E-mail: gying@tjau.edu.cn
基金资助:
GAO Lanyun1(), LIU Hao2, LI Ai1, ZHANG Tingting1, YANG Lifang2, GAO Ying1,*(
)
Received:
2023-06-29
Online:
2024-06-25
Published:
2024-07-02
摘要:
为阐明NaCl对樱桃砧木组培生根的影响,试验以吉塞拉6号组培苗为材料,首先研究了不同浓度NaCl处理下组培苗不定根发生指标,然后根据生根指标进一步研究了10 mmol·L-1和80 mmol·L-1NaCl处理下的解剖结构、发根过程酶活性及吲哚-3-2酸(IAA)的原位分布。结果表明,10 mmol·L-1NaCl处理下樱桃组培苗生根率和生根指数均最高,且显著高于其他处理,分别为58%和13.43;该处理下生根最快,2 d时形成层开始增厚,6 d时根原基形成,10 d时不定根突破表皮。各处理超氧化物歧化酶(SOD)活性在6 d时均达到峰值;过氧化物酶(POD)、多酚氧化酶(PPO)、吲哚乙酸氧化酶(IAAO)活性变化各处理存在差异,CK均呈上升趋势,与CK相比,10 mmol·L-1处理IAAO活性于2 d出现峰值。利用免疫胶体金技术对IAA进行原位分析发现,10 mmol·L-1处理2 d时IAA主要分布于形成层,6 d时IAA大量分布于根原基,10 d时IAA集中分布于不定根维管组织。综上,10 mmol·L-1NaCl处理对樱桃组培苗不定根发生具有一定的促进作用,为进一步研究樱桃组培苗不定根发生及调控机制提供参考。
中图分类号:
高兰芸, 刘昊, 李爱, 张婷婷, 杨丽芳, 高英. NaCl对樱桃砧木组培生根、IAA原位分布及相关酶活性的影响[J]. 浙江农业学报, 2024, 36(6): 1300-1308.
GAO Lanyun, LIU Hao, LI Ai, ZHANG Tingting, YANG Lifang, GAO Ying. Effects of NaCl on rooting, in-situ distribution of IAA and related enzyme activities of cherry rootstock seedlings[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1300-1308.
NaCl浓度 NaCl concentration/ (mmol·L-1) | 生根率 Rooting rate/% | 平均根数/条 Average number of roots | 生根总数/条 Total number of roots | 平均根长 Average length of roots/cm | 最大根长 Maximum root length/cm | 生根指数 Rooting index |
---|---|---|---|---|---|---|
CK(0) | 40±3.07 b | 2.68±0.24 a | 37.33±4.16 a | 4.36±0.09 ab | 8.00±0.80 b | 8.47±0.22 b |
10 | 58±1.01 a | 2.37±0.12 a | 45.00±4.36 a | 4.69±0.11 a | 10.47±0.46 a | 13.43±1.04a |
20 | 41±2.67 b | 2.63±0.09 a | 37.67±4.51 a | 4.20±0.34 b | 7.83±0.76 b | 8.39±0.84 b |
40 | 25±3.08 c | 2.75±0.65 a | 23.33±4.16 b | 3.78±0.06 c | 6.73±0.40 b | 4.46±0.52 c |
80 | 5±4.32 d | 2.44±0.96 a | 3.33±0.58 c | 2.43±0.29 d | 3.40±0.79 c | 0.32±0.03 d |
表1 NaCl处理下樱桃茎段生根相关参数
Table 1 The rooting related parameters of cherry stem under NaCl treatment
NaCl浓度 NaCl concentration/ (mmol·L-1) | 生根率 Rooting rate/% | 平均根数/条 Average number of roots | 生根总数/条 Total number of roots | 平均根长 Average length of roots/cm | 最大根长 Maximum root length/cm | 生根指数 Rooting index |
---|---|---|---|---|---|---|
CK(0) | 40±3.07 b | 2.68±0.24 a | 37.33±4.16 a | 4.36±0.09 ab | 8.00±0.80 b | 8.47±0.22 b |
10 | 58±1.01 a | 2.37±0.12 a | 45.00±4.36 a | 4.69±0.11 a | 10.47±0.46 a | 13.43±1.04a |
20 | 41±2.67 b | 2.63±0.09 a | 37.67±4.51 a | 4.20±0.34 b | 7.83±0.76 b | 8.39±0.84 b |
40 | 25±3.08 c | 2.75±0.65 a | 23.33±4.16 b | 3.78±0.06 c | 6.73±0.40 b | 4.46±0.52 c |
80 | 5±4.32 d | 2.44±0.96 a | 3.33±0.58 c | 2.43±0.29 d | 3.40±0.79 c | 0.32±0.03 d |
图2 NaCl处理下樱桃茎段生根过程的解剖结构 a, b, c分别代表、10、80 mmol·L-1NaCl处理下生根诱导2 d; d, e, f分别代表生根诱导6 d(处理同上);g, h, i分别代表生根诱导10 d(处理同上);j代表生根诱导0 d; d(1),e(1)分别代表d,e图的放大图10×。Ep,表皮;Co,皮层;Ca,形成层;Ph,韧皮部;Xy,木质部;Pi,髓;Rp,根原基;Ar,不定根。
Fig.2 Anatomical structure of cherry stem during rooting under NaCl treatment a, b and c represent rooting induction under 0, 10 and 80 mmol·L-1 NaCl treatment for 2 days, respectively; d, e and f represent rooting induction for 6 days, respectively (same treatment as above); g, h, and i represent rooting induction for 10 days, respectively (same treatment as above); j represent rooting induction for 0 days; d(1) and e(1) represent the enlarged figure 10× of Figure d and e respectively. Ep, Epidermis; Co, Cortex; Ca, Cambium; Ph, Phloem; Xy, Xylem; Pi, Pith; Rp, Root primordium; Ar, Adventitious root.
图3 NaCl处理下樱桃茎段生根过程中酶活性变化 不同处理间没有相同小写字母表示差异显著(P<0.05)。
Fig.3 Changes of enzyme activity during rooting of cherry stem segment under NaCl treatment The bars with different lowercase letters indicate the significant difference (P<0.05).
图4 樱桃茎段生根过程IAA分布变化 a,b,c分别代表0、10、80 mmol·L-1NaCl处理下生根诱导2 d;d,e,f分别代表生根诱导6 d(处理同上),IAA主要分布在形成层和韧皮部;e. IAA主要分布在根原基;g,h,i分别代表生根诱导10 d(处理同上),其中10 mmol·L-1处理组IAA主要分布在根尖;j,k,l分别代表生根诱导前茎基部的横切片,其中j图IAA分布在形成层,k图代表染色时省略IAA单克隆抗体,l图代表对照2,染色时省略金标二抗。
Fig.4 Changes of IAA distribution during cherry stem rooting a, b and c represent rooting induction under 0, 10 and 80 mmol·L-1NaCl treatment for 2 days respectively. d, e and f represent rooting induction for 6 days respectively (same treatment as above), and IAA was mainly distributed in cambium and phloem. e. IAA was mainly distributed in the root primordia. g, h, and i represent rooting induction for 10 days respectively (same treatment as above). IAA was mainly distributed in root tips with the 10 mmol·L-1 treatment. j, k, l represent the transverse slices of the stem base before rooting induction respectively. IAA was distributed in the cambium of Figure j; Figure k represents omitting the IAA monoclonal antibody; Figure l represents omitting the gold label secondary antibody.
[1] | 王甲威, 宗晓娟, 孟艳玲, 等. 水杨酸处理对吉塞拉6号嫩枝扦插生根率的影响[J]. 落叶果树, 2010, 42(4): 1-3. |
WANG J W, ZONG X J, MENG Y L, et al. Effect of salicylic acid treatment on rooting rate of gisela No.6 softwood cutting[J]. Deciduous Fruits, 2010, 42(4): 1-3. (in Chinese) | |
[2] | DEEPTHI S, SATHEESHKUMAR K. Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L[J]. Biochemical Engineering Journal, 2017, 117: 198-209. |
[3] | 高玉青, 王文成. 不定根发生的形态学和生理学研究进展[J]. 烟台果树, 2022(4): 1-5. |
GAO Y Q, WANG W C. Advances in morphology and physiology of adventitious root formation[J]. Yantai Fruits, 2022(4): 1-5. (in Chinese) | |
[4] | 喻娜. 旱半夏组培苗生根条件的优化[J]. 分子植物育种, 2019, 17(3): 938-944. |
YU N. Optimization of rooting condition of tissue cultured seedling of Pinellia ternata[J]. Molecular Plant Breeding, 2019, 17(3): 938-944. (in Chinese with English abstract) | |
[5] | 赵亚楠, 张懿, 谭旭, 等. 杜梨组培苗两步生根技术体系优化[J]. 中国农业大学学报, 2021, 26(11): 105-112. |
ZHAO Y N, ZHANG Y, TAN X, et al. Optimizing two-step rooting techniques of in vitro cultured Pyrus betulifolia[J]. Journal of China Agricultural University, 2021, 26(11): 105-112. (in Chinese with English abstract) | |
[6] | ZOLLA G, HEIMER Y M, BARAK S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots[J]. Journal of Experimental Botany, 2010, 61(1): 211-224. |
[7] | 韩继红, 邵文豪, 刘金凤, 等. 无患子硬枝扦插进程插穗内源激素和多酚类物质含量变化[J]. 经济林研究, 2019, 37(3): 37-43, 51. |
HAN J H, SHAO W H, LIU J F, et al. Content changes of endogenous hormone and polyphenols during hardwood cuttage progress in Sapindus mukorossi[J]. Non-Wood Forest Research, 2019, 37(3): 37-43, 51. (in Chinese with English abstract) | |
[8] | OSTERC G, PETKOVŠEK M M, STAMPAR F. Quantification of IAA metabolites in the early stages of adventitious rooting might be predictive for subsequent differences in rooting response[J]. Journal of Plant Growth Regulation, 2016, 35(2): 534-542. |
[9] | WEI K, RUAN L, WANG L Y, et al. Auxin-induced adventitious root formation in nodal cuttings of Camellia sinensis[J]. International Journal of Molecular Sciences, 2019, 20(19): 4817. |
[10] | 黄堰然. 甜樱桃砧木吉塞拉高效组培快繁技术优化[D]. 北京: 北京林业大学, 2020. |
HUANG Y R. Optimization of efficient tissue culture and fast propagation technique for sweet cherry rootstock gisela[D]. Beijing: Beijing Forestry University, 2020. (in Chinese with English abstract) | |
[11] | 徐晨捷. 几种樱属植物的快繁技术研究[D]. 贵阳: 贵州大学, 2020. |
XU C J. Studies on the rapid propagation of several species of the genus Cerasus[D]. Guiyang: Guizhou University, 2020. (in Chinese with English abstract) | |
[12] | 王淼, 赵慧, 王媚, 等. 樱桃砧木吉塞拉6号快繁体系建立[J]. 园艺与种苗, 2022, 42(3): 5-6, 89. |
WANG M, ZHAO H, WANG M, et al. Establishment of rapid propagation on sweet cherry dwarfing rootstock gisela 6[J]. Horticulture & Seed, 2022, 42(3): 5-6, 89. (in Chinese with English abstract) | |
[13] | 于福顺, 焦功强, 刘方新, 等. 不同砧木对甜樱桃树体生长结果的影响[J]. 中国果树, 2022(9): 35-37. |
YU F S, JIAO G Q, LIU F X, et al. Effects of different rootstocks on the growth and fruiting of sweet cherry[J]. China Fruits, 2022(9): 35-37. (in Chinese) | |
[14] | 庞淑萍, 陈凤龙, 李洋, 等. 山东临淄大樱桃产业发展现状与趋势展望[J]. 果树实用技术与信息, 2022(9): 39-41. |
PANG S P, CHEN F L, LI Y, et al. Development status and trend prospect of big cherry industry in Linzi, Shandong Province[J]. Applied Technology and Information for Fruit Tree, 2022(9): 39-41. (in Chinese) | |
[15] | 周乃富, 张俊佩, 刘昊, 等. 木本植物非均质化组织石蜡切片制作方法[J]. 植物学报, 2018, 53(5): 653-660. |
ZHOU N F, ZHANG J P, LIU H, et al. New protocols for paraffin sections of heterogeneous tissues of woody plants[J]. Chinese Bulletin of Botany, 2018, 53(5): 653-660. (in Chinese with English abstract) | |
[16] | 刘昊. 核桃复幼促进扦插生根的多激素作用机制[D]. 北京: 中国林业科学研究院, 2017. |
LIU H. The mechanism of multiple hormones on promoting rooting during cutting of walnut rejuvenation[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese with English abstract) | |
[17] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015. |
[18] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[19] | 朱广廉, 钟海文, 张爱琴. 植物生理学实验[M]. 北京: 北京大学出版社, 1990: 37-39. |
[20] | 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009: 210-212. |
[21] | 张亚男, 刘勇, 贺国鑫, 等. 植物生长调节剂对毛梾嫩枝扦插生根及内源激素含量的影响[J]. 西北林学院学报, 2021, 36(6): 92-99. |
ZHANG Y N, LIU Y, HE G X, et al. Effects of plant growth regulators on rooting and endogenous hormones content of Cornus walteri softwood cuttings[J]. Journal of Northwest Forestry University, 2021, 36(6): 92-99. (in Chinese with English abstract) | |
[22] | 晋宇轩, 陈之林, 杜致辉, 等. 永福报春苣苔叶片扦插过程中内源激素含量的动态变化[J]. 贵州农业科学, 2023, 51(1): 67-73. |
JIN Y X, CHEN Z L, DU Z H, et al. Dynamic changes in endogenous hormone of Primulina yungfuensis during its leaf cutting process[J]. Guizhou Agricultural Sciences, 2023, 51(1): 67-73. (in Chinese with English abstract) | |
[23] | 朱立明. 大花、重瓣型非洲紫罗兰组培苗生根培养研究[J]. 中国园艺文摘, 2011, 27(4): 3-4. |
ZHU L M. Study on rooting culture of tissue culture seedlings of African violet with large flowers and double petals[J]. Chinese Horticulture Abstracts, 2011, 27(4): 3-4. (in Chinese) | |
[24] | 吕德任, 云勇, 潘梅, 等. 花叶艳山姜组培苗不定根诱导研究[J]. 中国园艺文摘, 2015, 31(12): 11-12, 52. |
LYU D R, YUN Y, PAN M, et al. Study on adventitious root induction of tissue culture seedlings of Alpinia mosaic[J]. Chinese Horticulture Abstracts, 2015, 31(12): 11-12, 52. (in Chinese) | |
[25] | 于健. 乙烯参与外源钙诱导盐胁迫条件下黄瓜外植体不定根发生机理研究[D]. 兰州: 甘肃农业大学, 2020. |
YU J. The mechanism research of ethylene was involved in Ca2+-induced adventitious rooting of cucumber explants under salt stress[D]. Lanzhou: Gansu Agricultural University, 2020. (in Chinese with English abstract) | |
[26] | 刘翠玉, 闫明, 黄贤斌, 等. 石榴耐盐性研究与指标筛选[J]. 浙江农林大学学报, 2018, 35(5): 853-860. |
LIU C Y, YAN M, HUANG X B, et al. Salt tolerance and screening for identification indexes with pomegranate cuttings[J]. Journal of Zhejiang A & F University, 2018, 35(5): 853-860. (in Chinese with English abstract) | |
[27] | 王宇光, 田烨, 耿贵. 不同钠离子浓度下甜菜幼苗早期生理变化[J]. 中国糖料, 2018, 40(5): 22-24. |
WANG Y G, TIAN Y, GENG G. Early physiological changes of sugar beet seedlings under different concentration of sodium ions[J]. Sugar Crops of China, 2018, 40(5): 22-24. (in Chinese with English abstract) | |
[28] | 张焕欣, 董春娟, 李福凯, 等. 植物不定根发生机理的研究进展[J]. 西北植物学报, 2017, 37(7): 1457-1464. |
ZHANG H X, DONG C J, LI F K, et al. Progress on the regulatory mechanism of adventitious rooting[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7): 1457-1464. (in Chinese with English abstract) | |
[29] | 刘涛, 陈海荣, 汪成忠, 等. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681. |
LIU T, CHEN H R, WANG C Z, et al. Physiology of stress resistance of Agapanthus praecox under drought and salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. (in Chinese with English abstract) | |
[30] | 吴小慧, 王妍, 杨志坚, 等. 插穗因素对闽楠扦插苗生根、生长及相关酶活性的影响[J]. 西北植物学报, 2019, 39(11): 2028-2036. |
WU X H, WANG Y, YANG Z J, et al. Rooting, growth and related enzyme activities of Phoebe bournei cutting seedlings under different treatments of cuttings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 2028-2036. (in Chinese with English abstract) | |
[31] | 金侯定, 郑春颖, 华斌, 等. 香榧扦插生根解剖学与生理相关酶活性[J]. 浙江农业学报, 2022, 34(9): 1955-1966. |
JIN H D, ZHENG C Y, HUA B, et al. Rooting anatomy and physiological enzyme activity of Torreya grandis cuttings[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1955-1966. (in Chinese with English abstract) | |
[32] | 尚文倩, 王政, 何松林, 等. 牡丹试管苗生根过程中内源IAA及相关酶活性的变化[J]. 西北农林科技大学学报(自然科学版), 2021, 49(2): 129-136. |
SHANG W Q, WANG Z, HE S L, et al. Changes of endogenous IAA and related enzyme activities during rooting of Paeonia suffruticosa in vitro[J]. Journal of Northwest A & F University(Natural Science Edition), 2021, 49(2): 129-136. (in Chinese with English abstract) | |
[33] | 魏海蓉, 陈新, 宗晓娟, 等. 甜樱桃矮化砧‘吉塞拉6号’扦插过程中氧化酶活性和碳氮含量变化[J]. 林业科学, 2013, 49(9): 172-177. |
WEI H R, CHEN X, ZONG X J, et al. Fluctuations of oxidase activities and carbon and nitrogen content during the rooting process of sweet cherry dwarf rootstock ‘Gisela 6’ softwood cuttings[J]. Scientia Silvae Sinicae, 2013, 49(9): 172-177. (in Chinese with English abstract) | |
[34] | GOEL A, KAUR A, KUMAR A. Biochemical and histological changes during in vitro rooting of microcuttings of Bacopa monnieri(L.) Wettst.[J]. Acta Physiologiae Plantarum, 2018, 40(3): 64. |
[35] | ZHU Y C, LIAO W B. The metabolic constituent and rooting-related enzymes responses of marigold explants to hydrogen gas during adventitious root development[J]. Theoretical and Experimental Plant Physiology, 2017, 29(2): 77-85. |
[36] | 王小玲, 高柱, 郑健, 等. 四倍体刺槐扦插不定根发生的酶活性变化[J]. 东北林业大学学报, 2014, 42(1): 19-22, 89. |
WANG X L, GAO Z, ZHENG J, et al. Enzymes activity in adventitious roots formation of tetraploid Robinia pseudoacacia cuttings[J]. Journal of Northeast Forestry University, 2014, 42(1): 19-22, 89. (in Chinese with English abstract) | |
[37] | 苗大鹏, 贾瑞瑞, 李胜皓, 等. 木本植物不定根发生机制研究进展[J]. 浙江农林大学学报, 2022, 39(4): 902-912. |
MIAO D P, JIA R R, LI S H, et al. Research advances in the mechanism of adventitious root occurrence in woody species[J]. Journal of Zhejiang A & F University, 2022, 39(4): 902-912. (in Chinese with English abstract) | |
[38] | 王艳晶, 彭祚登. 不同处理对国槐硬枝扦插生根的影响及生根过程中相关氧化酶活性的变化[J]. 中南林业科技大学学报, 2017, 37(9): 74-79. |
WANG Y J, PENG Z D. Effects of different treatments on hardwood-cutting rooting and related oxidase activity changes during rooting of Sophora japonica[J]. Journal of Central South University of Forestry & Technology, 2017, 37(9): 74-79. (in Chinese with English abstract) | |
[39] | 扈红军, 曹帮华, 尹伟伦, 等. 不同处理对欧榛硬枝扦插生根的影响及生根过程中相关氧化酶活性的变化[J]. 林业科学, 2007, 43(12): 70-75. |
HU H J, CAO B H, YIN W L, et al. Effects of different treatments on hardwood-cutting rooting and related oxidase activity changes during rooting of Corylus avellana[J]. Scientia Silvae Sinicae, 2007, 43(12): 70-75. (in Chinese with English abstract) |
[1] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
[2] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[3] | 张宇昊, 马卫华, 刘晋佳, 马秀梅, 姜玉锁. 亚致死剂量呋虫胺对意大利蜜蜂采集蜂免疫解毒相关基因表达和酶活性的影响[J]. 浙江农业学报, 2023, 35(3): 575-581. |
[4] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[5] | 周力, 桂林生. 饲粮中小麦颗粒用量对藏羊公羔瘤胃内环境的影响[J]. 浙江农业学报, 2023, 35(11): 2543-2554. |
[6] | 唐文静, 龚荣高, 初元琦, 陈超群, 陈红旭, 冉茂升, 张瑶, 杨文龙. 不同遮光率对甜樱桃果实品质和光合特性的影响[J]. 浙江农业学报, 2023, 35(10): 2346-2353. |
[7] | 彭丹丹, 陈大刚, 徐开未, 游浩宇, 杨然, 廖慧苹, 陈远学. 椰糠复合基质对猕猴桃砧木幼苗生长及根系特征的影响[J]. 浙江农业学报, 2023, 35(10): 2364-2377. |
[8] | 高风, 文仕知, 韦铄星, 欧汉彪, 王智慧. 桂西北石漠化区不同植被恢复类型对土壤理化性质、酶活与真菌群落多样性的影响[J]. 浙江农业学报, 2023, 35(10): 2425-2435. |
[9] | 金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900. |
[10] | 闫梅, 姚彦东, 牟开萍, 淡媛媛, 李伟泰, 廖伟彪. 脱落酸通过提高抗氧化酶活性与基因表达参与富氢水增强番茄幼苗抗旱性[J]. 浙江农业学报, 2022, 34(9): 1901-1910. |
[11] | 金侯定, 郑春颖, 华斌, 俞晨良, 李柯豫, 喻卫武. 香榧扦插生根解剖学与生理相关酶活性[J]. 浙江农业学报, 2022, 34(9): 1955-1966. |
[12] | 王慧茹, 李建设, 闫思华, 高艳明. 整枝方式对樱桃番茄冠层截获和荧光特性的影响[J]. 浙江农业学报, 2022, 34(3): 525-533. |
[13] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[14] | 陆玲鸿, 马媛媛, 古咸彬, 肖金平, 宋根华, 张慧琴. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报, 2022, 34(12): 2648-2658. |
[15] | 周品志, 裴悦琨, 魏冉, 张永飞, 谷宇. 基于YOLOV4模型的果园樱桃实时检测研究[J]. 浙江农业学报, 2022, 34(11): 2522-2532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||