浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 1889-1900.DOI: 10.3969/j.issn.1004-1524.2022.09.08
收稿日期:
2022-01-07
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
魏小红
作者简介:
*魏小红,E-mail: weixh@gsau.edu.cn基金资助:
JIN Baoxia(), WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong(
)
Received:
2022-01-07
Online:
2022-09-25
Published:
2022-09-30
Contact:
WEI Xiaohong
摘要:
以樱桃番茄材料J6的子叶和下胚轴为试验对象,分别在激素组合A(2 mg·L-1 6-BA+0/0.1/0.2/0.3 mg·L-1 IAA,依次编号为A1、A2、A3、A4)、组合B(2 mg·L-1 ZT+0/0.1/0.2/0.3 mg·L-1 IAA,依次编号为B1、B2、B3、B4)的MS培养基上进行培养,研究不同激素组合对不同时期的番茄子叶和下胚轴脱分化、再分化情况,以及脱分化基因和再分化基因表达的影响。结果表明:外植体培养至第10天,子叶的脱分化率在所有处理下为100%,但脱分化基因的表达量相差较大;与B组合相比,A组合的下胚轴脱分化率更高,所有脱分化基因表达量也显著(P<0.05)上调。培养至第20 d,子叶愈伤组织在B组合下形态良好,脱分化基因Solyc01g091420.2.1、Solyc04g072900.1.1和Solyc04g054910.3.1表达量在B1和B2处理下显著上调;下胚轴愈伤形态在所有处理下疏松透亮,所有脱分化基因表达量只在B2处理下显著上调。培养至第60 d,子叶再分化率在B1和B2处理下最高,为67%和58%,再分化基因Solyc05g013540.1.1、Solyc02g022850.1.1和Solyc10g052510.2.1在B1和B2处理下高表达;下胚轴再分化率和基因表达量在所有处理下均较低。综上所述,番茄材料J6以子叶为外植体,在2 mg·L-1 ZT+0/0.1 mg·L-1 IAA的激素组合下离体再生效果最好,脱分化基因Solyc01g091420.2.1、Solyc04g072900.1.1、Solyc04g054910.3.1和再分化基因Solyc05g013540.1.1、Solyc02g022850.1.1、Solyc10g052510.2.1与子叶离体再生过程密切相关,从分子层面证实了不同激素组合处理对调控番茄不同类型外植体脱分化、再分化过程有重要影响。
中图分类号:
金宝霞, 王伟杰, 朱晓林, 王贤, 魏小红. 不同激素组合对番茄离体再生和相关基因表达的影响[J]. 浙江农业学报, 2022, 34(9): 1889-1900.
JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900.
基因类型 Genetic types | 基因注册号 Gene registration number | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') |
---|---|---|---|
脱分化基因 | Solyc09g066260.3.1 | GTCCTGCTAGATTTGCAGCCA | ACATCGATCGGGGACAGGAA |
Dedifferentiated genes | Solyc06g083930.2.1 | TCCTGTCTATGGTTGTGTTGCC | AAGCTTTGTGCTAACTGCCC |
Solyc01g091420.2.1 | AGTGTGTTGCCGGTTGCATA | GGGTTGTTAGGTGGGCTTGT | |
Solyc04g072900.1.1 | CTAAGAACCGAACCCGCCTT | CCTTGTCGTAAGCCAGAGCA | |
Solyc12g056980.1.1 | CAATTGGGCTGAACCAAGCC | CGTTATGACGGAGATGGGGG | |
Solyc04g054910.3.1 | CCCAATGAAGCAAACGGGTG | AGCCAAGCTTTGGCAAATGG | |
再分化基因 | Solyc05g013540.1.1 | TGTACGAACAGCTGCCGAAT | TCATTTGCGGTAGCACCACT |
Redifferentiated genes | Solyc03g082980.3.1 | TCACAGACGTCCTGTTTCCG | GTACATTCACCCATGCCCCA |
Solyc12g042210.2.1 | CTGCACGAGTATGGCTAGGG | TCCAACGACGTATTCGGTGA | |
Solyc02g022850.1.1 | GCAAGTCCAAGGGTGCAAAG | CGGTTCAACAACGCTTCTGG | |
Solyc08g066840.3.1 | TTGCTGTTGGAAGTAGCCGT | AGGTGCCCACCAGAAATACG | |
Solyc10g052510.2.1 | TCGAGCCTGCTAAAACAGCA | TTTCAATGGAACCGGGGCTT | |
内参基因Reference gene | UBI | TCGTAAGGAGTGCCCTAATGCTGAA | CAATCGCCTCCAGCCTTGTTGTA |
表1 番茄脱分化与再分化基因引物信息
Table 1 Information of primers for dedifferentiated and redifferentiated genes of tomato
基因类型 Genetic types | 基因注册号 Gene registration number | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') |
---|---|---|---|
脱分化基因 | Solyc09g066260.3.1 | GTCCTGCTAGATTTGCAGCCA | ACATCGATCGGGGACAGGAA |
Dedifferentiated genes | Solyc06g083930.2.1 | TCCTGTCTATGGTTGTGTTGCC | AAGCTTTGTGCTAACTGCCC |
Solyc01g091420.2.1 | AGTGTGTTGCCGGTTGCATA | GGGTTGTTAGGTGGGCTTGT | |
Solyc04g072900.1.1 | CTAAGAACCGAACCCGCCTT | CCTTGTCGTAAGCCAGAGCA | |
Solyc12g056980.1.1 | CAATTGGGCTGAACCAAGCC | CGTTATGACGGAGATGGGGG | |
Solyc04g054910.3.1 | CCCAATGAAGCAAACGGGTG | AGCCAAGCTTTGGCAAATGG | |
再分化基因 | Solyc05g013540.1.1 | TGTACGAACAGCTGCCGAAT | TCATTTGCGGTAGCACCACT |
Redifferentiated genes | Solyc03g082980.3.1 | TCACAGACGTCCTGTTTCCG | GTACATTCACCCATGCCCCA |
Solyc12g042210.2.1 | CTGCACGAGTATGGCTAGGG | TCCAACGACGTATTCGGTGA | |
Solyc02g022850.1.1 | GCAAGTCCAAGGGTGCAAAG | CGGTTCAACAACGCTTCTGG | |
Solyc08g066840.3.1 | TTGCTGTTGGAAGTAGCCGT | AGGTGCCCACCAGAAATACG | |
Solyc10g052510.2.1 | TCGAGCCTGCTAAAACAGCA | TTTCAATGGAACCGGGGCTT | |
内参基因Reference gene | UBI | TCGTAAGGAGTGCCCTAATGCTGAA | CAATCGCCTCCAGCCTTGTTGTA |
图1 不同激素组合下子叶和下胚轴的脱分化情况 A,CK处理10 d的子叶;B,CK处理10 d的下胚轴;C,A2处理10 d子叶;D,B1处理10 d下胚轴;E,B1处理20 d子叶;F,B1处理20 d下胚轴。
Fig.1 Dedifferentiation of cotyledons and hypocotyls under different hormone combinations A, The cotyledons of 10 days under CK treatment; B, The hypocotyls of 10 days under CK treatment; C, The cotyledons of 10 days under A2 treatment; D, The hypocotyls of 10 days under B1 treatment; E, The cotyledons of 20 days under B1 treatment; F, The hypocotyls of 20 days under B1 treatment.
处理 Treatments | 外植体数 Number of explants | 子叶脱分化率 Dedifferentiation rate of cotyledon/% | 下胚轴脱分化率 Dedifferentiation rate of hypocotyl/% | ||
---|---|---|---|---|---|
10 d | 20 d | 10 d | 20 d | ||
CK | 60 | 0 b | 0 b | 0 f | 0 e |
A1 | 60 | 100 a | 100 a | 70.00±0.01 bc | 71.67±2.89 b |
A2 | 60 | 100 a | 100 a | 88.33±2.89 a | 90.00±5.00 a |
A3 | 60 | 100 a | 100 a | 78.33±7.64 ab | 81.67±5.77 a |
A4 | 60 | 100 a | 100 a | 81.67±5.77 ab | 83.33±2.89 a |
B1 | 60 | 100 a | 100 a | 35.00±5.00 e | 36.67±2.89 d |
B2 | 60 | 100 a | 100 a | 65.00±5.00 cd | 66.67±2.89 bc |
B3 | 60 | 100 a | 100 a | 56.67±2.89 d | 58.33±5.77 c |
B4 | 60 | 100 a | 100 a | 65.00±5.00 cd | 66.67±2.89 bc |
表2 不同激素组合对J6子叶、下胚轴脱分化率的影响
Table 2 Effects of different hormone combinations on dedifferentiation rate of cotyledon and hypocotyl of J6
处理 Treatments | 外植体数 Number of explants | 子叶脱分化率 Dedifferentiation rate of cotyledon/% | 下胚轴脱分化率 Dedifferentiation rate of hypocotyl/% | ||
---|---|---|---|---|---|
10 d | 20 d | 10 d | 20 d | ||
CK | 60 | 0 b | 0 b | 0 f | 0 e |
A1 | 60 | 100 a | 100 a | 70.00±0.01 bc | 71.67±2.89 b |
A2 | 60 | 100 a | 100 a | 88.33±2.89 a | 90.00±5.00 a |
A3 | 60 | 100 a | 100 a | 78.33±7.64 ab | 81.67±5.77 a |
A4 | 60 | 100 a | 100 a | 81.67±5.77 ab | 83.33±2.89 a |
B1 | 60 | 100 a | 100 a | 35.00±5.00 e | 36.67±2.89 d |
B2 | 60 | 100 a | 100 a | 65.00±5.00 cd | 66.67±2.89 bc |
B3 | 60 | 100 a | 100 a | 56.67±2.89 d | 58.33±5.77 c |
B4 | 60 | 100 a | 100 a | 65.00±5.00 cd | 66.67±2.89 bc |
图2 不同激素处理下子叶和下胚轴的再分化情况 A,CK处理60 d的下胚轴;B,B1处理60 d的子叶;C,B4处理60 d的子叶;D,A3处理60 d的下胚轴。
Fig.2 Redifferentiation of cotyledons and hypocotyls treated with different hormone combinations A, The hypocotyls of 60 days under CK treatment; B, The cotyledons of 60 days under B1 treatment; C, The cotyledons of 60 days under B4 treatment; D, The hypocotyls of 60 days under A3 treatment.
处理 Treatments | 外植体数量 Number of explants | 子叶再分化率 Redifferentiation rate of cotyledon/% | 下胚轴再分化率 Redifferentiation rate of hypocotyl/% |
---|---|---|---|
CK | 60 | 0 d | 0 d |
A1 | 60 | 22.00±2.89 b | 1.67±1.15 c |
A2 | 60 | 13.00±2.89 bc | 0 d |
A3 | 60 | 0 d | 15.00±0.01 a |
A4 | 60 | 0 d | 0 d |
B1 | 60 | 67.00±2.89 a | 1.67±0.58 c |
B2 | 60 | 58.00±2.89 a | 6.67±2.89 b |
B3 | 60 | 15.00±0.58 bc | 6.67±2.89 b |
B4 | 60 | 3.00±0.58 c | 1.67±0.01 c |
表3 不同激素组合对J6子叶、下胚轴再分化率的影响
Table 3 Effects of different hormone combinations on the redifferentiation rate of cotyledon and hypocotyl of J6
处理 Treatments | 外植体数量 Number of explants | 子叶再分化率 Redifferentiation rate of cotyledon/% | 下胚轴再分化率 Redifferentiation rate of hypocotyl/% |
---|---|---|---|
CK | 60 | 0 d | 0 d |
A1 | 60 | 22.00±2.89 b | 1.67±1.15 c |
A2 | 60 | 13.00±2.89 bc | 0 d |
A3 | 60 | 0 d | 15.00±0.01 a |
A4 | 60 | 0 d | 0 d |
B1 | 60 | 67.00±2.89 a | 1.67±0.58 c |
B2 | 60 | 58.00±2.89 a | 6.67±2.89 b |
B3 | 60 | 15.00±0.58 bc | 6.67±2.89 b |
B4 | 60 | 3.00±0.58 c | 1.67±0.01 c |
图3 不同激素组合第10天子叶愈伤组织中脱分化基因的相对表达量 编号1-6分别代表Solyc09g066260.3.1、Solyc06g083930.2.1、Solyc01g091420.2.1、Solyc04g072900.1.1、Solyc12g056980.1.1和Solyc04g054910.3.1。柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.3 Relative expression level of dedifferentiated genes in callus of cotyledons treated with different hormone combinations at the 10th day 1-6 represented Solyc09g066260.3.1, Solyc06g083930.2.1, Solyc01g091420.2.1, Solyc04g072900.1.1, Solyc12g056980.1.1 and Solyc04g054910.3.1, respectively. Data marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
图4 不同激素处理第20天子叶愈伤组织中脱分化基因的相对表达量
Fig.4 Relative expression level of dedifferentiated genes in callus of cotyledons treated with different hormone combinations at the 20th day
图5 不同激素处理第10天下胚轴愈伤组织中脱分化基因的相对表达量
Fig.5 Relative expression level of dedifferentiated genes in callus of hypocotyls treated with different hormone combinations at the 10th day
图6 不同激素处理第20天下胚轴愈伤组织中脱分化基因的相对表达量
Fig.6 Relative expression level of dedifferentiated genes in callus of hypocotyls treated with different hormone combinations at the 20th day
图7 不同激素处理第60天子叶愈伤组织中再分化基因的相对表达量 编号7-12分别代表Solyc05g013540.1.1、Solyc03g082980.3.1、Solyc12g042210.2.1、Solyc02g022850.1.1、Solyc08g066840.3.1和Solyc10g052510.2.1。下同。
Fig.7 Relative expression level of redifferentiation genes in callus of cotyledons treated with different hormone combinations at the 60th day 7-12 represented Solyc05g013540.1.1, Solyc03g082980.3.1, Solyc12g042210.2.1, Solyc02g022850.1.1, Solyc08g066840.3.1 and Solyc10g052510.2.1, respectively. The same as below.
图8 不同激素处理第60天下胚轴愈伤组织再分化基因的相对表达量
Fig.8 Relative expression level of redifferentiation genes in callus of hypocotyls treated with different hormone combinations at the 60th day
[1] | 骆巧娟, 马文静, 宿梅飞, 等. 不同樱桃番茄果实营养特性比较及遗传倾向研究[J]. 西北农业学报, 2019, 28(8): 1282-1293. |
LUO Q J, MA W J, SU M F, et al. Comparison of nutritional characteristics and genetic tendency of different cherry tomato fruits[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(8): 1282-1293. (in Chinese with English abstract) | |
[2] | 张西英, 刘江娜, 张爱萍. 加工番茄新番72号再生体系的建立[J]. 中国瓜菜, 2021, 34(3): 97-100. |
ZHANG X Y, LIU J N, ZHANG A P. Establishment of genetic transformation and regeneration system of processing tomato Xinfan 72[J]. China Cucurbits and Vegetables, 2021, 34(3): 97-100. (in Chinese with English abstract) | |
[3] | 王娟, 程籍, 李立芹. 番茄“嘉宝”子叶再生体系的建立[J]. 北方园艺, 2010(20): 130-132. |
WANG J, CHENG J, LI L Q. Study on regenerative system of tomato ‘Jiabao’[J]. Northern Horticulture, 2010(20): 130-132. (in Chinese with English abstract) | |
[4] | 谢雯琦, 苏慧慧, 黎振兴, 等. 番茄‘黄樱桃-2号’再生体系研究[J]. 中国农学通报, 2014, 30(10): 129-134. |
XIE W Q, SU H H, LI Z X, et al. The study of efficient plant regeneration of Lycopersivon esculentum Mill. ‘Huangyingtao No.2’[J]. Chinese Agricultural Science Bulletin, 2014, 30(10): 129-134. (in Chinese with English abstract) | |
[5] | 朱雪妹, 魏小红, 金宝霞, 等. 番茄材料‘851’高效离体再生体系的建立[J]. 北方园艺, 2020(13): 1-8. |
ZHU X M, WEI X H, JIN B X, et al. Establishment of high efficient in vitro regeneration system of material ‘851’ of tomato[J]. Northern Horticulture, 2020(13): 1-8. (in Chinese with English abstract) | |
[6] |
IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression[J]. The Plant Cell, 2013, 25(9): 3159-3173.
DOI PMID |
[7] |
IKEUCHI M, FAVERO D S, SAKAMOTO Y, et al. Molecular mechanisms of plant regeneration[J]. Annual Review of Plant Biology, 2019, 70: 377-406.
DOI PMID |
[8] | 刘炜炜, 秦荣, 张伟, 等. 加工番茄离体再生体系的建立[J]. 中国农学通报, 2012, 28(16): 155-160. |
LIU W W, QIN R, ZHANG W, et al. Establishment of in vitro regeneration system for processing tomato[J]. Chinese Agricultural Science Bulletin, 2012, 28(16): 155-160. (in Chinese with English abstract) | |
[9] | 王全华, 葛晨辉, 曹守军, 等. 番茄组织再生及其遗传转化体系的优化[J]. 青岛农业大学学报(自然科学版), 2007, 24(1): 24-27. |
WANG Q H, GE C H, CAO S J, et al. Regeneration and optimization of transformation system in tomato[J]. Journal of Qingdao Agricultural University (Natural Science), 2007, 24(1): 24-27. (in Chinese with English abstract) | |
[10] | 陈丽萍, 张丽华, 程智慧. 加工番茄离体再生体系的建立[J]. 西北农业学报, 2007, 16(1): 162-167. |
CHEN L P, ZHANG L H, CHENG Z H. Establishment of in vitro regeneration system for processing tomato[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(1): 162-167. (in Chinese with English abstract) | |
[11] | 王傲雪, 赵越, 陈秀玲, 等. 不同激素组合对番茄芽分化率的影响[J]. 东北农业大学学报, 2013, 44(7): 85-90. |
WANG A X, ZHAO Y, CHEN X L, et al. Effect of different plant hormone combinations on bud differentiation of tomato[J]. Journal of Northeast Agricultural University, 2013, 44(7): 85-90. (in Chinese with English abstract) | |
[12] |
FAN M Z, XU C Y, XU K, et al. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration[J]. Cell Research, 2012, 22(7): 1169-1180.
DOI URL |
[13] | 卢清瑶, 赵琳, 李冬梅, 等. RAV基因对拟南芥和大豆不定芽再生的影响[J]. 大豆科学, 2013, 32(1): 23-27. |
LU Q Y, ZHAO L, LI D M, et al. Effects of RAV gene on shoot regeneration of Arabidopsis and soybean[J]. Soybean Science, 2013, 32(1): 23-27. (in Chinese with English abstract) | |
[14] | 刘锴, 何闪闪, 张彩霞, 等. 苹果叶片不定芽再生过程的差异表达基因鉴定与分析[J]. 中国农业科学, 2021, 54(16): 3488-3501. |
LIU K, HE S S, ZHANG C X, et al. Identification and analysis of differentially expressed genes in adventitious shoot regeneration in leaves of apple[J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501. (in Chinese with English abstract) | |
[15] | 高英. 茶树组培茎段和叶片脱分化与再分化的表观遗传学机制[D]. 杭州: 浙江大学, 2019. |
GAO Y. Epigenetic mechanism associated with the dedifferentiation and redifferentiation of stem and leaf during tissue culture of tea plant[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[16] | 石玉, 沈诗雅, 张倩茹, 等. LBD基因家族研究进展[J]. 中国细胞生物学学报, 2019, 41(4): 738-745. |
SHI Y, SHEN S Y, ZHANG Q R, et al. The research progress of LBD gene family[J]. Chinese Journal of Cell Biology, 2019, 41(4): 738-745. (in Chinese with English abstract) | |
[17] | 葛翠华. MYB15基因和SMB基因在拟南芥细胞脱分化中的功能研究[D]. 上海: 同济大学, 2014. |
GE C H. Functional characterization of MYB15 and SMB genes in Arabidopsis thaliana cell dedifferentiation[D]. Shanghai: Tongji University, 2014. (in Chinese with English abstract) | |
[18] | 卢寰, 时振英. 高等植物特有的LBD基因的分子生物学功能研究进展[J]. 植物生理学报, 2013, 49(9): 833-846. |
LU H, SHI Z Y. Research progress on the molecular function of plant-specific LBD gene[J]. Plant Physiology Journal, 2013, 49(9): 833-846. (in Chinese with English abstract) | |
[19] |
LEE H W, KIM N Y, LEE D J, et al. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis[J]. Plant Physiology, 2009, 151(3): 1377-1389.
DOI URL |
[20] |
BUSTILLO-AVENDAÑO E, IBÁÑEZ S, SANZ O, et al. Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis[J]. Plant Physiology, 2017, 176(2): 1709-1727.
DOI URL |
[21] | 王兴春, 杨致荣, 张树伟, 等. 拟南芥不定芽发生早期的数字基因表达谱分析[J]. 生物工程学报, 2013, 29(2): 189-202. |
WANG X C, YANG Z R, ZHANG S W, et al. Digital gene expression profiling analysis of the early adventitious shoot formation in Arabidopsis thaliana[J]. Chinese Journal of Biotechnology, 2013, 29(2): 189-202. (in Chinese with English abstract) | |
[22] |
IWASE A, HARASHIMA H, IKEUCHI M, et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[J]. The Plant Cell, 2017, 29(1): 54-69.
DOI URL |
[23] |
WANG K Y, CHEN C C, SHEN C K J. Active DNA demethylation of the vertebrate genomes by DNA methyltransferases: deaminase, dehydroxymethylase or demethylase?[J]. Epigenomics, 2014, 6(3): 353-363.
DOI URL |
[24] |
ZHAO L, HAO D Q, CHEN L M, et al. Roles for a soybean RAV-like orthologue in shoot regeneration and photoperiodicity inferred from transgenic plants[J]. Journal of Experimental Botany, 2012, 63(8): 3257-3270.
DOI PMID |
[25] | 向亚男, 黄蕊蕊, 顾婷婷, 等. 基于RNA-Seq的拟南芥不定芽再生过程的基因表达谱分析[J]. 南京农业大学学报, 2018, 41(2): 308-320. |
XIANG Y N, HUANG R R, GU T T, et al. Analysis of RNA-Seq-based expression profiles during adventitious shoot regeneration in Arabidopsis thaliana[J]. Journal of Nanjing Agricultural University, 2018, 41(2): 308-320. (in Chinese with English abstract) | |
[26] |
CHE P, LALL S, NETTLETON D, et al. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture[J]. Plant Physiology, 2006, 141(2): 620-637.
DOI URL |
[27] |
KANG N Y, LEE H W, KIM J. The AP2/EREBP gene PUCHI co-acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis[J]. Plant and Cell Physiology, 2013, 54(8): 1326-1334.
DOI URL |
[28] |
MIYAWAKI K, MATSUMOTO-KITANO M, KAKIMOTO T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate[J]. The Plant Journal, 2004, 37(1): 128-138.
DOI URL |
[29] | 姜静, 王银磊, 赵丽萍, 等. 番茄qRT-PCR内参基因的筛选[J]. 江苏农业学报, 2017, 33(2): 389-396. |
JIANG J, WANG Y L, ZHAO L P, et al. Selection of tomato reference genes for qRT-PCR[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(2): 389-396. (in Chinese with English abstract) | |
[30] | 张艳婷. 转HBsAg基因导致樱桃番茄突变体发生规律的研究[D]. 西安: 西北大学, 2012. |
ZHANG Y T. The research on occurrence of transgenic cherry tomato mutant with HBsAg gene[D]. Xi’an: Northwest University, 2012. (in Chinese with English abstract) | |
[31] | 陈钊. 三个拟南芥不定芽再生相关转录因子的分离鉴定和功能研究[D]. 太谷: 山西农业大学, 2015. |
CHEN Z. Isolation and functional characterization of three transcription factors related to adventitious shoot regeneration in Arabidopsis thaliana[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese with English abstract) | |
[32] |
IWASE A, MITSUDA N, KOYAMA T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis[J]. Current Biology, 2011, 21(6): 508-514.
DOI URL |
[33] | 赵新涛, 宿烽, 都彦伶. 圣女樱桃番茄再生体系的研究[J]. 山东农业科学, 2015, 47(3): 13-17. |
ZHAO X T, SU F, DU Y L. Study on regeneration system of Lycopersicon esculentum Mill[J]. Shandong Agricultural Sciences, 2015, 47(3): 13-17. (in Chinese with English abstract) |
[1] | 李春梅, 万小荣, 关子盈, 赖晓凤, 罗凯晴, 刘凯. 长链非编码RNA调控植物生长发育与逆境胁迫响应研究进展[J]. 浙江农业学报, 2022, 34(9): 2066-2076. |
[2] | 曾雅婷, 熊桃, 李红叶. 柑橘黑点病菌(Diaporthe citri)快速分子检测技术[J]. 浙江农业学报, 2022, 34(7): 1457-1465. |
[3] | 丁燕玲, 王鹏飞, 杨朝云, 周小南, 赵志艳, 张岩峰, 史远刚, 康晓龙. 牛miR-144靶基因预测与组织表达分析[J]. 浙江农业学报, 2022, 34(3): 471-479. |
[4] | 王慧茹, 李建设, 闫思华, 高艳明. 整枝方式对樱桃番茄冠层截获和荧光特性的影响[J]. 浙江农业学报, 2022, 34(3): 525-533. |
[5] | 裴芸, 徐秀红, 陆锦彪, 陈阿敏, 张万萍. 151份贵州地方樱桃番茄资源的遗传多样性分析[J]. 浙江农业学报, 2022, 34(2): 310-316. |
[6] | 周艳超, 薛坤, 葛海燕, 陈火英, 刘杨. 基于主成分与聚类分析的樱桃番茄品质综合评价[J]. 浙江农业学报, 2021, 33(12): 2320-2329. |
[7] | 梁乐, 刘娟, 李晓梅, 廖继超, 李焕秀, 唐懿. 三种基因型樱桃番茄混种对果实品质和硒含量的影响[J]. 浙江农业学报, 2021, 33(10): 1870-1878. |
[8] | 王伟科, 陆娜, 闫静, 宋吉玲, 袁卫东, 周祖法. 秀珍菇S-腺苷甲硫氨酸合成酶基因(PpSAMS)的克隆与表达分析[J]. 浙江农业学报, 2021, 33(1): 62-68. |
[9] | 孙瑞萍, 王峰, 晁哲, 刘海隆, 邢漫萍, 刘圈炜, 黄丽丽, 郑心力, 魏立民. 屯昌猪PDK4基因克隆及其组织表达分析[J]. 浙江农业学报, 2020, 32(6): 978-985. |
[10] | 袁玺垒, 王振山, 贾小平, 桑璐曼, 李剑峰, 张博. 光周期调控植物开花分子机制以及CCT基因家族研究进展[J]. 浙江农业学报, 2020, 32(6): 1133-1140. |
[11] | 徐麒麟, 齐桂兰, 莫桂林, 朱江, 雷春龙, 吴永胜, 许祯莹, 李娟. 蚯蚓提取液对家蚕热激蛋白水平及免疫功能的影响[J]. 浙江农业学报, 2020, 32(4): 593-600. |
[12] | 张芳, 王佩欣, 何勇, 骆慧枫, 寿国忠. 基于物联网的阳台微型温室作物生长环境因子探究[J]. 浙江农业学报, 2020, 32(2): 234-242. |
[13] | 潘孝青, 王杏龙, 杨杰, 邵乐, 秦枫, 李健, 张霞, 翟频. LED单色光对兔行为及同期发情影响的机理研究[J]. 浙江农业学报, 2020, 32(12): 2128-2137. |
[14] | 潘孝青, 王杏龙, 杨杰, 邵乐, 秦枫, 李健, 张霞, 翟频. LED单色光对兔行为及同期发情影响的机理研究[J]. 浙江农业学报, 2020, 32(12): 2128-2137. |
[15] | 纪艺, 姜媛媛, 汪小福, 徐晓丽, 徐俊锋, 李玥莹, 陈笑芸. 几种动物生鲜肌肉组织样品DNA提取方法的比较研究[J]. 浙江农业学报, 2019, 31(9): 1471-1477. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||